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Structural and free energy 
landscape analysis for the discovery 
of antiviral compounds targeting 
the cap‑binding domain 
of influenza polymerase PB2
Amr S. Abouzied 1,2, Saad Alqarni 1, Kareem M. Younes 1,3, Sanad M. Alanazi 4, 
Dana M. Alrsheed 4, Rawabi K. Alhathal 4, Bader Huwaimel 1,5 & Akram M. Elkashlan 6*

Influenza poses a significant threat to global health, with the ability to cause severe epidemics and 
pandemics. The polymerase basic protein 2 (PB2) of the influenza virus plays a crucial role in the 
viral replication process, making the CAP-binding domain of PB2 an attractive target for antiviral 
drug development. This study aimed to identify and evaluate potential inhibitors of the influenza 
polymerase PB2 CAP-binding domain using computational drug discovery methods. We employed a 
comprehensive computational approach involving virtual screening, molecular docking, and 500 ns 
molecular dynamics (MD) simulations. Compounds were selected from the Diverse lib database and 
assessed for their binding affinity and stability in interaction with the PB2 CAP-binding domain. The 
study utilized the generalized amber force field (GAFF) for MD simulations to further evaluate the 
dynamic behaviour and stability of the interactions. Among the screened compounds, compounds 1, 
3, and 4 showed promising binding affinities. Compound 4 demonstrated the highest binding stability 
and the most favourable free energy profile, indicating strong and consistent interaction with the 
target domain. Compound 3 displayed moderate stability with dynamic conformational changes, 
while Compound 1 maintained robust interactions throughout the simulations. Comparative analyses 
of these compounds against a control compound highlighted their potential efficacy. Compound 4 
emerged as the most promising inhibitor, with substantial stability and strong binding affinity to the 
PB2 CAP-binding domain. These findings suggest that compound 4, along with compounds 1 and 3, 
holds the potential for further development into effective antiviral agents against influenza. Future 
studies should focus on experimental validation of these compounds and exploration of resistance 
mechanisms to enhance their therapeutic utility.

Keywords  Influenza virus, PB2 CAP-binding domain, Virtual screening, Molecular dynamics simulations, 
Free binding energy, Free energy landscape

Influenza remains one of the most challenging viral diseases affecting global public health due to its capacity to 
cause widespread epidemics and occasional pandemics1. The disease mainly results from the influenza virus, 
which targets the respiratory tract and can cause severe respiratory illness or even death, particularly in high-
risk groups such as the elderly, young children, and people with chronic health conditions2. Influenza viruses 
belong to the Orthomyxoviridae family and are categorized into types A, B, and C, with type A viruses being the 
most virulent in humans3. One of the key proteins involved in the replication and transcription of the influenza 
virus is the polymerase basic protein 2 (PB2) of the viral RNA polymerase complex4. The segmented genomes of 
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these viruses facilitate frequent reassortment, leading to antigenic variations and drifts. This genetic shuffling can 
produce new strains that occasionally evade pre-existing immune responses, resulting in seasonal epidemics and 
pandemics3. PB2 is crucial for recognizing and binding to the cap structure of pre-mRNAs, a process essential 
for viral RNA synthesis and transcription5. It is primarily responsible for recognizing and binding to the cap 
structure of pre-mRNAs, which is crucial for the viral RNA synthesis process5. This cap-snatching mechanism 
is essential for viral transcription and replication, making the CAP-binding domain of PB2 an attractive target 
for antiviral drug development6. Historically, influenza outbreaks such as the infamous 1918 Spanish flu, 1957 
Asian flu, 1968 Hong Kong flu, and the more recent 2009 H1N1 pandemic have underscored the need for effec-
tive antiviral agents7. The 1918 H1N1 pandemic, for instance, caused unprecedented mortality and morbidity, 
largely due to the lack of effective antiviral treatments and vaccines. This pandemic provided early evidence 
of the virus’s potential for widespread devastation, thus marking the inception of the urgent need for antiviral 
research. Subsequent outbreaks have continued to reflect this pattern, where the appearance of novel influenza 
strains outpaced the effectiveness of existing treatments, compelling the scientific community to innovate and 
develop new antiviral strategies8. Furthermore, the recent H1N1 outbreak in 2009 illustrated the rapidity with 
which influenza viruses can disseminate globally, challenging public health systems and antiviral stockpiles. This 
event emphasized the importance of having a diverse arsenal of antiviral agents that can be deployed promptly 
in response to new strains7. These events highlight the potential global health crises that can arise from new 
influenza strains, emphasizing the importance of continued surveillance, vaccine development, and therapeutic 
interventions9.

