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Abstract

There is robust evidence implicating inhibitory deficits as a fundamental behavioural

phenotype in children with attention-deficit/hyperactivity disorder (ADHD). How-

ever, prior studies have not directly investigated the role in which white matter prop-

erties within the fronto-basal-ganglia circuit may play in the development of

inhibitory control deficits in this group. Combining recent advancements in brain-

behavioural modelling, we mapped the development of stop-signal task (SST) perfor-

mance and fronto-basal-ganglia maturation in a longitudinal sample of children aged

9–14 with and without ADHD. In a large sample of 135 ADHD and 138 non-ADHD

children, we found that the ADHD group had poorer inhibitory control (i.e., longer

stop-signal reaction times) across age compared to non-ADHD controls. When apply-

ing the novel parametric race model, this group effect was driven by higher within-

subject variability (sigma) and higher number of extreme responses (tau) on stop

trials. The ADHD group also displayed higher within-subject variability on correct

responses to go stimuli. Moreover, we observed the ADHD group committing more

task-based failures such as responding on stop trials (trigger failures) and omissions

on go trials (go failures) compared to non-ADHD controls, suggesting the contribu-

tion of attentional lapses to poorer response inhibition performance. In contrast, lon-

gitudinal modelling of fixel-based analysis measures revealed no significant group

differences in the maturation of fronto-basal-ganglia fibre cross-section in a subsam-

ple (74 ADHD and 73 non-ADHD children). Finally, brain-behavioural models

revealed that age-related changes in fronto-basal-ganglia morphology (fibre cross-

section) were significantly associated with reductions in the variability of the correct

go-trial responses (sigma.true) and skew of the stop-trial distribution (tauS). However,

this effect did not differ between ADHD and typically developing children. Overall,

our findings support the growing consensus suggesting that attentional deficits sub-

serve ADHD-related inhibitory dysfunction. Furthermore, we show novel evidence
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suggesting that while children with ADHD are consistently performing worse on the

SST than their non-affected peers, they appear to have comparable rates of neuro-

cognitive maturation across this period.

K E YWORD S

ADHD, behavioural inhibition, developmental, dMRI, fixel-based analysis

Practitioner Points

1. Children with ADHD had poorer response inhibition (i.e., longer stop-signal reaction times),

which was driven by higher within-subject variability than non-ADHD controls. ADHD chil-

dren also displayed more variable responses to correct go trials than controls.

2. Children with ADHD committed more trigger-and-go failures on the SST, suggesting deficits

in attentional processes.

3. Age-related changes in fronto-basal-ganglia fibre cross-section were associated with reduc-

tions in the variability and skewness of the stop-trial and correct go-trial responses across

both ADHD and non-ADHD children.

1 | INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is a pervasive neurode-

velopmental disorder characterised by higher levels of impulsivity, inat-

tention, and hyperactivity (American Psychiatric Association, 2013;

Faraone et al., 2015). ADHD has a current worldwide prevalence rate

of �5.9% in childhood (aged 18 and under) (Willcutt, 2012). ADHD

often presents with deficits across multiple cognitive domains

(Bloemsma et al., 2013; Claesdotter et al., 2018; Kofler et al., 2013,

2018, 2019; Lambek et al., 2011). Specifically, a seminal review pro-

posed by Barkley (1997) posits that the behavioural presentation of

ADHD may be driven by a fundamental deficit in the ability to constrain

unwanted or inappropriate behaviours, commonly termed ‘response
inhibition’. This ‘inhibition deficit model’ of ADHD has been well sup-

ported across a range of studies and has since become one of the most

popular accounts of explaining ADHD-related cognitive dysfunction

(Bhaijiwala et al., 2014; Claesdotter et al., 2018; Slaats-Willemse

et al., 2003). While it is true that there are well-replicated deficits in

inhibitory control, a robust body of evidence has also linked ADHD to

dysfunctions across a range of other cognitive domains, including work-

ing memory, planning and updating (Ramos et al., 2020), thus challeng-

ing the prevailing view that inhibitory control is a core deficit in the

disorder.

Response inhibition in ADHD is commonly assessed using the

stop-signal task (SST), a simple paradigm where individuals first

develop a prepotent motor response which they must inhibit on a

subset of trials (i.e., stop trials) when prompted by a salient stop signal

(Matzke et al., 2018; Verbruggen, 2019; Verbruggen & Logan, 2008).

Inhibitory performance on the SST is often formalised as a race

between two competing processes, a go process that is triggered by

the go stimuli, and a stop process that is triggered by the stop-signal

(Logan & Cowan, 1984). Successful inhibition is thus dependent on

the relative completion times of both processes. If the stop process

finishes the race before the go process, then the response is inhibited.

If the go process finishes first, then the response is maintained

(Verbruggen & Logan, 2009). The underlying mathematical assump-

tions of the race model enable the covert latency of the stop trial dis-

tribution to be quantified as a stop-signal reaction time (SSRT),

indexing the amount of time for an individual to successfully cancel

their response after the stop signal is presented (Logan &

Cowan, 1984; Verbruggen & Logan, 2009). Longer SSRTs are typically

considered reflective of deficient inhibitory control and have been

used as a sensitive behavioural marker for identifying response inhibi-

tion deficits in ADHD-diagnosed populations. Indeed, several meta-

analyses have displayed robust evidence of prolonged SSRT in individ-

uals with ADHD compared to typically developing individuals

(Alderson et al., 2008; Kofler et al., 2013; Lijffijt et al., 2005; Lipszyc &

Schachar, 2010; Oosterlaan et al., 1998), supporting Barkley's inhibi-

tory deficit model of ADHD.

Traditional approaches to estimating SSRTs often rely on non-

parametric techniques (i.e., mean estimation and integration methods),

which summarise the stop-signal distribution using single measures

(i.e., mean SSRT; Matzke et al., 2018; Verbruggen, 2019). Whilst easy

to derive from the race model, summary measures are insensitive to

interindividual fluctuations in performance at the trial-level, thereby

masking crucial features of the data (Matzke et al., 2013). Alternative

models of response inhibition have been developed to provide a more

mechanistic account of inter-individual variability in SST performance.

One such example is the parametric race model (Jana & Aron, 2022;

Matzke, Love, & Heathcote, 2017; Matzke et al., 2013), a bespoke

Bayesian estimation approach in which the entire distribution of go

and stop trial RTs are fitted to an ex-Gaussian distribution, a com-

monly used distributional shape for RT data (Dawson, 1988). The ex-

Gaussian distribution is a convolution of a normal Gaussian curve with

an exponential tail, allowing for greater specificity in the characterisa-

tion of task performance through parameters that reflect the mean

(mu), variability (sigma) and degree of skewness (tau) of the distribu-

tion (Matzke et al., 2013).
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Additionally, successful response inhibition is not only contingent

on how fast or consistent a behavioural response is stopped, but also

on the reliability of ‘triggering’ the stop process (Band et al., 2003;

Logan & Cowan, 1984; Hannah et al., 2023). For example, individuals

who are unable to selectively attend to the stop-signal will perform

worse on the SST than those who are able to successfully attend to

the signal. These failures to successfully encode and discriminate the

stop-signal, commonly known as trigger failures, are often considered

to be reflective of a dysregulation in attentional processing (Jana &

Aron, 2022 ; Matzke, Love, & Heathcote, 2017). Trigger failures have

long been considered a contaminant of SSRT estimates and cannot

easily be considered with non-parametric approaches (Matzke, Love, &

Heathcote, 2017). Recent simulation work has evidenced that the

presence of trigger failures can overestimate SSRT values by up to

100 ms (Band et al., 2003; Logan, 1994). Taken together, given that

the bulk of the ADHD literature has used non-parametric SSRT mea-

sures, it is possible that prior findings of prolonged SSRT in this popu-

lation may instead reflect deficits in attention-based processes rather

than impaired motor-related stopping. More recent variants of the

parametric race model allow for the simultaneous estimation of trigger

failures during task performance, thus providing an avenue through

which to disentangle the role of attentional-based contaminants on

overall SST performance (Matzke, Love, & Heathcote, 2017; Matzke

et al., 2019).

