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Abstract 
Background: Each day is made up of a composition of “time-use behaviors.” These can be classified by their intensity (eg, light or moderate–
vigorous physical activity [PA]) or domain (eg, chores, socializing). Intensity-based time-use behaviors are linked with cognitive function and car-
diometabolic health in older adults, but it is unknown whether these relationships differ depending on the domain (or type/context) of behavior.
Methods: This study included 397 older adults (65.5 ± 3.0 years, 69% female, 16.0 ± 3.0 years education) from Adelaide and Newcastle, 
Australia. Time-use behaviors were recorded using the Multimedia Activity Recall for Children and Adults, cognitive function was measured 
using the Addenbrooke’s Cognitive Examination III and Cambridge Neuropsychological Test Automated Battery, and systolic and diastolic blood 
pressure, total cholesterol, and waist–hip ratio were also recorded. Two 24-hour time-use compositions were derived from each participant’s 
Multimedia Activity Recall for Children and Adults, including a 4-part intensity composition (sleep, sedentary behavior, light, and moderate–vig-
orous PA) and an 8-part domain composition (Sleep, Self-Care, Chores, Screen Time, Quiet Time, Household Administration, Sport/Exercise, and 
Social).
Results: Linear regressions found significant associations between the domain composition and both Addenbrooke’s Cognitive Examination III 
(p = .010) and waist–hip ratio (p = .009), and between the intensity composition and waist–hip ratio (p = .025). Isotemporal substitution modeling 
demonstrated that the domains of sedentary behaviors and PA impacted their associations with Addenbrooke’s Cognitive Examination III, while 
any PA appeared beneficial for waist–hip ratio.
Conclusions: Findings suggest the domain of behavior should be considered when aiming to support cognitive function, whereas, for car-
diometabolic health, it appears sufficient to promote any type of PA.
Keywords: Cognition, Physical activity, Sedentary behavior, Sleep, Time use

The relative distribution of physical activity, sedentary 
behavior, and sleep across the 24-hour day has important 
implications for cognitive and cardiometabolic health. The 
independent relationships between each of these “time-use 
behaviors” and cognitive and cardiometabolic outcomes 
have been investigated widely, but more recently, research has 
shifted toward understanding how the 24-hour composition 
of these behaviors (ie, balance of these behaviors across the 

24-hour day) relates to health. A recent cross-sectional study 
using a compositional data analysis approach in over 15 000 
adults (mean age 53.7 ± 9.7) demonstrated that spending more 
time in moderate–vigorous physical activity (MVPA) and lim-
iting sedentary behavior (SB) was favorably associated with 
body mass index, waist circumference, and several blood-
based markers of cardiovascular health (eg, high-density  
lipoprotein [HDL] cholesterol, triglycerides) (1). Similarly, a 
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cross-sectional study in 1 411 adults by McGregor et al. (2) 
reported that spending more time in MVPA and less time in 
sedentary behavior was positively associated with body mass 
index, waist–hip ratio, and blood pressure, while another 
cross-sectional study by Farrahi et al. (3) also reported that 
spending less time sedentary and more time in active behav-
iors was associated with better cardiometabolic health (eg, 
adiposity, lipid biomarkers).

Despite growing evidence that 24-hour time-use composi-
tion is associated with cardiometabolic health, the findings for 
cognitive outcomes are less conclusive and evidence is sparse. 
Our recent review incorporated studies investigating how 
combinations of time-use behaviors (ie, 2 or more) are asso-
ciated with cognitive function in older adults. We found that 
spending more time in higher-intensity physical activity (PA) 
(ie, moderate–vigorous PA; MVPA) and less time in sedentary 
behavior is positively related to cognitive function (4), which 
aligns broadly with evidence for cardiometabolic health. 
However, few studies have assessed all 24-hour behaviors 
together in the same model using a compositional approach, 
as has been done more frequently in cardiometabolic research 
(4–7). Thus far, there is insufficient evidence for a relationship 
between 24-hour time-use composition and cognitive func-
tion in older adults (see Falck et al. (8) for overview). This 
may be due to a number of lifestyle and sociodemographic 
factors that moderate the relationship between device- 
measured 24-hour time-use composition and cognitive func-
tion, including age, disability status, socioeconomic status, race, 
and ethnicity, as well as genetic predisposition to Alzheimer’s 
disease, which are often overlooked in this research area (6).

One additional consideration is that time-use behaviors are 
not one-dimensional, in that they can be quantified not only 
by their metabolic or intensity-based characteristics, but also 
by their contextual or behavioral characteristics. Somewhat 
antithetically to the “move more, sit less” notion for car-
diometabolic health outcomes, some studies (albeit not using 
compositional approaches) have reported that higher engage-
ment in sedentary behavior is positively associated with cog-
nitive function (9). This is likely, at least in part, due to the 
types (or domains) of sedentary behaviors that participants 
engage in, and the level of cognitive engagement required of 
these tasks. For example, passive sedentary behaviors such 
as watching television have been associated with unfavorable 
cognitive outcomes in older adults (10), whereas cognitively 
stimulating activities such as reading, studying, or playing 
cards have been associated with better cognitive function (11).