Despite the availability of vaccines and existing antiviral drugs like oseltamivir and zanamivir, there is a per-
sistent need for new therapeutic options, particularly those that can target different stages of the viral life cycle 
or offer treatment alternatives resistant to current therapies10. The PB2 CAP-binding domain, due to its essential 
role in viral replication, represents a potent target for such interventions11 Currently, the inhibitor landscape 
for targeting the PB2 CAP-binding domain is still in its developmental stages. The inhibitors aim to disrupt the 
cap-snatching activity of the PB2 protein, thereby inhibiting the replication of the influenza virus. However, 
the development of PB2 inhibitors has been challenging due to the need for high specificity and the potential 
for rapid development of resistance by the virus12. The exploration of potential inhibitors has been significantly 
advanced by computational approaches, particularly through the use of diverse chemical libraries. The Diverse 
lib database is an expansive collection of molecular entities that provides a broad range of chemical diversity, 
enhancing the likelihood of identifying unique structures with potential inhibitory activity against specific viral 
targets13. Our research leverages computational drug discovery methodologies to screen the Diverse lib database 
for potential inhibitors of the Influenza Polymerase PB2 CAP-Binding Domain14. By applying a combination of 
virtual screening with Lipinski rule of five as a filter, followed by re-docking procedures, molecular dynamics 
(MD) simulations, and free energy calculations, we aim to identify promising candidates for further experimental 
validation. Additionally, RG-RMSD-based free energy landscapes provide insights into the dynamic stability 
and binding affinities of the interactions between potential inhibitors and the PB2 CAP-binding domain. This 
comprehensive approach not only enhances our understanding of the interaction mechanisms but also acceler-
ates the discovery process for efficacious and safe antiviral agents.

Methodology
Data collection and high‑throughput virtual screening
In this study, we adopted a computational approach to identify potential inhibitors of the Influenza Polymerase 
Pb2 CAP-Binding Domain. Initially, protein and ligand datasets were collected. Protein data was obtained from 
the PDB (ID: 4CB5) and ligand data from the Diverse lib database13,15,16. Protein preparation involved cleaning 
the structure and optimizing geometry using Chimera’s Dock Prep tool17,18. This step involved cleaning the pro-
tein structure by removing water molecules and any bound ligands or ions, followed by the addition of hydrogen 
atoms to correct the protonation state and optimize the overall geometry of the protein.

This step involved cleaning the protein structure by removing water molecules and any bound ligands or ions, 
followed by the addition of hydrogen atoms to correct the protonation state and optimize the overall geometry 
of the protein. For the virtual screening, we utilized the MtiOpenScreen web server13, which integrates a Lipin-
ski filter to ensure that the screened compounds adhered to basic pharmacokinetic principles19. This screening 
process resulted in the identification of several candidate compounds, from which four were selected based on 
superior docking scores indicating potential high-affinity binding to the target domain. Re-docking was per-
formed using the Autodock Vina Chimera plugin20. This step served to validate the initial docking results through 
a more refined computational model. Both the candidate compounds and a reference molecule were docked 
into the binding site of the target protein. This re-docking process helped in comparing the binding affinities 
and conformations of the candidates relative to the known inhibitor, thereby affirming their potential efficacy.

MD simulation
In this study, molecular dynamics (MD) simulations were employed to investigate the dynamic behaviour of 
Influenza Polymerase Pb2 CAP-Binding Domain in a complex with four potential inhibitors sourced from the 
Diverse lib database, alongside a control compound. MD simulations were performed using the generalized 
amber force field (GAFF) in AMBER21. Ligand preparation included assigning force field parameters and charges. 
Each complex was solvated in TIP3P water, equilibrated, and subjected to a 500 ns production run22. The prepara-
tion of the ligand molecules began with the antechamber tool within AMBER23, which facilitated the assignment 
of force field parameters and atomic charges suitable for non-standard residues in the ligands. This preparation 
is essential for ensuring accurate interactions within the simulated system. Following the ligand preparation, 
the complex assembly and system configuration were accomplished using the leap tool from AMBER24. The 
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simulation protocol initiated with a comprehensive energy minimization Energy minimization was performed 
by PMEMD.cuda module24. This was succeeded by a temperature equilibration phase where each system was 
heated progressively from 0 to 300 K across a span of 100 ps, utilizing the NVT ensemble (constant volume and 
temperature). Following temperature equilibration, the systems were further equilibrated under NPT condi-
tions (constant pressure and temperature) for 1 ns to ensure stable density and thermal conditions, setting the 
stage for the production MD simulations. For each complex, including the control, a 500 ns production run was 
carried out under constant pressure (1 atm) and temperature (300 K). The Langevin thermostat was employed 
for temperature regulation25, while pressure was managed using the Berendsen barostat26. Trajectory analysis 
included RMSD, RMSF, and the number of hydrogen bonds to assess stability and dynamics. The RG-RMSD-
based free energy landscape provided insights into the collective movements and binding efficacy. Additionally, 
free energy calculations were performed to delineate the binding efficacy and identify favorable conformational 
states, offering a detailed portrayal of the interaction landscape and energetics.