The advantages offered by the parametric race model have seen

this approach used in a growing number of studies to provide novel

interpretations of SST performance in healthy and clinical cohorts

(Jana & Aron, 2022; Matzke, Hughes, et al., 2017; Mayes et al., 2021;

Singh et al., 2022; Skippen, 2019). For example, in a recent longitudinal

study of 138 typically developing children aged 9–14, we observed that

developmental improvements in SSRT were driven primarily by reduc-

tions in sigma and tau of the stop trial distribution, implicating the role

of reduced performance variability and the propensity of extremely

slow responses towards overall inhibitory control efficiency (Singh

et al., 2022). To date, only one study has directly applied the parametric

race model to investigate the contribution of trigger failures in children

with ADHD. Weigard et al. (2019) applied the parametric race model in

a sample of 209 ADHD children aged 10 years. In addition to reporting

greater variability and skew in both go and stop trial distributions

(indexed by greater sigma and tau), the ADHD group also displayed a

higher probability of engaging in trigger failures compared to non-

ADHD controls. Relatedly, the ADHD group also displayed higher omis-

sions on go trials, known as ‘go failures’, another performance charac-

teristic commonly attributed to failures of attention during the SST.

Furthermore, the authors showed that any group differences in SSRT

were ameliorated after holding trigger failure constant, demonstrating

that poor SST performance was predominantly due to poor sustained

attention rather than a motor cessation (i.e., inhibitory) deficit, as might

previously be assumed. These findings have considerable implications

for the characterisation of inhibitory deficits in children with ADHD.

However, as this study used a cross-sectional design, it is not able to

determine whether findings reflect a persistent developmental trait in

ADHD or a transient age-specific effect.

When speaking to the neurobiological mechanisms underpin-

ning efficient stopping performance, a right lateralised network

known commonly as the fronto-basal-ganglia circuit has been

implicated in response inhibition (Aron, Durston, et al., 2007;

Hannah & Aron, 2021). The fronto-basal-ganglia circuit is a triad of

structurally connected regions comprising the right inferior frontal

gyrus (rIFG), presupplementary motor area (preSMA) and subthala-

mic nucleus (STN) (Aron, Behrens, et al., 2007). Studies employing

Diffusion Tensor Imaging (DTI) has evidenced significant correla-

tions between indices of increased white matter

(WM) organisation (i.e., fractional anisotropy; FA/radial diffusivity;

RD) and reduced SSRT in WM underlying the right IFG, preSMA

and STN (Aron, Behrens, et al., 2007; Aron, Durston, et al., 2007;

King et al., 2012; Madsen, 2010; Madsen et al., 2020; Rae

et al., 2015). More recently, previous work from our group has

employed more advanced modelling techniques (namely, con-

strained spherical deconvolution [CSD] and fixel-based analysis

[FBA]) in light of the well-documented ‘crossing fibre problem’
inherent in DTI (see Dhollander et al., 2021 for a detailed discus-

sion). Using the novel FBA technique in a cross-sectional sample of

healthy children aged 9, we identified a significant moderate asso-

ciation between reduced SSRT and increased fibre density (FD), a

microstructural metric that quantifies intra-voxel axonal density

(Dhollander et al., 2021), within the bilateral preSMA-STN and

IFG-STN pathways of the circuit (Singh et al., 2021). In compari-

son, our follow-up longitudinal study found that despite an age-

related increase in fibre-cross-section (FC), a morphological mea-

sure of fibre bundle size (Dhollander et al., 2021) in the bilateral

preSMA-STN and IFG-STN pathways, fronto-basal-ganglia WM

maturation was not associated with improvements in SST perfor-

mance (Singh et al., 2022).

Large-scale disruptions in structural–functional networks

within the brain are thought to underlie the behavioural presenta-

tion of ADHD (Ball et al., 2019; Cai et al., 2018). Given this, there

has been an increased focus on understanding the role of WM net-

works in ADHD symptomatology. However, studies of such differ-

ences have yielded inconsistent results, with some evidencing

lower FA or fixel metrics (FD/FC) in several tracts implicated in

higher-order sensorimotor processing, cognitive control and atten-

tional networks (Aoki et al., 2018; Chen et al., 2016; Fuelscher

et al., 2021; Hyde et al., 2021), while others show the opposite

direction (Li et al., 2010; Peterson et al., 2011) or no significant

effects (Sudre et al., 2023). Despite response inhibition deficits

being a fundamental behavioural phenotype in ADHD, no study

has directly investigated whether disruptions within the fronto-

basal-ganglia circuit might explain poor SST performance com-

monly seen in this population. Indirect work employing DTI-based

approaches has shown no significant group differences between

ADHD and typically developing children with respect to WM and

SSRT at the whole brain, or tract of interest level (corpus callosum,

sagittal striatum, superior longitudinal fasciculus; Albajara Senz

et al., 2020; Bessette & Stevens, 2019; Tremblay et al., 2020).

Furthermore, the vast majority of previous work has employed
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cross-sectional samples, which are limited to only static links

between brain-behavioural outcomes (Mills & Tamnes, 2014).

Given that both executive functioning and WM structural proper-

ties undergo rapid development during childhood (Goddings

et al., 2021), employing a longitudinal approach will allow for a

more comprehensive approach to capturing potential differences

in the developmental trajectories of inhibition and white matter

properties in ADHD relative to controls.

The lack of consistent findings may likely reflect variations in

sample size, clinical presentation (e.g., subtype), and methods of analy-

sis. Therefore, a unified account of WM organisation in ADHD as well

as its behavioural consequences, continue to be elusive. Further,

despite evidence supporting the functional role of the fronto-

basal-ganglia circuit in facilitating response inhibition, the exact neural

mechanisms of this network are still being debated in the literature.

Whilst the rIFG's role in action-stopping is to purportedly recruit the

STN via the hyper-direct pathway from rIFG to basal ganglia (Chen

et al., 2020; Jahfari et al., 2011; Rae et al., 2015), a series of functional

imaging studies have also reported comparable neural activity in the

rIFG on tasks that have no overt inhibitory demands (Hampshire

et al., 2010; Hampshire, 2015). More recently, an electroencephalog-

raphy (EEG) study by Choo et al. (2022) found evidence that rIFG

lesions were associated with an increase in trigger failures, suggesting

that its role appears to be more attentional based (i.e., in the triggering

or initiation of a cascade leading to motor cessation).