To our knowledge, no previous studies have explored how 
the 24-hour composition of activity domains (rather than time 
spent in different intensity bands) relates to cognitive function 
in older adults. This is likely because many self-report time-
use questionnaires do not comprehensively collect data on 
all daily behaviors. One self-report measure which captures 
activity and sleep patterns across 24 hours is the Multimedia 
Activity Recall for Children and Adults (MARCA) (12). Each 
activity recalled by the participant is linked to an activity 
compendium, allowing daily activities to be classified based 
on intensity (using metabolic equivalent cut points, eg, light 
VS. vigorous PA), or based on activity domains (eg, chores, 
recreational PA, screen time). The MARCA has been validated 
against accelerometry data in both children and adult samples 
(12,13). One previous study (14) used MARCA data to inves-
tigate how intensity-based and domain-based time-use com-
positions were differentially associated with respiratory and 

all-cause mortality risk in adults with chronic obstructive pul-
monary disease, but to our knowledge, this approach (using 
the MARCA) has not yet been applied to cognitive or car-
diometabolic outcomes in healthy older adults. Consequently, 
it is not well understood whether intensity-based and 
domain-based compositions are differentially associated with 
cardiometabolic health and cognitive function outcomes. To 
address this gap, this study explored the association between 
self-reported 24-hour activity patterns, cognitive function, 
and cardiometabolic health outcomes in healthy older adults, 
comparing 24-hour time-use compositions made up of inten-
sity bands and activity domains.

Method
Ethics
The ACTIVate study (15) was prospectively registered 
with the Australian New Zealand Clinical Trials Registry 
(ACTRN12619001659190). Ethics approval was obtained 
from the University of South Australia and University of 
Newcastle Human Research Ethics Committee (202639). All 
procedures were conducted in accordance with the Declara-
tion of Helsinki.

Participants
The ACTIVate Study is a prospective longitudinal cohort 
study investigating associations between lifestyle behav-
iors and changes in cognition and health. Data used in the 
current study incorporate baseline assessments conducted 
between 2020 and 2021. The eligibility criteria and screen-
ing procedures for the ACTIVate study are described in detail 
elsewhere (15). Briefly, participants recruited from Adelaide 
and Newcastle, Australia, met inclusion criteria if they were 
aged 60–70 years, fluent in the English language, had no cur-
rent clinical diagnosis of dementia, no major psychiatric or 
neurological diagnoses, and no known intellectual or major 
physical disability. Interested participants were required to 
complete a phone screening interview to assess eligibility 
based on these criteria, as well as undertaking the Montreal 
Cognitive Assessment (telephone version; T-MoCA) to screen 
for dementia using a cutoff score of <13/22.

Study Measures
24-hour activity patterns
A trained research assistant asked participants to self-report 
their activity and sleep patterns over the past 2 days using 
the MARCA. To begin the interview, participants were asked 
if (and when) they had eaten breakfast, lunch, or dinner on 
the day being recalled (ie, the day prior to the phone call). 
Starting at midnight, participants then recalled all activities 
they engaged in that day (ie, until midnight the following 
night) in 5-minute granularity for each activity, using meals 
as anchor points. This process was then repeated for the day 
prior to that (ie, 2 days before the phone call), resulting in two 
24-hour recalls. Phone calls were conducted in the 7 days fol-
lowing initial study visits (where cognitive, cardiometabolic, 
and covariate measures were collected).

Each recalled activity was assigned to one of 520 discrete 
activities from an activity compendium (12,16). The informa-
tion gathered for each activity included duration, metabolic 
equivalent (METs), and its hierarchical domain classification. 
In the traditional use of the MARCA, each activity is catego-
rized into one of 9 “superdomains”: Sleep, Self-Care, Chores, 
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Screen Time, Quiet Time, Transport, Social, Physical Activity, 
and Work/Study. Within each superdomain, activities are 
further classified by “macrodomain” (eg, within the “Quiet 
Time” superdomain, activities may fall under “Non-reading” 
(such as listening to music) or “Reading”) and “mesodomain” 
(eg, within the “Non-reading” macrodomain, activities may 
fall under “spiritual,” “sit,” or “listen to music,” among oth-
ers). In line with a previous study (14), some adjustments were 
made to activity classifications for this study. Namely, activ-
ities which were originally classified as “Passive Transport” 
on the macrodomain level, or as “Work/Study” on the super-
domain level, were combined to create a new superdomain 
“Household Administration.” Additionally, activities classi-
fied as “Active Transport” (mainly walking) on the macro-
domain level, or as “Physical Activity” on the superdomain 
level, were combined to create a new superdomain “Sport/
Exercise.” Thus, activities recalled within this study were 
classified under one of 8 mutually exclusive and exhaustive 
superdomains: Sleep, Self-Care, Chores, Screen Time, Quiet 
Time, Household Administration, Sport/Exercise, and Social. 
An exhaustive list of activities included in each superdomain, 
corresponding macrodomain and mesodomain classifications, 
and their MET values are provided in Supplementary Table 1.

Cognitive and cardiometabolic outcome measures
Global cognitive function was measured using the Adden-
brooke’s Cognitive Examination III (ACE-III). The ACE-III 
is a paper-and-pencil-style cognitive screening tool which 
assesses 5 domains of cognitive function (memory, attention/
orientation, language, fluency, and visuospatial ability). A 
total score out of 100 is generated which has demonstrated 
sensitivity to dementia using a cutoff score of 88/100 (17).