Free binding energy
Entropy effects are crucial in drug–target interactions, yet the contribution of entropy to ligand-binding affin-
ity is frequently overlooked by end-point binding free energy calculation methods, like MM/GBSA27. In this 
study, the free binding energy of selected inhibitor complexes was quantified to assess their potential efficacy. 
The analysis was conducted on the last 50 ns of molecular dynamics simulation trajectories. We employed the 
MMPBSA.py tool from the AMBER software suite to calculate these energies28. The methodology involved three 
primary steps, simulation preparation, trajectory analysis, and energy calculation. Initially, the system comprising 
the protein–ligand complex was stabilized using a standard equilibration protocol in AMBER24. This protocol 
adjusted the system to a suitable temperature and pressure, ensuring realistic physiological conditions. Following 
stabilization, the production phase of molecular dynamics simulations was executed. During this phase, data 
on the atomic positions and velocities were recorded, providing detailed insights into the dynamic interactions 
within the complex. For the analysis, the MMPBSA.py module was utilized to compute the free binding energy 
from these simulations. This computation was based on the (MM-GBSA) method, a widely recognized approach 
for this purpose29. The module calculates the energy by considering the difference between the total free energy 
of the protein–ligand complex and the sum of the free energies of the unbound protein and ligand. This differ-
ence represents the binding energy, which is crucial for understanding the binding efficacy of the compounds. 
This detailed analysis allows for the evaluation of the thermodynamic stability of the inhibitor complexes under 
investigation, providing valuable insights into their potential as therapeutic agents against influenza.

RG‑RMSD‑based free energy landscape
The study investigated the dynamic conformational changes and stability of four lead compounds bound to a 
target protein using the RG-RMSD-based free energy landscape approach30. This method calculates Radius of 
Gyration (RG) and Root Mean Square Deviation (RMSD) values for each protein–ligand complex to understand 
their interaction dynamics during molecular dynamics simulations using the Geo-Measure plugin in PyMOL31. 
The RG measures the compactness of the molecule, while RMSD indicates the average distance between atoms 
of the complex compared to a control structure over time. By plotting these values, a free energy landscape was 
created, illustrating energetically favorable conformations and transitional states. This analysis is crucial for 
predicting the stability and effectiveness of potential inhibitors.

Results
Virtual screening
Virtual screening is a valuable computational technique for discovering bioactive molecules within extensive 
chemical libraries, aiming to identify those that can bind to specific biological targets. In our research, we 
employed virtual screening to pinpoint compounds from the Diverse lib database on the MTIopen web server. 
The selection process for these compounds was guided by their binding energy values obtained during the screen-
ing. We carried out a thorough analysis of 1500 compounds from the diverse lib Database on the MTIopen web 
server13. The binding energies of these molecules ranged from − 10.5 to − 7.8 kcal/mol (Supplementary Table S1). 
Based on their notable binding energies, four compounds—compound 1 (81066370), compound 2 (24334311), 
compound 3 (85303482) and compound 4 (85176812) as shown in Table 2 (Table 1).

For the safely and toxicity prediction of these compound we have also performed the ADMET analysis by 
using ADMETLAB 2.0 webserver. The ADMET (absorption, distribution, metabolism, excretion, and toxic-
ity) analysis of compound 81066370 highlights its high lipophilicity (LogP: 4.248) and strong inhibition of 

Table 1.   List of 4 selected compound.

Compound Pubchem ID Formula

81066370 CID 42628216 (R)-5-(benzo[d][1,3]dioxol-5-yl)-3-(quinolin-6-yl)cyclohex-2-enone

24334311 CID 3845657 (1-(3-(4-bromophenyl)-5-(quinolin-6-yl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone)

85303482 CID 645155 1,3-Dimethyl-5-m-tolyl-5,5a-dihydro-1H-indeno[2’,1’:5,6]pyrido[2,3-d]pyrimidine-2,4,6-trione

85176812 CID 24817336 (N-[1-(3,4-dimethylphenyl)-4,5,6,7-tetrahydroindazol-4-yl]-2,5-dimethyl-3-pyrazolecarboxamide)

93G CID 72206625 9-N-(3-CARBOXY-4-HYDROXYPHENYL)KETOMETHYL-7-N-METHYLGUANINE
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P-glycoprotein, which can enhance drug retention in cells. It has high plasma protein binding (98.63%) and 
moderate blood–brain barrier permeability, suggesting potential central nervous system activity. The compound 
shows significant interactions with CYP ( cytochrome P450) enzymes, indicating robust metabolic stability. 
Despite its low solubility and absorption, it meets Lipinski’s rule of five and the Golden Triangle rule, demonstrat-
ing good drug-likeness. Compound 24334311 exhibits high lipophilicity (LogP: 3.989) and strong P-glycoprotein 
inhibition, with excellent blood–brain barrier permeability (BBB: 0.989) and significant interactions with CYP 
enzymes, ensuring metabolic stability. It has high plasma protein binding (94.40%) and a higher fraction of 
the drug remains unbound in plasma (10.66%), which is favorable for pharmacological activity. This com-
pound also complies with Lipinski’s and the Golden Triangle rules, indicating good drug-likeness and potential 
therapeutic efficacy. Compound 85303482 shows high lipophilicity (LogP: 2.982) with minimal interaction as a 
P-glycoprotein inhibitor or substrate. It has high plasma protein binding (94.49%) and moderate blood–brain 
barrier permeability, which may be beneficial for central nervous system applications. The compound demon-
strates robust metabolic stability through significant interactions with CYP enzymes. It meets Lipinski’s rule of 
five and the Golden Triangle rule, highlighting its potential as a viable drug candidate as ashown in Table S2.