To this end, the present work sought to clarify prior findings by

modelling longitudinal group differences in response inhibition and

WM organisation in children with and without ADHD. Our aims

were threefold: First, we attempted to examine the developmental

progression of inhibitory control in both ADHD and non-ADHD chil-

dren. As per previous work (Alderson et al., 2007; Lipszyc &

Schachar, 2010), we expect inhibitory deficits to be consistent in the

ADHD group over time compared to non-ADHD controls, as

reflected in prolonged SSRT. Given the methodological limitations of

non-parametric SSRT, we then applied the parametric race model to

disentangle the role of attentional-based components from overall

inhibitory control. By using the parametric race model (Matzke

et al., 2013, 2019), we hypothesised that prolonged SSRTs in chil-

dren with ADHD would be driven by greater within-subject variabil-

ity (sigma) and more extreme responses (tau) relative to non-ADHD

controls. In line with recent evidence suggesting that attentional

deficits may underlie poor response inhibition in ADHD (Weigard

et al., 2019), we also expected that children with ADHD would com-

mit more trigger-and-go failures over age. Second, we leveraged the

novel FBA framework to explore the developmental progression of

fibre-specific properties underlying the fronto-basal-ganglia circuit

across ADHD and non-ADHD children. We propose that children

with ADHD would show altered maturational processes within the

fronto-basal-ganglia circuit (indexed as lower FD and FC across age)

compared to controls. Finally, we explored whether different matu-

rational profiles of fronto-basal-ganglia WM in ADHD may subserve

response inhibition deficits in this group. Here, we hypothesized

that lower FD and FC in children with ADHD will be predictive of

poorer SST performance in this group.

2 | MATERIALS AND METHODS

2.1 | Participants

The current study used a subset of data obtained from the Children's

Attention Project (CAP) (Sciberras et al., 2013), and its neuroimaging

arm, the Neuroimaging of the Children's Attention Project (NICAP)

(Silk et al., 2016). Participants recruited into NICAP were sourced

from the 36-month follow-up of the larger CAP study. The NICAP

sample underwent concurrent cognitive testing and MRI imaging over

three sessions every 1.5 years at the Murdoch Children's Research

Institute. Written consent was given by the parent/guardian prior to

data collection. During data collection, participants were excluded if

they presented with any of the following: intellectual disability; seri-

ous medical conditions; genetic disorders; moderate–severe sensory

impairment; neurological problems; and parents with insufficient

English to complete interviews/questionnaires (Silk et al., 2016).

ADHD diagnosis was confirmed using the parent/guardian report

NIMH Diagnostic Interview Schedule for Children-IV (DISC-IV)

(Shaffer et al., 2000) at baseline of the CAP study, and the first and

third sessions of the NICAP study (timepoint 1 and 3). Children pre-

senting with a history of ADHD (i.e., positive ADHD diagnosis at CAP

baseline and/or NICAP timepoint 1) were considered part of the

ADHD group. Children who did not meet ADHD diagnostic criteria at

both timepoints were considered as non-ADHD controls. The pres-

ence of internalizing (e.g., depression) or externalizing problems

(e.g., oppositional defiant disorder) was assessed using the DISC-IV

during diagnostic assessment (Shaffer et al., 2000). Finally, children

were not asked to cease medication for during data collection so as to

provide a naturalistic environment (i.e., ‘classroom’ setting) in which

cognitive performance can be assessed. Medication history and dos-

age information were recorded during the assessment by research

staff blinded to each participant's diagnosis. Detailed information on

the types of medication taken by ADHD and non-ADHD participants

at each timepoint are presented in Tables S4 and S5 of Supporting

Information A.

For the purposes of our study, participants without SST data for

at least one timepoint were excluded from the analysis. Based on

these criteria, we obtained a sample of 153 ADHD and 177 non-

ADHD children with SST data for at least one timepoint. Following

quality control procedures (see below sections), the final sample con-

sisted of 135 ADHD and 138 non-ADHD participants (Figure S1a;

Supporting Information A). Of this final sample, a sub-group of

88 ADHD and 80 non-ADHD participants also had diffusion MRI data

for at least one timepoint. After quality assessment procedures (see

below sections), the final neuroimaging sub-sample consisted of

74 ADHD and 73 non-ADHD participants who had MRI data for up

to three timepoints (Figure S1b; Supporting Information A).
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2.2 | Stop-signal task

The SST was administered using the open-source STOP-IT version of the

task (Verbruggen et al., 2008). STOP-IT consists of 192 trials, of which

144 (75%) are go trials and 48 (25%) are stop trials. Go trials consist of a

single fixation cross displayed at the centre of the screen for 250 ms fol-

lowed by a series of shapes (square or circle) presented at the same loca-

tion for 1250 ms. Participants were instructed to respond to these as

quickly and accurately as possible, pressing the ‘Z’ key on a standard

computer keyboard with their left index finger when presented with a

square, or the ‘?’ key with their right index finger when presented with a

circle. On stop trials, the go stimulus was followed by an auditory stop-

signal (750 Hz) presented at variable delays. Upon hearing the stop-signal,

participants must cease any response and wait for the following go-trial

to resume. The duration of stop-signal delays (SSDs) varied systematically

across stop trials via a staircasing algorithm. Following an initial duration

of 250 ms for all participants, SSDs increased or decreased by increments

of 50 ms according to a participant's performance on the preceding stop

trial, converging on a �50% probability of inhibiting on a given stop-

signal. STOP-IT is freely available for download at the following link:

https://github.com/fredvbrug/STOP-IT.git.

2.3 | MRI acquisition

Diffusion MRI data were acquired at each of the three timepoints using a

3T Siemens scanner with a 32-channel head coil. The following parame-

ters were used for the diffusion MRI sequence at all three timepoints:

plane = transverse; phase-encoding direction = anterior–posterior; multi-

band factor = 3; b value: b = 2800 s/mm2; gradient directions = 60 (with

4 interleaved b0 volumes); voxel size = 2.4 mm3 isotropic; echo-time/

repetition time (TE/TR) = 110/3200 ms; acquisition matrix = 110 � 100;

bandwidth = 1758 Hz. Two b0 reverse-phase encoded blip images were

acquired to correct for susceptibility distortions (Andersson &

Sotiropoulos, 2016). In addition to diffusion data, T1-weighted anatomical

MRI data was also collected in the sagittal plane using the following pro-

tocol: Magnetization-Prepared Rapid Acquisition Gradient Echo

(MPRAGE), TR = 2530 ms; TE = 1.77, 3.51, 5.32, 7.2 ms; flip angle = 7�;

voxel size = 0.9 mm3; field of view = 230 mm2 with in-scanner motion

correction. Data for timepoints 1 and 2 were acquired on a TIM Trio

scanner whilst data for timepoint 3 was acquired following an upgrade to

the MAGNETOM Prisma scanner. All scanning parameters remained con-

sistent pre- and post-scanner upgrade, however, to adjust for potential

effect of scanner type on our statistical analyses, scanner upgrade was

included as a covariate in our longitudinal models.