Domain-specific cognitive function was assessed using 
the Cambridge Neuropsychological Test Automated Battery 
(CANTAB). Participants completed a series of CANTAB tests 
which were then z-scored, reverse-scored (for tests where 
higher values represented poorer performance), and com-
bined using taxonomy classifications (18) to create 3 cogni-
tive composites: memory (Verbal Recognition Memory test), 
executive function (Multitasking and One Touch Stockings of 
Cambridge tests), and processing speed (Reaction Time test). 
A detailed description of methods used to create domain- 
specific cognitive composites can be found elsewhere (4).

Waist and hip circumferences (cm) were measured by 
a trained researcher according to the ISAK International 
Standards for Anthropometric Assessment (19). Using a mea-
suring tape, waist circumference was measured at the nar-
rowest point of the abdomen (or, at the midpoint between 
the lower costal border and iliac crest if narrowing was not 
obvious), while hip circumference was measured at the level 
of the greatest posterior protuberance of the buttocks. Both 
were measured twice, and the average waist and hip circum-
ference were calculated. Finally, waist–hip ratio was calcu-
lated by taking the average waist circumference divided by 
the average hip circumference.

Clinic blood pressure (systolic and diastolic) was measured 
using an Omron blood pressure monitor with a blood pres-
sure cuff fitted over the left brachial artery. Participants were 
seated for at least 5 minutes prior to the first blood pressure 
assessment. Three measurements were taken, 1 minute apart 
while participants were seated. Only the second and third 
measures were averaged to obtain the mean systolic and dia-
stolic blood pressure values for this study.

Total cholesterol was derived from a fasting venous blood 
sample. Lipids were collected in a 9 mL ethylenediamine-
traacetic acid (EDTA; 18 mg) anticoagulant vacuette tube 
(grenier bio-one, Kremsmünster, Austria). Samples were ali-
quoted after plasma separation at 4 000 rpm for 10 minutes 
and frozen at −80°C until analysis. At the time of analysis, 
samples were defrosted on ice before vortex and then cen-
trifuged at 10 000 rpm for 2 minutes to remove particulates. 
Lipids were analyzed using the auto-analyzer KONELAB 
20XTi (Thermo Fisher, Waltham, MA) with Thermo Fisher 
reagents. The instrument was calibrated with sCal (Thermo 
Fisher). One hundred and fifty microlitres of each sample was 
then added to a sample cup (taking care to remove bubbles) 
and placed into the auto-analyzer with the necessary reagents 
(Thermo Fisher) to be analyzed by testing for light absorbency.

Covariates
Demographic and lifestyle factors which have been identi-
fied as risk factors for dementia (both modifiable and non- 
modifiable) were captured for inclusion as potential covariates  
in analyses (20). Several factors were measured using self- 
report questionnaires, including age (years), sex (male, 
female), and hearing difficulties (no difficulties/difficul-
ties with 2 or more people talking at the same time or in a 
noisy background/major hearing loss). Additional modifi-
able dementia risk factors were extracted from the Austra-
lian National University Alzheimer’s Disease Risk Index 
(21), including education (total years, including primary, 
secondary, and tertiary); frequency of alcohol consumption 
(“never,” “light-moderate,” “heavy”); smoking status (cur-
rent, previous, never); history of head injury (yes/no); depres-
sion (Center for Epidemiological Studies—Depression scale 
(22), yes ≥16, no ≤15); and type 2 diabetes diagnosis (yes/no). 
For descriptive purposes only, self-reported retirement status 
(yes/no), Modified Monash Model classification (23) (rural-
ity based on residential postcode reported at baseline), and 
subjective cognitive function (Cognitive Function Instrument 
[CFI] (24)) were also collected.

Data Analysis
Creation of intensity- and domain-based time-use 
compositions
Analyses were conducted using R version 4.2 (R Core Team, 
2023). Average daily time spent in intensity bands and super-
domains (min/d) was explored descriptively using arithmetic 
means and standard deviations. Next, 2 time-use compositions 
were created for each participant. One 24-hour composition 
used time spent in intensity bands (min/d) to form 4 composi-
tional parts: sleep (≤0.9 METs); sedentary behavior (>0.9–1.5 
METs); light physical activity (≥1.5–2.9 METs); and moder-
ate–vigorous physical activity (>2.9 METs), herein referred to 
as the ‘intensity composition.” The second 24-hour composi-
tion used the time spent in superdomains (min/d) to form 8 
compositional parts: Sleep, Self-Care, Chores, Screen Time, 
Quiet Time, Household Administration, Sport/Exercise, and 
Social (herein referred to as the “domain composition”). Zero 
values in any compositional parts (n = 26 Quiet Time, n = 27 
Screen Time, n = 35 Sport/Exercise, n = 4 Household Admin-
istration, n = 2 MVPA) were replaced using Expectation- 
Maximization algorithms implemented with the lrEM function 
(zCompositions package (25)). Average total daily time-use  
compositions (1437.5 ± 10.7 minutes) were closed to sum 
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1 440 minutes total by proportionally re-scaling all composi-
tional parts, and were then expressed as a series of isometric 
log-ratio coordinates (ilrs (26)) to be included in linear regres-
sion models as predictors.