Redockin and Intermolecular Analysis
Re-docking is a crucial step in drug development, involving a rigorous reevaluation of the interactions between 
ligand molecules and receptor proteins. In our study, we employed specific parameters for the re-docking process: 
the docking grid’s center was set at coordinates (X = − 50.0, Y = 4.48, Z = − 3.14) with grid dimensions of 20 Å for 
each axis (X, Y, Z). This approach is vital for validating initial docking results and clarifying key interactions at 
the receptor’s binding site with the ligand. During the re-docking, each ligand was systematically aligned with 
the target protein and evaluated against a benchmark molecule, generating at least nine distinct poses per ligand-
receptor pair. The pose with the most favorable docking energy, indicated by the lowest negative value, was chosen 
for in-depth analysis. This step was critical for further investigations into the stability of the complex and the 
affinity between the ligand and the target protein. Simultaneously, a virtual screening was conducted to explore a 
vast library of medicinal compounds. This screening highlighted four compounds with notably significant bind-
ing energies, recorded as − 10.4 kcal/mol, − 10.1 kcal/mol, − 9.9 kcal/mol, and − 9.8 kcal/mol. These compounds, 
referred to as compounds 1, 2, 3, and 4, showed promising potential and were selected for additional research. A 
control molecule, “93G”, with a binding energy of -7.8 kcal/mol, was used for comparative purposes. The three-
dimensional structures of these molecules, including the control, were visualized using PyMOL software32, and 
two-dimensional figures were generated by Biodiscovery Studio33, enhancing our understanding of their spatial 
conformations and interactions within the binding site as illustrated in Fig. 1.

As shown in Table 2, the current study involved a thorough examination of the molecular interactions that 
occurred between the selected compound and a target protein Compound 1 exhibited a singular hydrogen 
bond with Arginine 355 (Arg355) and engaged in eight hydrophobic interactions involving Phenylalanine 404 
(Phe404), Arginine 332 (Arg332), Asparagine 429 (Asn429), Methionine 431 (Met431), Serine 324 (Ser324), 
Histidine 432 (His432), Serine 337 (Ser337), and Phenylalanine 363 (Phe363). Additionally, two π-π stacking 
interactions were identified with Phenylalanine 323 (Phe323) and Histidine 357 (His357). Compound 2 was 
formed eight hydrophobic interactions with Serine 337 (Ser337), Glutamate 361 (Glu361), Phenylalanine 363 
(Phe363), Phenylalanine 404 (Phe404), Methionine 431 (Met431), Glutamate 341 (Glu341), Asparagine 429 
(Asn429), and Arginine 332 (Arg332). This compound also formed two π–π stacking interactions with protein 
residue Phe323 and His357. Compound 3 formed seven hydrophobic interactions with Glutamate 361 (Glu361), 
Arginine 332 (Arg332), Serine 337 (Ser337), Phenylalanine 363 (Phe363), Phenylalanine 404 (Phe404), Aspara-
gine 429 (Asn429), and Serine 324 (Ser324). Furthermore, three π-π stacking interactions were observed with 
Phenylalanine 323 (Phe323), Histidine 357 (His357), and Phenylalanine 325 (Phe325). Compound 4 exhibited 
one hydrogen bond with Histidine 357 (His357) and engaged in nine hydrophobic interactions with Glutamate 
341 (Glu341), Lysine 353 (Lys353), Isoleucine 354 (Ile354), Glutamine 406 (Gln406), Glutamate 361 (Glu361), 
Lysine 376 (Lys376), Serine 337 (Ser337), Arginine 332 (Arg332), and Histidine 432 (His432). Additionally, a 
single π-π stacking interaction was noted with Phenylalanine 323 (Phe323). The control compound exhibited two 
hydrogen bonds with Serine 324 (Ser324) and Glutamate 361 (Glu361), alongside seven hydrophobic interactions 
with Histidine 432 (His432), Phenylalanine 325 (Phe325), Arginine 332 (Arg332), Serine 337 (Ser337), Phenyla-
lanine 363 (Phe363), Lysine 376 (Lys376), and Phenylalanine 404 (Phe404), as well as a π-π stacking interaction.

MD simulation
Molecular dynamics (MD) simulations play a crucial role in elucidating the dynamic stability of protein–ligand 
complexes, offering detailed insights into temporal molecular interactions34–37. To advance our comprehension 
of the binding interactions and mechanistic behaviors of four selected compounds with a target protein, we con-
ducted an extensive 500-ns MD simulation. A well-characterized control compound was used for comparative 
analysis purposes. Throughout the simulation, the trajectories of each molecule were meticulously recorded, 
enabling the observation of conformational changes during the binding process. Analysis of the simulation data 
allowed for the assessment of key interaction parameters, including binding affinity, conformational altera-
tions within the protein, and shifts in the energy landscape that impact the stability and functionality of the 
protein–ligand complex. However, Compound 2 exhibited suboptimal performance in the MD simulation; 
therefore, subsequent studies focused solely on Compounds 1, 3, and 4, excluding Compound 2 from further 
analysis. This targeted approach facilitates a more refined investigation into the structural dynamics and inter-
action efficiency of the remaining compounds. The last pose and first pose before and after the MD simulation 
is illustrated in Fig. 2.
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RMSD analysis
In our molecular dynamics simulations, Compounds 1 and 3 exhibited the protein root-mean-square deviation 
(RMSD) values below 2 Å, indicative of stable protein conformations. Notably, Compound 3 exhibited a protein 
RMSD of 2.5 Å during the interval from 150 to 250 ns. In contrast, both Compound 4 and the control compound 
maintained protein RMSD values below 3 Å throughout the simulation period. Regarding ligand stability, Com-
pound 1 exhibited a ligand RMSD of 2 Å until 210 ns, followed by an increase to less than 4 Å for the remainder 
of the simulation. Compound 3 showed a ligand RMSD of 3.5 Å, with minor fluctuations observable up to 200 ns, 