2.4 | Covariates

Prior studies have shown response inhibition to be differentially asso-

ciated with sex (Mansouri et al., 2016; Ribeiro et al., 2021), socioeco-

nomic status (SES; Last et al., 2018; Lawson et al., 2018) and use of

stimulants (e.g., methylphenidate; Bedard et al., 2003; Brackenridge

et al., 2011; Coghill, 2010). As such, these were included in our longi-

tudinal models as covariates of no interest. Sex was collected as a

self-report measure at the start of each testing session. SES was

recorded at each session using the Index of Relative Socio-economic

Advantage and Disadvantage (IRSAD), a measure of relative socio-

economic disadvantage in Australia with a mean of 1000 and a stan-

dard deviation of 100. Lower IRSAD scores indicate areas with a

greater incidence of disadvantage (Australian Bureau of Statistics,

2013). Medication use information was recorded by the researchers

at the end of each session. In addition, subject-specific variability in

head size and movement in the MRI scanner can have significant

impacts on the validity of diffusion MRI measures (Baum et al., 2018;

Kijonka et al., 2020; Thomson et al., 2021). Hence, our imaging and

brain-behavioural models were also adjusted for these variables. In-

scanner head motion (indexed as mean framewise displacement; mean

FWD) was calculated for each participant's raw diffusion MRI data

(excluding b0 shells and the reference volume) following the approach

by Power et al. (2012) in FSL (v. 6.0.1). We also calculated the mean

estimated intracranial volume (eTIV) in each participant's pre-

processed T1-weighted image using the recon-all function in FreeSur-

fer (v. 6.0; Fischl, 2012).

2.5 | SST data preparation

2.5.1 | SST quality control

To ensure that only participants who adequately completed the task

entered the final model, SST data were quality assessed using stringent

cut-off criteria following the same procedures as our previous work

(Singh et al., 2022; See Figure S2 and Table S2 of Supporting Informa-

tion A for a list of participants that were removed). Participants were

removed if they: (1) did not complete the task (<192 trials); (2) proac-

tively slowed their performance >300 ms on go trials over the course of

the task; (3) displayed an overall probability of >75% in responding to

stop signals. In addition, we (4) visually checked if the staircase tracking

algorithm was performing adequately for each participant by plotting

their probability of responding to stop signals against the range of SSDs

they obtained across the task. Participants were retained if there was a

systematic increase in probability of responding to stop signal with SSD.

For appropriate estimation of incorrect responses on go trials (i.e., mu.

false, sigma.false, tau.false), we also excluded participants who displayed

(5) no-choice errors on go trials. Finally, following the estimation of SST

parameters (see below), we removed an additional two observations

(timepoint 1 = 1; timepoint 3 = 1) from the non-ADHD group due to

missing age data, and three observations (timepoint 1 = 1; timepoint

2 = 1; timepoint 3 = 1) from the ADHD group for missing SES data.

2.5.2 | Parametric modelling of SST performance

SST performance was modelled using a variant of the parametric race

model known as the ex-Gaussian 3 (EXG3; Matzke et al., 2019). The
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EXG3 estimates mu, sigma, and tau parameters for the stop process,

as well as for correct (i.e., ‘true’) and incorrect (i.e., ‘false’) responses
separately for go trials. Further, the model also simultaneously

accounts for the probability (%) of trigger failures (indexing

responses to stop trials) and go failures (indexing omissions on go

trials) as separate, quantifiable parameters. We used an individual

modelling approach, whereby go, stop and attention-related param-

eters (trigger and go failures) were estimated separately for each

participant at each timepoint. This was done to maintain the inde-

pendence of observations in our data during subsequent statistical

modelling via GAMMs (see Section 2.8.1). This resulted in a total of

11 parameters for each participant (Table S1; Supporting Informa-

tion A). We also computed traditional SST metrics by using the

parameters obtained from the EXG3 model. Specifically, we calcu-

lated SSRT and go reaction time (GoRT) by adding mu and tau of the

stop trial and correct go trial distributions, respectively. All estima-

tion procedures were conducted in R using the Dynamic Models of

Choice package (DMC; Heathcote et al., 2019). The DMC package

employs a Bayesian parametric estimation approach for modelling

participant-level EXG3 parameters. A detailed discussion of the

rationale underlying Bayesian parametric estimation is beyond the

scope of this article; the reader is directed to the following sources

for further information (Annis & Palmeri, 2018; van de Schoot

et al., 2014). The end goal of Bayesian modelling is the posterior dis-

tribution, a probability distribution that reflects the contribution of

both prior knowledge and the observed evidence (data) for a param-

eter of interest (van de Schoot et al., 2014).

Following the steps of Matzke et al. (2019), we assumed weakly

informative priors for the subject-level parameters, which closely

match those of Heathcote et al. (2019). These prior distributions were

then updated by the observed data to yield posterior distributions

through a sampling technique known as Differential-Evolution Mar-

kov Chain Monte-Carlo (DE-MCMC; Turner et al., 2013). We ran the

sampling scheme across three stages. First, we ran an initial burn-in

period of 500 iterations for each of the 33 chains (by default, DMC

samples three times as many chains as there are parameters) with 5%

migration to correct for instances where chains were ‘stuck’ during
the sampling process, increasing the probability of parameters being

sampled in the appropriate space, thus improving the likelihood of

convergence. However, samples derived from migration can often

bias estimates to higher-likelihood regions, and thus, cannot be used.

Therefore, we ran a second burn-in of an additional 500 iterations

with migration off. Finally, a final sample of 400 iterations was run

until chains were converged, which were then retained for further

analysis. Convergence of chains was assessed visually via trace plots

and statistically using Gelman–Rubin R^ values (Gelman &

Rubin, 1992). Chains were adequately converged if the trace-plots did

not contain systematic deviations across the parameter space (i.e., if

all chains were spread equally across the sampling scheme), and if the

R^ values were <1.1. Summary statistics (medians) from each subject's

posterior distribution for each parameter were extracted from the

final set of 400 chains. These were then used as dependent variables

in our longitudinal statistical models. Figures S3–S8 of Supporting

Information A visualizes the subject-level posterior distributions for

the (1) matching go process (i.e., GoRT; mu.true + tau.true), (2) mis-

matching go process (mu.false + tau.false), (3) stop-process (i.e., SSRT;

muS + tauS), (4) go failures and (5) trigger failures.

2.5.3 | Final behavioural sample

After quality control procedures, the final behavioural sample con-

sisted of 135 ADHD and 138 non-ADHD participants. A flow diagram

of the quality control procedure for the behavioural sample is pre-

sented in Figure S2 of Supporting Information A. Sample characteris-

tics for the behavioural cohort are presented in Table 1.

2.6 | Diffusion MRI data preparation

2.6.1 | Pre-processing and quality assessment

Analysis of the diffusion MRI data was conducted on a subset of

88 ADHD and 80 non-ADHD participants. All diffusion MRI proces-

sing and analysis were conducted in MRtrix3tissue (https://3tissue.

github.io/), a fork of the MRtrix3 project (Tournier et al., 2019) using

the Monash High Performance Computing Cluster (Goscinski

et al., 2014). Diffusion data were pre-processed using an in-house

automated script developed by the research team and closely fol-

lowed the recommended pipeline for FBA (Dhollander et al., 2021).