Model selection
To determine which covariates would be included in final 
analyses, Bayesian information criterion stepwise variable 
selection was applied (using step function in stats R package 
(27)). For each cognitive and cardiometabolic outcome and 
for both domain and intensity compositions (therefore, across 
16 linear regression models), stepwise variable selection was 
performed, whereby the lower limit model required ilrs (ie, 
time-use composition) to be included, and the upper limit 
included ilrs and all potential covariates (age, sex, site, educa-
tion, depression, hearing loss, diabetes, history of head injury, 
alcohol consumption, and smoking status). Models that elic-
ited the minimum Bayesian information criterion value (and 
were therefore indicated to be the final model) were recorded, 
and commonalities across the 16 linear regression models 
were assessed (Supplementary Table 2). Following model 
selection, none of the final models included history of head 
injury, alcohol consumption, depression, or smoking status. 
For consistency across models, all analyses included age, sex, 
site, education, diabetes status, and hearing loss as covariates.

Statistical analysis
Multiple linear regression models were used to explore the 
associations between 24-hour time-use compositions (inten-
sity or domain-based) and each outcome (ACE-III, memory, 
executive function, processing speed, waist–hip ratio, total 
cholesterol, systolic BP, and diastolic BP), using the lm() func-
tion in R. To check for nonlinear associations between ilrs 
and outcomes, an additional model was created whereby 
time-use composition was expressed as ilrs and quadratic 
terms (squared and interaction terms of the ilr sets). An F-test 
was used to determine whether the quadratic ilr terms were 
warranted in addition to the original model.

Variable significance (using alpha = 0.05) in models was 
determined using ANOVA F tests applied to linear models 
(car package (28)). To account for multiple comparisons, all 
p values from the final ANOVA F-test outputs were adjusted 
for false discovery rate (FDR) using the Benjamini–Hochberg 
method (29).

Modeling associations between reallocations of time and 
cognitive outcomes
To further explore any statistically significant relationships 
between 24-hour time-use composition and cognitive or car-
diometabolic outcomes, compositional isotemporal substitu-
tion modeling was used to demonstrate how reallocations of 
time between time-use behaviors were associated with each 
outcome in the original compositional scale (30,31). Briefly, 
compositional isotemporal substitution is a method used to 
interpret regression coefficients from compositional multiple 
linear regression models. The method estimates the difference 
in an outcome (eg, cognitive performance or cardiometabolic 
health) when fixed durations of time are reallocated from 
one part of the composition (eg, sleep, in a 24-hour time-use 
composition) to another (eg, sedentary behavior), while the 
remaining parts (eg, LPA and MVPA) are kept constant (31). 
Reallocations are computed in reference to a starting compo-
sition (here, the mean time-use composition of the sample). 

Using these methods, we generated reallocations whereby 
predicted differences in outcomes were expressed in the orig-
inal units of the outcome variable (eg, ACE-III scores ranging 
from 0–100). Reallocations were plotted using both propor-
tional (eg, increasing time in sleep by 20 minutes while real-
locating time to all other behaviors pro-rata) and one-for-one 
swaps (eg, increasing time in sleep by 20 minutes and taking 
that time directly from self-care). The latter modeling was 
performed to determine whether behavior change benefits 
were uniform or specific across activity types (eg, if increasing 
time in social activities was beneficial regardless of the activ-
ity it was reallocated to).

Results
Participant Demographics
Four hundred and twenty-six participants enrolled in the 
ACTIVate study at baseline. Of these, 425 participants com-
pleted the ACE-III, 422 had waist–hip ratio measurements, 
419 had clinic blood pressure measurements, and 402 had 
cholesterol data. Of the 402 participants with complete 
clinic data, 397 had completed the 2-day MARCA recalls. 
Thus, the final sample included 397 older adults. Participants 
were aged 65.5 ± 3.0 years, were mostly female (69%) and 
retired (75%), and had 16.0 ± 3.0 years of education. Over 
half of the participants (54%) were from the Adelaide site, 
and across both sites, 88% of participants resided in metro-
politan or inner regional areas (based on Modified Monash 
Model score of 1 or 2). On average, participants scored highly 
(95 ± 3.0, out of possible 100) on the ACE-III, and the mean 
score on the CFI (1.5 ± 1.6 out of a possible 14) indicated low 
levels of subjective cognitive complaints (Table 1).

Participants’ 24-hour time-use compositions are displayed 
in Figure 1 as both intensity (inner pie chart) and domain 
compositions (outer donut chart). Figure 1 represents time-
use compositions after rounding to 1 440 minutes (ie, time-
use compositions under closure). On average, according to 
the intensity composition, participants spent most of their 
day in sedentary behavior (9.0 hours), followed by sleep (8.5 
hours), light PA (4.0 hours), and moderate–vigorous PA (2.4 
hours). Domain compositions showed similar proportions, 
with participants spending most of their day in sleep (9.7 
hours), followed by chores (3.5 hours), household adminis-
tration (2.5 hours), self-care (2.4 hours), social activity (2.2 
hours), screen time (1.9 hours), quiet time (1.0 hours), and 
sport/exercise (0.8 hours).