Figure 1.   The 3D and 2D structure of the selected compound in complex with the protein (a, b) compound 1, 
(c, d) compound 2, (e, f) compound 3, (g, h) compound 4 and (i, j) control.
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likely due to conformational changes within the ligand. Meanwhile, Compound 4 maintained a ligand RMSD of 
less than 4 Å throughout the entire 500 ns simulation. Similarly, the control complex exhibited consistent ligand 
RMSD values below 3 Å during the 500 ns simulation, suggesting a relatively stable interaction between the ligand 
and the protein over time. These findings provide crucial insights into the dynamic stability and conformational 
integrity of the ligand–protein interactions for each compound assessed as illustrated in Figs. 3 and 4.

RMSF analysis
Protein in complex with compound 1 exhibited notable stability in its interaction with the protein, as indicated 
by a root mean square fluctuation (RMSF) value of less than 3 angstroms (Å) across the amino acid residues 
numbered 90 to 110. Such low RMSF values suggest minimal deviation in the positions of these residues when 
bound with Compound 1, indicating a tight and stable interaction within this specific segment of the protein. 
While Protein in complex with compound 3 exhibited the protein RMSF value below 5 Å for the residues between 
90 and 110. While this value is slightly higher than that observed for Protein in complex with compound 1, it still 
represents a relatively stable interaction within this region of the protein–ligand complex, albeit with slightly more 
flexibility or movement compared to the protein interaction in compound 1. On other hand protein in complex 
with compound 4 exhibited a different pattern where the protein RMSF exceeded 3 Å for residues 130 to 140. 
This indicates a higher degree of fluctuation or movement in this region, suggesting less stability in the protein 
structure when interacting with Compound 4. The increase in RMSF suggests that these residues experience 
more dynamic movements, which might affect the efficacy or stability of the compound-protein interaction. For 
the same residue range of 130 to 140, it was also noted that in control, the protein RMSF was less than 3 Å. The 
RMSF analysis of all the compounds is illustrated in Fig. 5.

Radius of gyration analysis
The radius of gyration (RG) serves as a quantitative measure of the compactness of a protein’s tertiary structure 
and provides insight into its structural stability within biological systems38. An elevated RG value signifies a 
looser packing configuration, which may correlate with reduced stability due to increased vulnerability to envi-
ronmental perturbations. Conversely, a lower RG is indicative of a tightly packed, more stable conformation. This 
relationship is visually elucidated in Figure S1, where varying RG values are correlated with distinct structural 
transformations in proteins, thereby underscoring their consequential effects on protein stability.

Hydrogen bond analysis
In the initial stages of the simulation, Compound 1 formed one to two hydrogen bonds. However, as the simula-
tion progressed, the stability of these hydrogen bonds varied, with bonding becoming confined to specific areas. 
This observation suggests a possible alteration in the molecular conformation of its binding sites. Compound 3 
demonstrated a more stable yet minimal hydrogen bonding pattern. It started the simulation with a single hydro-
gen bond, which remained consistent throughout the duration of the simulation. The persistence of only one 
hydrogen bond suggests a rigid molecular structure or a constrained environment, potentially limiting further 
bonding opportunities. Compound 4 displayed a consistent hydrogen bonding pattern, maintaining one to two 
hydrogen bonds throughout the simulation. This consistent bonding indicates a balanced and flexible molecular 
configuration, which allows for stable interactions without significant changes in bonding patterns. This flexibility 
could be crucial for its functionality in specific environments or applications. The control compound exhibited 
a more complex and sustained hydrogen bonding pattern, consistently forming two to three hydrogen bonds up 
to the 500 ns mark of the simulation. This robust bonding behavior underscores a strong and stable interaction 
capability, with multiple bonding sites actively engaged over an extended period. This could reflect a complex 
molecular structure designed to engage more extensively with its surroundings, potentially making it a useful 
standard for comparison in studies of molecular interaction dynamics as illustrated in Fig. 6.

Binding free energy analysis
The binding free energies of multiple complexes were quantitatively evaluated using the molecular mechanics/
generalized Born surface area (MM/GBSA) approach. This technique facilitates the breakdown of the overall 
binding energy (ΔG) into its constituent energy components, thereby enabling a detailed analysis of the energetic 
contributions from the interactions between the ligand and the target protein, as delineated in Table 3. Specifi-
cally, Compound 1 exhibited a ΔG of − 48.46 ± 8.48 kcal/mol, while Compound 3 and Compound 4 exhibited 
ΔGs of − 52.95 ± 8.14 kcal/mol and − 53.30 ± 11.57 kcal/mol, respectively. The control complex showed a ΔG of 
− 52.14 ± 45.08 kcal/mol. Notably, the ΔG values of these complexes aligned closely with those of the control 

Table 2.   Intermolecular interaction of four complexes in complex with the protein (a) compound 1, (b) 
compound 2, (c) compound 3, (d) compound 4 and (e) control compound.