This script is available for public use (see ‘Code and Data availabil-

ity’). Specifically, the pre-processing pipeline involved the following

steps: denoising (Veraart et al., 2016), Gibbs Unringing (Kellner

et al., 2016) and correction of geometric distortions with slice-

to-volume motion correction and outlier replacement (Andersson

et al., 2003, 2016, 2017; Andersson & Sotiropoulos, 2016). The pre-

processed data were then quality assessed by a team of researchers

(N.V., I.F., L.D., S.S., P.T., M.S.) for the presence of subject motion

(as indexed by substantial Venetian blinds artefacts), masking issues,

and otherwise corrupted volumes within the data. A total of

15 ADHD and 12 non-ADHD observations were subsequently

removed from further analysis (see Figure S9 and Table S3 of Sup-

porting Information A for more details). Following the implementa-

tion of the FBA pipeline, we also removed participants who were

missing T1-weighted data, as we could not calculate eTIV values for

these participants.

2.6.2 | Single-shell 3-tissue CSD and population
template

Group-averaged response functions for each tissue-type (WM, grey

matter [GM], and cerebrospinal fluid [CSF]) were extracted for each

subject and Single-shell 3-Tissue Constrained Spherical Deconvolu-

tion (SS3TCSD) was conducted to obtain WM-like Fibre Orientation

Directions (FODs; Dhollander et al., 2016). Further, group-level global
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intensity normalisation and bias-field correction were conducted to

improve inter-subject comparability of FOD amplitudes. We subse-

quently generated a study-specific population template from the

cohort that passed quality control checks (80 ADHD and 75 non-

ADHD participants). The population template was then transformed

to standard space (Montreal Neurological Institute [MNI]) using the

FSL FA template following a similar approach to our previous longitu-

dinal study in typically developing children (Singh et al., 2022).

2.6.3 | Tract-of-interest fixel-based analysis

To delineate our fronto-basal-ganglia circuit, we adopted the same

procedures as described in our previous work (Singh et al., 2021,

2022). Briefly, our cortical ROIs (IFG and preSMA) were parcellated in

each hemisphere using the Ranta Frontal Lobe atlas (Ranta

et al., 2014), while the STN was delineated using the STN atlas

(Keuken & Forstmann, 2015). We applied probabilistic tractography to

estimate streamlines connecting the IFG-preSMA, IFG-STN and

preSMA-STN in each hemisphere using the following parameters

(angle = 22.5�, max length = 250 mm, min length = 10 mm,

power = 1.0, FOD cut-off = 0.1, streamline selection = 2000). We

also applied exclusion ROIs in the coronal slice of the left hemisphere

and posterior region of the brain to mitigate spurious streamlines. A

visual representation of the bilateral IFG-preSMA, preSMA-STN and

IFG-STN tracts is presented in Figure 1. In preparation for subsequent

statistical analysis, each tract was segmented into individual fixel

masks. Finally, we calculated mean FD and FC values across all fixels

in each tract per participant. As per the recommended steps for FBA

(Dhollander et al., 2021; Raffelt et al., 2017), FC values were further

TABLE 1 Sample characteristics of
the behavioural cohort.

Measure Non-ADHD control ADHD Difference p-value

N (n datapoints) 138 (209) 135 (238) –

Participants, count (% male)

T1 115 (58.3%) 112 (66.1%) –

T2 60 (55%) 69 (79.7%) –

T3 34 (61.8%) 57 (70.2%) –

Age, mean (SD)

T1 10.47 (0.51) 10.44 (0.53) .58

T2 11.81 (0.52) 11.72 (0.54) .35

T3 13.07 (0.49) 13.24 (0.67) .23

Conners ADHD Index, mean (SD)

T1 1.80 (3.56) 10.49 (6.49) <.001

T2 1.32 (1.91) 10.31 (6.42) <.001

T3 0.47 (1.16) 8.33 (6.87) <.001

Baseline internalization, count, yes (% yes)

T1 6 (5.2%) 24 (21.8%) –

T2 6 (10%) 16 (23.5%) –

T3 4 (11.8%) 12 (21.1%) –

Baseline externalization, count, yes (% yes)

T1 15 (13%) 46 (41.8%) –

T2 8 (13.3%) 36 (52.9%) –

T3 1 (2.9%) 28 (49.1%) –

SES, mean (SD)

T1 1021.33 (42.95) 1012.90 (47.22) .26

T2 1024.73 (45.97) 1018.23 (41.13) .36

T3 1015.82 (40.42) 1018.28 (40.71) .85

Medication status, count, yes (% yes)

T1 2 (1.9%) 25 (25%) –

T2 1 (1.7%) 23 (33.8%) –

T3 0 (0%) 11 (24.4%) –

Note: Conners ADHD Index Score obtained from the Conners 3rd Edition Parent Report scale (Conners

et al., 2011). Difference p values reported from Mann–Whitney U tests. Bold indicates significant group

differences.

Abbreviations: SD, standard deviation; SES, socioeconomic status.
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log-transformed (FC (log)) to ensure normality of data across partici-

pants (Dhollander et al., 2021).

2.6.4 | Final neuroimaging sample

After quality assessment and other removal procedures, a final

sample of 74 ADHD and 73 non-ADHD participants were entered

into the models. A flow diagram of the quality control procedure for

the neuroimaging sample is presented in Figure S9 with further

exclusion details listed in Table S3 of Supporting Information

A. Sample characteristics for the imaging cohort are presented in

Table 2.

2.7 | Attrition analyses

Attrition analyses of SST performance were conducted to examine if

better-performing participants were retained across the three data

collection timepoints. Results revealed that there were no significant

differences between non-ADHD children attending one, two or

three timepoints in baseline SST performance in both the beha-

vioural and imaging samples (Tables S6 and S7; Supporting Informa-

tion A). ADHD children in the behavioural cohort who had

completed all three timepoints had significantly higher mean of the

correct go trial response (mu.true) compared to children with only

one timepoint (M(diff ) = 75.47; p(adj) = .03). Further, ADHD chil-

dren in the behavioural sample with three timepoints had signifi-

cantly lower skew of the correct go trial response (tau.true) than

children with one timepoint (M(diff ) = �43.01; p(adj) = .001). ADHD

children in the imaging subsample with two timepoints also dis-

played lower exponential skew of the correct go-trial responses (tau.

true) than those with one timepoint (M(diff ) = �53.13; p(adj) = .02).

ADHD children in the imaging sample with all three timepoints had

lower exponential skew of the correct go trial responses (tau.true)

than those with two timepoints (M(diff ) = �54.16; p(adj) = .03;

Tables S8 and S9; Supporting Information A).

2.8 | Analytical procedure

2.8.1 | Developmental trajectories of inhibitory
control

Developmental patterns of response inhibition in children with and

without ADHD were assessed using generalised additive mixed

models (GAMMs; Hastie & Tibshirani, 1990), a data-driven statistical

framework that flexibly models non-linear relationships (Wood, 2011,

2017). All analyses were conducted with maximum likelihood

(ML) estimation within the ‘mgcv’ package in R (Wood, 2017).