Associations Between 24-Hour Time-Use 
Composition and Cognitive and Cardiometabolic 
Outcomes
Variable significance from the linear regression models are 
presented in Supplementary Tables 3 and 4. After adjustment 
for covariates and FDR, the domain composition was signifi-
cantly associated with global cognition (F = 2.95, p = .010), 
but not the intensity composition (F = 1.17, p = .376). Con-
versely, both the domain (F = 3.20, p = .009) and intensity 
compositions (F = 4.03, p = .025) were significantly associ-
ated with waist–hip ratio after adjustment for covariates and 
FDR. Neither type of time-use composition was associated 
with the remaining cognitive and cardiometabolic outcomes 
including memory (domain: F = 2.25, p = .10; intensity: 
F = 2.22, p = .150), executive function (domain: F = 1.00, 
p = .598; intensity: F = 1.02, p = .535), processing speed 
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(domain: F = 0.34, p = .937; intensity: F = 0.22, p = .883), 
total cholesterol (domain: F = 0.75, p = .689; intensity: 
F = 0.94, p = .582), systolic BP (domain: F = 1.23, p = .330; 
intensity: F = 0.61, p = .611), and diastolic BP (domain: 
F = 1.98, p = .080; intensity: F = 1.19, p = .441).

Reallocations of Time, Cognitive Function, and 
Cardiometabolic Health Outcomes
To better understand the significant relationships between 
time-use compositions and ACE-III score (domain composi-
tion) and waist–hip ratio (both intensity and domain compo-
sitions), a series of proportional and one-for-one reallocations 
were generated, using the mean intensity and domain com-
positions as the reference composition. All one-for-one real-
locations are displayed here: https://arena2024.shinyapps.io/
context-intensity-app/.

Reallocations of time between domains and ACE-III score
More time spent in Quiet Time (such as reading and listen-
ing to music), Social and Sport/Exercise superdomains (at 
the equal expense of remaining behaviors) was associated 
with better ACE-III score, while more time in Sleep and 
Screen Time was associated with poorer ACE-III score (Fig-
ure 2, panel A). Only reallocations of time toward or away 
from Quiet Time and Sport/Exercise were statistically sig-
nificant; however, the predicted differences in ACE-III score 
were less than the minimum possible difference (1 point). 
For example, increasing Quiet Time or Sport/Exercise by 
30 minutes (while proportionally decreasing time in other 
behaviors) was associated with a predicted +0.15 difference 
in ACE-III score (Quiet Time 95% CI = 0.03, 0.27; Sport/
Exercise 95% CI = 0.01, 0.30). One-for-one reallocations 
(across all time increments from +5 to +30 minutes) in a 
number of domains were associated with better ACE-III 
scores, including from Screen Time toward Sport/Exer-
cise, Quiet Time or Social; from Sleep toward Quiet Time 
or Sport/Exercise; and from Household Administration 
toward Quiet Time. Despite being statistically significant, 
the predicted differences in ACE-III score were small, with 
the largest predicted difference seen for a 30-minute reallo-
cation from Sport/Exercise to Screen Time (−0.35 ACE-III 
score, 95% CI = −0.63, −0.08).

Table 1. Descriptives of Final Sample

Variable Level Total

Age (years) 65.5 ± 3.0

Sex Male 123 (31%)

Female 273 (69%)

Education (years) 16.5 ± 3.2

Site Adelaide 215 (54%)

Newcastle 182 (46%)

Domain-based time-use 
behaviors (min/d)

Chores 206.9 ± 107.8

Quiet time 87.4 ± 75.8

Screen time 137.4 ± 86.7

Self-care 127.7 ± 40.8

Sleep 489.5 ± 65.3

Social 142.0 ± 92.3

Household adminis-
tration

174.1 ± 124.9

Sport/exercise 72.6 ± 65.2

Intensity-based time-use 
behaviors (min/d)

Sleep (<0.9 METs) 489.5 ± 65.3

Sedentary behavior 
(0.9–1.5 METs)

531.8 ± 130.2

Light PA (1.5–2.9 
METs)

246.8 ± 89.1

MVPA (>2.9 METs) 169.4 ± 96.6

Smoking status (n = 394) Current 7 (2%)

Previous 150 (38.0%)

Never 237 (60.0%)

Alcohol consumption 
(n = 391)

Heavy 7 (1.8%)

Light-moderate 38 (9.7%)

None 346 (88.0%)

CES-D score ≥16 (depression) 
(n = 370)

Yes 27 (6.8%)

No 343 (86%)

History of head injury 
(n = 388)

Yes 68 (17.0%)

No 320 (81.0%)

Difficulty with hearing 
(n = 343)

Yes 139 (35.0%)

No 214 (54.0%)

History of type II diabetes 
(n = 392)

Yes 19 (4.8%)

No 373 (94.0%)

Waist to hip ratio (n = 393) 0.9 ± 0.1

Systolic BP (n = 387) 134.2 ± 18.4

Diastolic BP (n = 387) 80.8 ± 10.2

Total cholesterol (mmol/L) 
(n = 376)

5.5 ± 1.0

Retired (n = 396) 298 (75.1%)

MMM 2019 classification of 
1 or 2 (metropolitan or inner 
regional)

352 (88%)

Addenbrooke’s Cognitive 
Examination III total score 
(n = 396)

95 ± 4

Scored ≤88 on ACE-III 
(n = 396)

19 (4.8%)

Cognitive Function Instru-
ment total score (n = 396)

1.5 ± 1.6

Notes: Values are presented as mean ± SD for numeric variables, or count 
(percentage) for categorical variables. Domain and intensity components 
are presented as arithmetic means. Proportions for several variables do not 
total to 100% due to missing data. <88 ACE-III cutoff indicates possible 
dementia (17).
ACE-III = Addenbrooke’s Cognitive Examination III; BP = blood 
pressure; CES-D = Center for Epidemiological Studies Depression scale; 
MMM = Modified Monash Model; MVPA = moderate-vigorous physical 
activity.