S no Complex H-bond Hydrophobic π–π stacking/π–π cation*

1 Compound 1 Arg355 Phe363, Ser337, His432, Ser324, Met431, Asn429, Arg332, Phe404 Phe323, His357

2 Compound 3 – Glu361, Arg332, Ser337, Phe363, Phe404, Asn429, Ser324 Phe323, His357, Phe325

3 Compound 4 His357 His432, Arg332, Ser337, Glu361, Lys376, Gln406, Ile354, Lys353, Glu341 Phe323

4 Control Glu361, Ser324 His432, Phe325, Arg332, Ser337, Phe363, Lys376, Phe404 Phe323
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complex, indicating consistent and robust binding interactions with the target protein. This high degree of 
agreement with the control complex highlights the effective and stable binding dynamics of these compounds. 
Additionally, the small standard deviations associated with these values suggest a high level of reliability and 
reproducibility in the binding energy estimations. Collectively, these data suggest that the compounds under 
study exhibit a strong affinity for the target protein, classifying them as robust and effective ligands with the 
potential to modulate protein activity. These results emphasize the potential of these molecules as potent inhibi-
tors within their respective biological pathways.

Figure 2.   The 2D structure of the selected compound in complex with the protein (a, b) compound 1, (c, d) 
compound 2, (e, f) compound 3, (g, h) compound 4 and (i, j) control.



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:25441  | https://doi.org/10.1038/s41598-024-69816-3

www.nature.com/scientificreports/

RG‑RMSD and PCA based free energy landscape
The free energy landscape is a fundamental concept in molecular dynamics simulations, offering insights into the 
energy distribution within biomolecular systems and their conformational behaviour. This landscape is crucial 
for understanding the thermodynamic and kinetic properties that influence the actions of complex biomolecu-
lar structures. It outlines the energy barriers, stable states, and transition pathways among different molecular 
conformations. Gaining a deep knowledge of thermodynamics and kinetics over this landscape is vital for 
understanding the complex interactions, structural changes, and stability of biomolecular complexes. The radius 
of gyration (RG) analysis provides information on the protein folding process, indicating how much the protein 
compacts or expands as it folds. On the other hand, root-mean-square deviation (RMSD) analysis gives insights 
into the dynamic stability of the complex by monitoring deviations from a reference conformation over time. To 
illustrate the 2D (Fig. 7) and 3D (Figure S2) free energy landscapes, graphical representations were created using 
the geo-measure plugin in pymol, mapping RG against RMSD values. These visuals help in understanding the 
energy distribution and the structural transitions of the biomolecular complex. For the comparative study we 
have also performed the PCA based FEL through PCA. The PCA-based free energy landscapes in compound (a), 
(b), (c), and (d) provide insights into the system’s conformational stability. Compound (a) displays a distinct low 
Gibbs free energy basin, indicating highly stable conformations, while higher energy regions suggest less stable 
states. Compound (b) similarly highlights stable conformations but also reveals additional metastable states, 
suggesting the system can occupy several less stable configurations. Compound (c) extends the range of PC1, 

Figure 3.   RMSD analysis of protein in complex with three selected compounds protein (a) compound 1, (b) 
compound 3, (c) compound 4 and the (d) control.

Figure 4.   RMSD analysis of three selected ligand (a) compound 1, (b) compound 3, (c) compound 4 and the 
(d) control in complex with protein.
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broadening the low energy basin and indicating greater conformational flexibility and overall stability. Com-
pound (d) adjusts the scale for PC2, reinforcing the stability of the central basin and highlighting energy barriers 
around it, which represent transitions to less stable states. These landscapes collectively emphasize the stability of 
the system’s conformations and provide a detailed view of its thermodynamic properties as shown in Figure S6.

We employed the methodical framework to analyze ligand-bound complexes along with a control group. 
The employment of graphical representations enhances the comprehension of energy consequences arising 
from conformational alterations within the chemical systems studied. Moreover, two-dimensional (Fig. 7) and 
three-dimensional (Figure S2) visualizations effectively illustrate the dynamic shifts in conformation occurring 
throughout the simulation process. This visual approach facilitated the identification of a low-energy confor-
mation, unveiling an emergent structural form that provides essential insights into the energetically favorable 
states of the chemical system. The observation of a deep blue region within the extensive free energy landscape 
signifies the presence of localized energy minima, consistently observed as the protein structures transitioned 
into their lowest energy configurations. These localized minima, distinctly indicated by dark blue zones, eluci-
date the assembly of chemical group structures within minimal energy states. It was noted repeatedly that these 
complexes preserved localized energy minima within a broader free energy framework, as denoted by the dark 
blue areas. Further examination of the free energy landscape, in both two and three dimensions, unveils the 
thermodynamic properties of the studied chemical complexes, including a control compound. These analyses 
furnish comprehensive insights into their molecular dynamics and stability profiles. A notable characteristic of 
this landscape is the consistent presence of a relative maximal energy state among these complexes, sustained 
within an energy range of 14 to 16 kJ/mol. This uniformity across the complexes suggests a potential homoge-
neity in structural or functional traits, such as molecular interactions or stability. Additionally, all complexes 
demonstrated a stable conformation at energy levels below 2 kJ/mol, as depicted by the dark blue area on the 
landscape, corroborating their thermodynamic stability.