EXG3-derived parameter estimates of the go and stop trial distribu-

tions were used as measures of interest, with the latter (i.e., stop trial

parameters) specifically used as indices of response inhibition. Using a

stepwise design, models assessing the main effect of (1) age, (2) group

(i.e., ADHD, non-ADHD controls), and (3) the interaction of age and

group were entered iteratively into the analysis following an initial

‘null’ model for each outcome variable. Separate models were also

run using univariate SST performance measures (GoRT and SSRT) as

outcomes of interest to compare between approaches. Like our previ-

ous work in a typically developing sample (Singh et al., 2022), age was

modelled as a smooth term with a penalized cubic regression spline

and basis dimension of 4 to capture potential non-linear trajectories

with SST performance. We adjusted for sex, SES and medication use

in our models. Prior to analysis, all categorical covariates were

included as ordered factors to easily compare between contrasts

(i.e., between ADHD and non-ADHD groups), while continuous vari-

ables were mean-centred to standardize all units of measurement in

our models.

2.8.2 | Developmental trajectories of fronto-
basal-ganglia WM

Longitudinal changes in FD and FC (log) of the fronto-basal-ganglia

circuit were evaluated using a series of nested GAMM models. Start-

ing from a ‘null’ model, more complex models were run to investigate

F IGURE 1 Visual representation of the bilateral fronto-basal-ganglia circuit overlaid on the population template. IFG, Inferior frontal gyrus;
pre-SMA, Presupplementary motor area; STN, subthalamic nucleus.
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the relationship between (1) age, (2) group and the (3) interaction

between age and group on WM maturation within the fronto-

basal-ganglia circuit. These models were conducted separately for FD

and FC (log) in each tract of interest: (1) IFG-preSMA, (2) preSMA-

STN and (3) IFG-STN for both hemispheres. All neuroimaging models

were conducted using maximum likelihood (ML) estimation. Age was

modelled as a smooth term with a penalized cubic regression spline

and basis dimension of 4 following the same procedures as above. We

adjusted for sex, SES, and medication status across all models. Fur-

ther, mean head motion (mean FWD), total brain volume (eTIV) and

scanner upgrade were included as additional covariates of no-interest

in our models.

TABLE 2 Sample characteristics of
the imaging cohort.

Measure Non-AHD control ADHD Difference p-value

N (n datapoints) 73 (116) 74 (138) –

Participants, count (% male)

T1 38 (68.4%) 51 (66.7%) –

T2 51 (54.9%) 54 (79.6%) –

T3 27 (66.7%) 33 (72.7%) –

Age, mean (SD)

T1 10.38 (0.46) 10.41 (0.46) .52

T2 11.78 (0.53) 11.72 (0.56) .58

T3 13.04 (0.51) 13.32 (0.76) .12

Conners ADHD Index, mean (SD)

T1 1.82 (3.51) 9.73 (6.34) <.001

T2 1.20 (1.72) 10.37 (6.66) <.001

T3 0.30 (0.82) 8.06 (7.08) <.001

Baseline internalization, count, yes (% yes)

T1 3 (7.9%) 10 (20%) –

T2 4 (7.8%) 10 (18.9%) –

T3 3 (11.1%) 6 (18.2%) –

Baseline externalization, count, yes (% yes)

T1 5 (13.2%) 25 (50%) –

T2 5 (9.8%) 26 (49.1%) –

T3 1 (3.7%) 13 (39.4%) –

SES, mean (SD)

T1 1025.87 (45.15) 1018.00 (39.02) .32

T2 1021.69 (48.16) 1020.06 (39.09) .82

T3 1018.04 (41.67) 1018.79 (40.29) .91

Medication status, count, yes (% yes)

T1 1 (2.6%) 14 (27.5%) –

T2 0 (0%) 18 (33.3%) –

T3 0 (0%) 6 (18.2%) –

Framewise displacement, mean (SD)

T1 0.99 (0.25) 0.96 (0.18) .66

T2 0.80 (0.12) 0.89 (0.20) <.05

T3 1.03 (0.18) 0.99 (0.14) .62

Estimated total intracranial volume, mean (SD)

T1 1,634,084.5 (117,478.4) 1,591,464.6 (139,093.4) .14

T2 1,592,624.9 (143,446.1) 1,597,655.4 (143,891.8) .91

T3 1,593,501.3 (136,787.3) 1,606,285.2 (150,626.9) .47

Note: Conners ADHD Index Score obtained from the Conners 3rd Edition Parent Report scale (Conners

et al., 2011). Difference p values reported from Mann–Whitney U tests. Bold indicates significant group

differences.

Abbreviations: SD, standard deviation; SES, socioeconomic status.
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2.8.3 | Predicting change in response inhibition
from change in fronto-basal-ganglia WM

Brain-behaviour associations between changes in fronto-basal-ganglia

WM and response inhibition were conducted using a similar approach

as our study previous study in typically developing children (Singh

et al., 2022). The yearly rate-of-change in FD/FC (log) for tracts iden-

tified as significant in our neuroimaging-only models were extracted

as a random slope per participant. This was achieved by running a

series of linear mixed-effect models predicting change in fronto-

basal-ganglia WM from age (adjusting for mean FWD and eTIV).

Steeper random slopes indicate a greater yearly rate-of-change in

FD/FC (log). These slopes were then included as predictors in a series

of nested GAMMs to examine whether the addition of WM develop-

ment rate predicts composite measures of SST performance (SSRT;

GoRT), and parameters derived from the parametric race model. Note

that we selected outcome measures for SST performance only if they

were significant in the behavioural-only GAMMs (as per Section 2.8.1).

Following a stepwise approach similar to Sections 2.8.1 and 2.8.2, we

ran a (1) ‘null’ model (initial best-fitting model for the behavioural-only

GAMMs), a (2) main-effect model (addition of FD/FC (log) slope as a

main effect), and an (3) age-by-FD/FC (log) interaction model. This lat-

ter model represents a linear interaction between the smooth age

term and FD/FC (log) slope, informing us whether individual differ-

ences in fronto-basal-ganglia maturation are associated with different

rates of SST performance over age. SES, sex, medication status and

the effect of scanner type were included as nuisance covariates in all

models.

2.8.4 | Model comparison

For all models run in the present work, a series of comparisons were

undertaken to determine the most parsimonious model. The compar-

eML function from the ‘itsadug’ R package was used to compare all

models in our analysis (van Rij et al., 2015), following similar

approaches by Vijayakumar et al. (2021). The compareML function

evaluates model-fit based on a χ2 test on the difference in scores and

degrees of freedom. More complex models were selected if the result

of the χ2 test was significant at p < .05 when compared to a lower-

order model. Due to the substantial number of comparisons con-

ducted for the neuroimaging GAMMs, p values for all parametric and

smooth coefficients, and model comparisons were adjusted using the

false discovery rate (FDR) correction method (pFDR = .05). Statistical

details of all model comparisons conducted for the main analysis are

presented in Tables S1–S30 of Supporting Information B.