Figure 1. Intensity and domain compositions of the sample. The inner pie 
chart represents the 4-part intensity composition, while the outer donut 
chart represents the 8-part domain composition. Proportions represent 
the time-use composition under closure (ie, after compositions were 
rounded to 1440 minutes). Admin = administration; PA = physical activity.

https://arena2024.shinyapps.io/context-intensity-app/
https://arena2024.shinyapps.io/context-intensity-app/
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Reallocations of time between domains and waist–hip ratio
More time spent in Sport/Exercise at the expense of the 
remaining domains (Figure 2, panel B) was associated with 
smaller waist–hip ratio, although the predicted magnitude 
of these differences was small (eg, +30 minutes Sport/Exer-
cise = −0.007 waist–hip ratio, 95% CI = −0.01, −0.00). One-
for-one reallocations confirmed that, regardless of which 
domain time was taken from (except for Self-Care) or the 
magnitude of the reallocation, more time in Sport/Exercise 
was significantly associated with smaller waist–hip ratio. 
Additionally, reallocating time from Household Administra-
tion (passive transport, work, and study) toward Chores was 
associated with smaller waist–hip ratio. A 30-minute reallo-
cation from Sport/Exercise toward Household Administra-
tion was associated with the greatest (detrimental) difference 
in waist–hip ratio (+0.01, 95% CI = 0.00, 0.02).

Reallocations of time between intensity bands and waist–hip 
ratio
More time in MVPA, while proportionally decreasing time in 
LPA, SB, and sleep was significantly associated with waist–hip 

ratio, although the estimated differences were small (eg, +30 
minutes of MVPA: −0.004 waist–hip ratio, 95% CI = −0.007, 
−0.001; Figure 3). One-for-one reallocations toward MVPA 
from LPA, sleep, or SB were associated with smaller waist–
hip ratio. Out of the modeled reallocations, 30 minutes of 
SB at the expense of MVPA was associated with the largest 
(albeit detrimental) difference in waist–hip ratio (+0.005, 
95% CI = 0.002, 0.007).

Discussion
This study explored whether 24-hour time-use compositions 
consisting of either intensities (eg, sleep, SB, LPA, MVPA) 
or activity domains (eg, Sport/Exercise, Work, Screen Time) 
were differentially associated with cognitive performance 
(global cognition, memory, executive function, and process-
ing speed) and a range of cardiometabolic health outcomes 
(waist–hip ratio, total cholesterol, systolic and diastolic blood 
pressure) in healthy older adults. We found that the domain 
composition but not the intensity composition was signifi-
cantly associated with ACE-III score (global cognition), while 
both time-use compositions were significantly associated 
with waist–hip ratio (cardiometabolic outcome). We found 
no associations between either domain or intensity compo-
sitions and memory, executive function, processing speed, 
total cholesterol, systolic BP, or diastolic BP. Post-hoc com-
positional isotemporal substitution modeling showed that the 
domain composition had different associations with ACE-III 
than waist–hip ratio. For example, increasing time spent in 
Quiet Time (eg, reading, listening to music) at the expense of 
other predominantly sedentary domains like Screen Time (eg, 

Figure 2. The model-predicted difference in Addenbrooke’s Cognitive 
Examination III score (Panel A, y-axis) and waist–hip ratio (Panel B, y-axis) 
associated with proportional reallocations of time toward or away from 
each superdomain (displayed in the header of each panel). Reallocations 
are based on increasing or decreasing time spent in each superdomain 
behavior from the mean domain composition, and range from −30 
minutes (to the left of solid line) to +30 minutes (to the right of solid line) 
in 5-minute increments. Shading represents 95% confidence intervals. 
ACE = Addenbrooke’s Cognitive Examination III; WHR = waist–hip ratio.

Figure 3. The model-predicted difference in waist–hip ratio (y-axis) 
associated with proportional reallocations of time toward or away from 
each intensity band (displayed in the header of each panel). Reallocations 
reflect increasing or decreasing time spent in each intensity band from 
the mean intensity composition, and range from −30 minutes (to the 
left of solid line) to +30 minutes (to the right of solid line) in 5-minute 
increments. Shading represents 95% confidence intervals. LPA = light-
intensity physical activity; MVPA = moderate–vigorous physical activity; 
WHR = waist–hip ratio.
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watching TV) was beneficially associated with ACE-III score, 
while this reallocation was not associated with significant 
differences in waist–hip ratio. Conversely, reallocating time 
toward Sport/Exercise at the expense of almost any other 
domain (except for Self-Care) was associated with smaller 
waist–hip ratio, while this reallocation was only significantly 
associated with ACE-III score if time was taken from Screen 
Time or Sleep. Although the size of the predicted change in 
ACE-III and waist–hip ratio was small, the findings of this 
study raise several important points for consideration.