In this study, we focused on extracting three distinct poses from each biomolecular complex identified within 
lower energy states, which are typically associated with more stable and energetically favorable conformations. 
These poses were superimposed on the initial pose of their respective complex, which served as a control to 
facilitate a direct comparison of structural deviations that occurred during the simulation as illustrated in the 
Fig. 8. The initial pose acts as a reference point, providing a baseline against which the structural integrity and 
deviations of subsequent poses can be assessed. To quantify these deviations, we calculated the root-mean-
square deviation (RMSD) for each superimposed structure. RMSD is a statistical measure used extensively in 
structural biology to calculate the average distance between the backbone atoms of superimposed proteins. It is 

Figure 5.   RMSF analysis of protein in complex with three selected compounds (a) compound 1, (b) compound 
3, (c) compound 4 and the (d) control.
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an indicator of the conformational differences between compared structures, providing insights into the degree 
of similarity or variance from the initial pose. The Compound 1 exhibited an RMSD of 1.179 Å, indicating 
minimal deviation from the control and suggesting high structural stability under the simulation conditions. 
Compound 3 had an RMSD of 1.364 Å, pointing to more significant conformational changes and suggesting 
a potentially more dynamic behavior within the simulation environment. Compound 4 showed the smallest 
RMSD of 1.067 Å, implying the greatest conformational stability among the compounds tested. Lastly, the 
control complex, which is crucial for comparative analysis, showed an RMSD of 1.206 Å. This value establishes 
a baseline for understanding the degree of structural fluctuations that might be considered normal within this 
specific experimental setup. These RMSD values are crucial in providing a clear, quantitative view of how each 
compound’s conformation varies from the initial structure, offering essential insights into the dynamic stability 
and conformational behaviours of the complexes under study. Through this analysis, we can better understand 
the structural dynamics that underpin the behaviour of these complexes in their respective lower energy states.

Discussion
This study has rigorously evaluated the potential of specific compounds as inhibitors of the influenza polymer-
ase PB2 CAP-binding domain, a critical target for antiviral strategies against the influenza virus. The compre-
hensive use of virtual screening, molecular docking, and molecular dynamics (MD) simulations provided a 

Figure 6.   Hydrogen bond analysis of three compounds in complex with protein (a) compound 1, (b) 
compound 3, (c) compound 4 and the (d) control.

Table 3.   MMGBSA analysis of three compounds in complex with protein (a) compound 1, (b) compound 3, 
(c) compound 4 and the (d) control.

Energy components/complexes Compound 1 Compound 3 Compound 4 Control

Van der Waal energy (ΔVDWAALS)  − 37.79 ± 2.14  − 41.54 ± 2.39  − 42.90 ± 3.19  − 38.93 ± 3.20

Electrostatic energy(ΔEEL)  − 6.24 ± 2.78  − 6.98 ± 1.95  − 14.18 ± 3.28  − 53.06 ± 20.73

Polar solvation energy (ΔEGB) 16.85 ± 2.39 18.02 ± 2.23 25.34 ± 3.05 56.15 ± 20.31

Non-polar solvation energy (ΔESURF)  − 21.27 ± 1.15  − 22.44 ± 1.55  − 21.56 ± 2.04  − 10.12 ± 0.82

Net gas phase energy (ΔGGAS)  − 44.03 ± 4.93  − 48.53 ± 4.35  − 57.08 ± 6.47 14.12 ± 23.94

Net solvation energy (ΔGSOLV)  − 4.42 ± 3.55  − 4.42 ± 3.79 3.78 ± 5.09 66.27 ± 21.14

ΔGtotal  − 48.46 ± 8.48  − 52.95 ± 8.14  − 53.30 ± 11.57  − 52.14 ± 45.08
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Figure 7.   RG-RMSD based free energy landscape analysis of three compounds in complex with protein (a) 
compound 1, (b) compound 3, (c) compound 4 and the (d) control.