2.8.5 | Sensitivity analyses

In addition to our main analysis, we also conducted several sen-

sitivity analyses to assess the robustness of our results. First,

given that comorbidity rates are often high in the ADHD popu-

lation, we sought to examine whether the presence of internal-

izing or externalizing problems collected during diagnostic

assessment was predictive of brain-behavioural relationships

(T. Due to the unbalanced number of observations across time-

points, we elected to only include the presence of comorbidities

at CAP baseline as covariates in our sensitivity analysis. This

mirrored the approach of a recent publication by Thomson et al.

(2022b) who had leveraged the same dataset in their manu-

script. Results of this sensitivity analysis are presented in

Tables S10-S15 of Supporting Information A. Second, as we

have included children with a history of ADHD in our sample, it

is possible that our findings may have been influenced by chil-

dren who have remitted since their initial diagnosis. Indeed,

some studies have demonstrated comparable task-related per-

formance in ADHD-remitted participants to neurotypical con-

trols (Michelini et al., 2016). For this second sensitivity analysis,

we re-analyzed our main results after the removal of ADHD

participants that have remitted by their last timepoint. For the

behavioural sample, this resulted in a removal of 55 participants

from a total of n = 135 ADHD children (leaving 80 with persis-

tent ADHD [138 datapoints]). For the imaging subsample, we

removed 30 participants from a total of n = 74 ADHD children

(leaving 44 with persistent ADHD [81 datapoints]). Figure S10

of Supporting Information A visualizes the frequencies of ADHD

participants who had either remitted at NICAP recruitment

(timepoint 1; behavioural sample = 27; neuroimaging

subsample = 6) or at the third diagnostic follow-up (timepoint 3;

behavioural sample = 28; neuroimaging subsample = 24). Results

are presented in Tables S16-S22 of Supporting Information A.

3 | RESULTS

3.1 | Developmental trajectories of inhibitory
control

3.1.1 | Go trial performance

Longitudinal modelling of go trial performance indicated a signifi-

cant age-effect for GoRT, whereby reaction times for go

responses improved with age (Figure 2a; Table 3). However,

inclusion of a main effect for group did not significantly improve

the model, suggesting that both ADHD and non-ADHD children

report similar go-trial performance. Likewise, evaluation of the

EXG3 model parameters revealed significant age-effects for the

Gaussian mean of the correct response (mu.true; Figure 2b;

Table 3). The gaussian variability of the correct response (sigma.

true) displayed a significant group effect, with higher variability

in the ADHD group relative to controls (Figure 2c; Table 3). This

latter effect was consistent across age. No models were signifi-

cant for the exponential tail of the correct response (tau.true),
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nor for any parameters of the incorrect go-trial distribution (see

Tables S1–S7 of Supporting Information B).

3.1.2 | Stop trial performance

Model comparisons for Stop-trial performance metrics are presented in

Tables S8–S11 of Supporting Information B. Results for the stop-trial

metrics revealed that the ADHD group had significantly longer SSRT

values than the non-ADHD group (Figure 3a; Table 4). This was paral-

leled by a significant main effect of group on the Gaussian means (muS),

variability (sigmaS) and exponential tail (tauS) of the stopping distribu-

tion (Figure 3b–d; Table 4). For the best-fitting models across all

metrics, both ADHD and non-ADHD groups also displayed significant

consistent age-related improvements across the developmental span.

3.1.3 | Task-based failures

Model comparisons for task-based failure parameters are provided in

Tables S12 and S13 of Supporting Information B. The inclusion of a main

effect for group significantly improved model fit for both trigger (Prob_TF)

and go failures (Prob_GF; Figure 4a,b; Table 5). The ADHD group had a

higher probability of committing both trigger and go failures than non-

ADHD controls. SES, medication status and sex did not significantly pre-

dict the probability of trigger or go failure for any best-fitting models.

F IGURE 2 Best-fitting models of the
go trial parameters. (a) Age main-effect
model for GoRT; (b) age main-effect
model for mu.true; (c) group main-effect
model for sigma.true. Age in years; GoRT,
mu.true, sigma.true in ms.
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3.2 | Developmental trajectories of fronto-
basal-ganglia WM

3.2.1 | Left-hemisphere fronto-basal-ganglia circuit

Model comparisons revealed significant age-related maturation in FC

(log) across the left hemispheric IFG-preSMA and preSMA-STN path-

ways (Figure 5a,b; Table 6; also see Tables S14–S19 of Supporting

Information B). The inclusion of a main effect of group did not signifi-

cantly improve model fit, indicating that ADHD and non-ADHD

children did not significantly differ in WM morphology. Whilst we

identified a significant age-effect for the left IFG-STN pathway with

respect to FC (log), these effects disappeared after applying FDR cor-

rection (Figure 5c). When looking at the best fitting model for FC (log)

in the left IFG-preSMA pathway, we found that sex, total brain vol-

ume (eTIV) and scanner type significantly predicted changes in fibre

morphology, whilst a trend towards significance was observed for

SES. In contrast, mean head motion (mean FWD) and medication sta-

tus were not significant predictors. Evaluation of the best-fitting

model for FC (log) in the left preSMA-STN pathway demonstrated a

TABLE 3 Parametric and smooth terms for the best-fitting models for go trial parameters.

GoRT mu.true sigma.true

Parametric coefficients Est. (SE) t p Est. (SE) t p Est. (SE) t p

Intercept 684.69 (11.22) 61.05 <.001 555.08 (14.09) 39.39 <.001 132.15 (6.45) 20.50 <.001

Group – – – – – – �18.73 (6.44) �2.91 <.001

SES_c �0.14 (0.16) �0.90 .37 �0.03 (0.20) �0.16 .87 �0.06 (0.07) �0.80 .43

med �1.70 (18.57) �0.09 .93 �2.06 (23.36) �0.09 .93 1.39 (8.83) 0.16 .88

Sex 6.29 (14.12) 0.45 .66 22.17 (17.73) 1.25 .21 8.17 (6.38) 1.28 .20

Smooth terms Edf (Ref.df ) F p Edf (Ref.df ) F p Edf (Ref.df ) F p

s(age_c) 1.00 (1.00) 23.55 <.001 1.00 (1.00) 10.40 <.001 1.01 (1.01) 15.01 <.001

s(SID) 111.83 (256.00) 0.89 <.001 104.88 (256.00) 0.78 <.001 122.39 (255.00) 1.02 <.001

Note: Est.: estimated regression parameter; SE: standard error; edf: estimated degrees of freedom; Ref.df: reference degrees of freedom; Group: ADHD

and controls; SES_c: mean-centred SES; med: medication status; sex: males and females; s(age_c): smoothed mean-centred age; s(SID): subject ID entered

as a random effect. GoRT: Go trial reaction time; Mu.true: mu of the correct go trial reaction time distribution; sigma.true: sigma of the correct go trial

reaction time distribution. Bold indicates significance.

F IGURE 3 Best-fitting group-main
effect models for stop trial parameters. A:
SSRT; B: muS; C: sigmaS; D: tauS. Age in
years; SSRT, muS, sigmaS, tauS in ms.
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significant effect of eTIV and scanner type on changes in fibre mor-

phology, whilst SES, sex, and mean FWD were not significant. Further,

no models were a significant improvement from the null for FD in all

tracts of interest in the left hemisphere.