The Context of Time Use Matters for Cognitive 
Function
Spending less time in sedentary behavior and more time in 
physical activity is favorably associated with cardiometabolic 
health outcomes such as adiposity, blood pressure, and cho-
lesterol (1–3,32), but as highlighted by several recent reviews, 
evidence on the relationship between sedentary behavior and 
cognitive function is less conclusive (8,33). This is likely due, 
at least in part, to the types of sedentary behaviors that peo-
ple engage in which may vary in terms of cognitive demand 
and context. Nuances in sedentary behaviors are not typically 
captured when considering total sedentary time as the expo-
sure, and importantly, they may have contrasting flow-on 
effects on cognitive function (10,34,35). The findings of the 
current study support this notion in several ways. First, we 
found no evidence that total sedentary behavior (as captured 
in the intensity composition) was associated with ACE-III 
score, but there was an association with the domain compo-
sition which differentiated sedentary behaviors based on their 
superdomain classification. Second, we found that modeling 
increased time spent in some predominantly sedentary super-
domains (Quiet Time, which may include reading, listening 
to music or some religious activities, or Social, which may 
include playing a musical instrument, sitting and talking with 
others, or crafts) predicted beneficial cognitive outcomes, 
while spending more time in the Screen Time superdomain 
(TV watching, video games) was detrimental. Several pre-
vious studies have reported similar negative relationships 
between more “cognitively passive” sedentary behaviors (eg, 
TV watching) and cognitive function (34,36) or dementia 
risk (37,38). In a large-scale study using the UK Biobank, 
Wu et al. (37) reported a hazard ratio of dementia of 1.28 
for those who reported watching TV for ≥4 h/d compared to 
<1 h/d. Additionally, reallocating 30 min/d from TV watch-
ing to daily (habitual) physical activity or structured exercise 
was associated with a 6% and 12% lower dementia risk (HR 
0.96 [95% CI 0.91, 0.97], and HR 0.88 [95% CI 0.83, 0.93], 
respectively) (37). Da Ronch et al. (36) reported that older 
adults who spent more time watching TV had worse per-
formance on the Mini-Mental State Examination, while no 
such relationships were reported for other sedentary activi-
ties. Together, the current findings support the notion that not 
all sedentary behaviors are equal in their relationship with 
cognitive function. Instead, there is likely a hierarchy of how 
sedentary behaviors relate to cognitive function, in that some 
have positive effects and others have negative effects on cog-
nitive function.

An additional finding of the current study was that increas-
ing time in the Sport/Exercise superdomain at the expense of 
either Sleep or Screen Time was associated with better ACE-
III score, while reallocating time to other domains involving 
predominantly physical activities (eg, Chores) was not. For 

example, reallocating 30 minutes from Screen Time to Sport/
Exercise was associated with a statistically significant pre-
dicted difference in ACE-III score, while the same realloca-
tion from Screen Time to Chores resulted in a positive but 
non-significant predicted difference (+0.24 vs +0.12). Despite 
the findings being exploratory and small in magnitude, they 
suggest that leisure-based or recreational physical activities 
may be more beneficial for general cognitive function com-
pared to other domains such as household chores. Although a 
few previous studies have explored whether leisure-based PA 
and household PA are differentially associated with cognitive 
function, the findings are mixed (39,40). As the current liter-
ature is predominantly cross-sectional and varies greatly in 
both PA and cognitive measurement approaches, it is difficult 
to determine directionality or causality of the relationship (ie, 
perhaps greater cognitive function leads to higher engage-
ment in certain physical activities).

Interestingly, we found no association between either the 
intensity or domain composition and memory, processing 
speed, or executive function outcomes, measured using a 
CANTAB. This finding aligns with a previous study in this 
cohort which found no association between device-based 
(wrist-worn accelerometry) measures of time use and the 
same cognitive outcomes (4). The lack of associations with 
these cognitive outcomes could be due to several factors, 
including limited variability in cognitive composite z-scores, 
or the theoretical framework (rather than data-driven factor 
analysis) used to generate the cognitive composites.

Every Minute of Physical Activity Counts for 
Cardiometabolic Health
Spending more time in physical activity was favorably asso-
ciated with waist–hip ratio. This was observed across both 
intensity composition models (ie, increasing time in MVPA 
at the expense of sleep, LPA, SB was associated with smaller 
waist–hip ratio) and domain composition models (ie, increas-
ing time in Sport/Exercise or Chores superdomains at the 
expense of Screen Time, Sleep, Social, or Household Adminis-
tration was associated with smaller waist–hip ratio). This sug-
gests that physical activity is beneficial for adiposity regardless 
of intensity or type, although the strongest predicted associa-
tions were observed for higher-intensity activities (MVPA, or 
Sport/Exercise). Notably, the predicted impacts of reallocat-
ing time toward or away from MVPA or Sport/Exercise on 
waist–hip ratio were nonlinear, in that the predicted changes 
in waist–hip ratio associated with decreasing MVPA or Sport/
Exercise were markedly stronger than with increasing these 
activities. Similar predicted relationships with waist–hip ratio 
were reported in a previous study by Dumuid et al. (41). 
Taken together, our findings align with evidence from a num-
ber of device-based studies that suggested substituting SB for 
MVPA is beneficial for cardiometabolic health (1,41–43). 
Additionally, our findings concur with a previous review of 
compositional data analysis studies, which concluded that the 
greatest benefits to cardiometabolic health were associated 
with reallocations of time toward MVPA (44).