Figure 8.   Superimposed representation of three selected compounds in complex with the target protein (a) 
compound 1 (b) compound 3 (c) compound 4 and (d) control.
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detailed comparative analysis of compounds 1, 3, and 4, alongside a control compound39,40. Our findings offer 
valuable insights into their respective binding affinities, dynamic stability, and molecular interactions, facilitat-
ing a nuanced understanding of their potential as therapeutic agents41. Each compound demonstrated unique 
properties in terms of binding affinity and stability within the binding domain of PB2, as revealed through our 
computational analyses42. Compound 1 consistently showed a high binding affinity, underscored by its low 
RMSD values throughout the simulation, indicating a stable interaction with the target. It was noted for engag-
ing in extensive hydrophobic interactions and crucial π–π stacking interactions, contributing significantly to 
its strong binding profile. Compound 3 exhibited moderate RMSD values, indicating relatively less stability 
compared to Compounds 1 and 4. The dynamic nature observed through the simulation suggests that while it is 
an effective binder, its fluctuating conformation could impact its functional efficacy under varying physiologi-
cal conditions. Compound 4 stood out with the lowest RMSD values among the compounds tested, implying 
superior stability and potentially the most effective inhibition of the PB2 domain. It also demonstrated a robust 
interaction profile similar to Compound 1, characterized by multiple effective hydrophobic and π–π stacking 
interactions. Another work conducted on the PB2 domain also discovered some common interactions, such 
as Phe363, Lys376, Arg332, Asn429, Glu361, and Phe404which support our findings43. Simmilarly research 
conducted by lei zhao in 2020 is also supports are finding. The control compound provided a standard for com-
parison, exhibiting RMSD values that help benchmark the novel compounds. Its performance was instrumental 
in establishing a context for evaluating the novel compounds’ relative effectiveness and stability. Through MD 
simulations, we gained deeper insights into the structural dynamics of the interactions34,39, Both Compound 1 
and Compound 4 displayed substantial stability, suggesting that they maintain consistent interactions with the 
PB2 domain over time. Compound 3, while effective, showed potential variability in its binding, which could 
be explored further to understand any implications for its therapeutic use. The binding free energies calculated 
for the compounds provided a quantitative measure of their binding efficacy. Compound 4 exhibited the most 
favourable free energy profile, indicating the strongest and most stable binding among the compounds tested. 
Compound 3 and Compound 1 followed, with Compound 3 slightly outperforming Compound 1 in terms of 
energy favorability, although with less stability as noted in the RMSD and dynamic observations44.

In addition the excluded compound 2 demonstrated a protein root-mean-square deviation (RMSD) value of 
10 Å, indicating the degree of structural deviation from the initial conformation over the course of the molecular 
dynamics (MD) simulation. For the ligand associated with Compound 2, the RMSD value remained below 7.5 Å 
during the initial 100 ns (ns) of the simulation, suggesting a relatively stable interaction and minimal deviation 
from its original binding position. However, as the simulation progressed from 100 to 500 ns, the ligand RMSD 
increased to values less than 20 Å (Figure S3 (a)). This rise in RMSD indicates greater fluctuations and possibly 
a less stable interaction between the ligand and the protein over this period. The protein’s root-mean-square 
fluctuation (RMSF) analysis showed a value of 2.5 Å for the region encompassing amino acid residues 100 to 
110 (Figure S3 (b)). RMSF values reflect the flexibility of specific regions of the protein, and a value of 2.5 Å 
in this segment suggests moderate flexibility in this region. Throughout the MD simulation, the formation of 
two hydrogen bonds was detected shortly after the simulation began. Hydrogen bond formation is crucial for 
maintaining the stability of the protein–ligand complex and influences the binding affinity (Figure S3 (e)). Fur-
thermore, radius of gyration (Rg) and RMSD-based analysis of the free energy landscape (FEL) revealed a less 
stable energy transition (Figure S3 (c-d)) and PCA based FEL (Figure S4). This analysis provides insights into 
the stability and conformational states of the protein–ligand complex, suggesting that the system experiences 
transitions between less stable states over the course of the simulation. The examination of the superimposed 
structural poses, obtained by aligning the structures at different time points, indicated an overall RMSD value 
of 1.705 Å as shown in (Figure S5). This value represents the average deviation of the backbone atoms from the 
reference structure, reflecting the overall structural stability and conformational changes of the protein–ligand 
complex throughout the simulation.

Our approach resonates with contemporary antiviral research methodologies, particularly those targeting 
essential viral proteins. Research methodologies similar to ours have been pivotal in advancing inhibitors for 
other critical viral targets, such as the HIV reverse transcriptase and hepatitis C virus polymerase. These studies 
emphasize the importance of understanding molecular interactions and dynamics, which are crucial for optimiz-
ing compound efficacy and developing effective therapeutic agents.

Conclusion
This study systematically explored the inhibitory potential of compounds targeting the influenza polymerase PB2 
CAP-binding domain, utilizing a combination of virtual screening, molecular docking, and molecular dynam-
ics simulations. Our findings provide a detailed comparative analysis of three novel compounds—compounds 
1, 3, and 4—against a control, revealing critical insights into their binding affinities, stability, and interaction 
dynamics. Compound 4 emerged as the most promising candidate, demonstrating superior binding stability and 
the lowest root-mean-square deviation (RMSD) values, suggesting it maintains the most consistent interaction 
with the target protein. This compound also exhibited the most favorable free energy profile, indicating strong 
and stable binding, which is crucial for effective inhibition. Compound 3, while displaying slightly higher RMSD 
values, also showed potential with its considerable binding affinity, although its dynamic fluctuations suggest 
further investigation is needed to fully understand its therapeutic potential. Compound 1, though slightly less 
effective in binding energy compared to Compound 4, still maintained robust interactions and stability, marking 
it as a viable candidate. These computational insights lay a strong foundation for future experimental validation. 
The next steps should involve in vitro and in vivo studies to confirm the inhibitory effects observed in silico and 
to assess the pharmacological properties of these compounds. Additionally, exploring resistance mechanisms 
and potential combination therapies could enhance the therapeutic utility and lifespan of these inhibitors.
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