Interestingly, we did not find any associations between time-
use composition and other cardiometabolic health outcomes 
including systolic BP, diastolic BP, and total cholesterol. This 
aligns with a number of previous cross-sectional composi-
tional data analysis studies. For example, Powell et al. (43) 
reported associations between time-use composition and adi-
posity measures, but no associations with total cholesterol or 
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triglycerides. Similarly, Biddle et al. (42) reported that reallo-
cating time from sitting to standing or stepping (ie, SB to LPA) 
was associated with lower waist circumference, as well as 
lower triglycerides and higher HDL cholesterol, but no asso-
ciations with total cholesterol, low-density lipoprotein choles-
terol, or hemoglobin A1c. Finally, Dumuid et al. (41) reported 
associations between time-use composition and measures of 
fitness and adiposity in a sample of older adults, but no asso-
ciations with blood pressure (systolic or diastolic), total cho-
lesterol, or blood glucose. Together, these findings suggest that 
spending greater proportions of the day in physically active 
behaviors has stronger benefits for body composition than for 
blood markers of cardiometabolic health. We speculate that 
this may be due to a number of factors. Firstly, it is well known 
that other lifestyle factors such as diet, smoking, and alcohol 
consumption have strong influences on cholesterol and blood 
pressure (45,46), so it is possible that these outcomes were 
less sensitive to activity and sleep patterns measured in this 
study. Secondly, directionality or causality cannot be inferred 
from cross-sectional data. This is important to consider in the 
context of cardiometabolic outcomes such as total cholesterol 
which are typically a reflection of cumulative lifestyle patterns 
over time, rather than current lifestyle patterns alone (47). 
Finally, daily time-use patterns and cardiometabolic outcomes 
such as blood pressure can fluctuate substantially across time, 
and it is possible that the single measurements taken were 
not truly representative of typical ranges for this cohort, thus 
impacting the observed relationships (48).

Strengths and Limitations of the Study
A key strength of this study is that the interdependent and 
mutually exclusive nature of time-use behaviors in the 
24-hour day was accounted for via the use of a compositional 
data analysis approach. The statistical significance of relation-
ships between predictors and outcomes were only interpreted 
following adjustment for FDR, which reduces the likelihood 
of type I error (29). The MARCA time-use recall tool has been 
validated against objective measures including accelerometry 
and doubly labeled water (12,49) and is therefore considered 
a reliable self-report tool. Finally, this study employed model 
selection to ensure that modifiable dementia risk factors rele-
vant to this cohort were included in the final models.

Converging with previous studies in the field, the use of a 
cross-sectional study design restricts the ability to make strong 
causal and directional conclusions about associations between 
time use, cognitive function, and cardiometabolic health. It is 
important to note that the ACTIVate Study participants were 
highly active, had high global cognition scores (with limited 
range), were highly educated, and were predominantly female 
(2:1) potentially limiting the generalizability of the findings. It 
is plausible that the associations between time-use composi-
tion and both cognitive and cardiometabolic outcomes would 
differ in a less active sample, a sample with shorter average 
sleep duration (ie, not meeting sleep guidelines), or a sample 
with a wider distribution of cognitive scores. Additionally, 
our domain composition grouped activities using the highest 
level of the classification hierarchy (superdomains). Thus, it 
is possible that some activities that were grouped within a 
superdomain may have differing relationships with the out-
come that were not detected, and further, alternative activity 
compendia may have grouped activities differently, yielded 
differing and/or stronger associations to those observed using 
the current compendium.

Future Directions
Our findings build the case for intervention strategies that 
incorporate both the unique contexts of daily activities 
alongside considering activity intensity for enhancing cog-
nition. For example, to concurrently improve or maintain 
cognitive function and cardiometabolic health, it may be 
beneficial to tailor intervention strategies so that (1) higher- 
intensity physical activity levels are maintained or increased 
to sustain cardiometabolic health, and (2) passive sedentary 
behaviors such as screen time are substituted for either phys-
ical activity or sedentary behaviors which promote mental 
stimulation or social engagement. To facilitate the feasibility 
of interventions for older adult populations where increas-
ing higher-intensity activities may not be appropriate, future 
studies should also explore whether equivalent cognitive 
benefits can be achieved by a number of behavioral change 
options to suit the preferences and abilities of participants 
(see Dumuid et al. (50), for example). There is a need for 
longitudinal studies to investigate whether changes in time 
spent within intensity bands or activity domains are associ-
ated with maintenance of, or changes in, cognitive function 
and cardiometabolic health. This should be measured using 
sensitive time-use recall tools which are able to collect infor-
mation on both the intensity, type, and context of activities 
simultaneously.

Conclusion
This cross-sectional compositional data analysis study found 
that 24-hour time-use compositions made up of activity 
domains were associated with cognitive function and adipos-
ity, while compositions made up of activity intensity bands 
were only associated with adiposity. Post-hoc reallocation 
analyses suggested that the context of sedentary behaviors 
and physical activities impact their association with cognitive 
function, while any physical activity (regardless of context) 
appeared beneficial for adiposity.
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Supplementary data are available at The Journals of 
Gerontology, Series A: Biological Sciences and Medical 
Sciences online.
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