3.2.2 | Right-hemisphere fronto-basal-ganglia
circuit

Results for the right hemispheric tracts revealed a significant age

effect for FC (log) in all three tracts of interest: (1) IFG-preSMA,

(2) IFG-STN, and (3) preSMA-STN (Figure 5d–f; Table 7). Inclusion of

a main effect of group did not significantly improve model fit. Evalua-

tions of the best-fitting models found that eTIV and scanner type

were significant predictors of change in fibre morphology across all

tracts-of-interest. We also observed best-fitting age-models for FD in

the right IFG-STN and preSMA-STN pathways, whereby FD increased

with age, but these effects disappeared after FDR correction. See

Tables S20–S25 of Supporting Information B.

3.3 | Predicting change in response inhibition from
change in fronto-basal-ganglia WM

Extending the best-fitting behavioural models from Section 3.1, the

addition of age-related changes in FC (log) in the bilateral IFG-

preSMA, preSMA-STN, and right hemispheric IFG-STN pathways

revealed a significant main effect of FC (log) slope underlying the left

IFG-preSMA pathway with respect to the skew of the stopping distri-

bution (tauS). We also observed a significant interaction effect

between FC (log) underlying the left preSMA-STN pathway and age

with respect to the within-subject variability in responses to the cor-

rect stimulus on go trials (sigma.true). In the right hemisphere, a signif-

icant main effect was also identified for FC (log) in relation to tauS

within the right IFG-STN pathway. In contrast, the addition of age-

related changes in FC (log) in the abovementioned tracts of interest

did not significantly improve the best-fitting models for all other SST

measures. Statistical information for all best-fitting models can be

accessed in Table 8. All model comparisons are presented in

Tables S26–S30 of Supporting Information B.

4 | DISCUSSION

The present study was the first to examine the developmental trajec-

tory of SST performance and its relationship to fronto-basal-ganglia

WM organisation in a sample of ADHD and non-ADHD children.

Using the parametric race model, we demonstrate evidence of SST

performance deficits in ADHD being driven by increased variability

and skewness of the go-and-stop trial distributions. Children with

ADHD also committed more trigger-and-go failures than children

without ADHD, supporting previous accounts for the potential role of

attentional impairments in poor SST performance. Our analysisT
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looking at WM maturation within the fronto-basal-ganglia circuit

revealed no group differences in age-related increases in fibre cross-

section. Finally, our brain-behavioural models revealed that age-

related changes in fibre cross-section were associated with reduced

within-subject variability and skewness in the stop-trial and correct

go-trial responses across both ADHD and non-ADHD children. Taken

together, the latter results suggest that although fronto-basal-ganglia

circuit WM development may be implicated in general improvements

in SST performance, alterations within this circuit do not appear to be

associated with ADHD-related inhibitory deficits. Implications of the

present findings are discussed in detail below.

4.1 | The role of attentional failures in ADHD-
related inhibitory deficits

Consistent with the vast behavioural literature on ADHD-related SST

performance deficits, our study found evidence of longer SSRTs in the

ADHD group compared to non-ADHD controls (Alderson et al., 2007;

Lijffijt et al., 2005; Lipszyc & Schachar, 2010). Our parametric model-

ling approach using the EXG3 framework (Matzke et al., 2019)

revealed that in addition to having prolonged mean SSRT (mu), chil-

dren with ADHD were more variable (sigma) and had increased skew-

ness in the RT distribution (tau) during stop trials across the transition

to adolescence. These effects were not limited to stop trials. Whilst

both groups displayed similar age-related improvements in overall go

trial RT and in the mean of the correct go response (mu.true), the

ADHD group showed higher within-subject performance variability

than non-ADHD controls when responding to the correct stimulus on

go trials (sigma.true). Increased sigma in children with ADHD reflects

more inconsistent performance during the task. Likewise, increased

tau suggests that children with ADHD are more likely to engage in

more frequent abnormally slow responses compared to their neuroty-

pical counterparts (Karalunas & Huang-Pollock, 2013; Kofler

et al., 2013; Weigard et al., 2019). These findings may perhaps be

interpreted as that of ADHD individuals engaging in higher probability

of proactive control behaviours compared to non-ADHD participants.

Specifically, individuals with ADHD often show increased slowing of

F IGURE 4 Best-fitting group main-
effect models for attention-based
parameters. A: prob_GF; B: prob_TF. Age
in years; prob_GF and prob_TF in
percentage (%).

TABLE 5 Parametric and smooth
terms for the best-fitting models for task-
failure parameters.Parametric coefficients

Prob_GF Prob_TF

Est.(SE) t p Est.(SE) t p

Intercept 7.16 (0.66) 10.76 <.001 5.21 (0.48) 10.83 <.001

Group �2.73 (0.66) �4.11 <.001 �1.06 (0.48) �2.22 .03

SES_c �0.01 (0.01) �1.43 .16 �0.01 (0.01) �1.54 .12

med �1.11 (0.92) �1.20 .23 �0.74 (0.67) �1.10 .27

Sex �0.03 (0.66) �0.05 .96 0.17 (0.48) 0.35 .73

Smooth terms Edf (Ref.df ) F p Edf (Ref.df ) F p

s(age_c) 1.00 (1.01) 5.68 .02 1.00 (1.00) 4.53 .03

s(SID) 86.60 (255.00) 0.59 <.001 20.83 (255.00) 0.09 .17

Note: Parametric and smooth terms for the best-fitting models for task-failure parameters. Est.: Estimated

regression parameter; SE: standard error; edf: estimated degrees of freedom; Ref.df: reference degrees of

freedom; group: ADHD & controls; SES_c: mean-centred SES; med: medication status; sex: Males &

Females; s(age_c): smoothed mean-centred age; s(SID): subject ID entered as a random effect. Prob_GF:

probability of go failures; Prob_TF: probability of trigger failures. Bold indicates significance.
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F IGURE 5 Spaghetti plots for the best fitting models of the fronto-basal-ganglia circuit. (a) Left IFG-preSMA; (b) Left preSMA-STN; (c) Left
IFG-STN; (d) Right IFG-preSMA; (e) Right preSMA-STN; (f) Right IFG-STN. Age in years.

TABLE 6 Parametric and smooth terms for the best-fitting models for left fronto-basal-ganglia circuit.

Parametric coefficients

Left IFG-preSMA FC (log) Left preSMA-STN FC (log)

Est.(SE) t pFDR Est.(SE) t pFDR

Intercept 0.001 (0.010) 0.059 .995 �0.004 (0.010) �0.393 .820

SES_c 0.000 (0.000) 2.309 .068 0.000 (0.000) 1.890 .144

Sex 0.040 (0.012) 3.260 .006 0.024 (0.012) 1.997 .119

meanFWD_c 0.000 (0.007) 0.009 .995 0.004 (0.007) 0.560 .714

eTIV_c 0.000 (0.000) 6.166 <.001 0.000 (0.000) 7.110 <.001

Scanner �0.030 (0.004) �7.249 <.001 �0.040 (0.004) �9.185 <.001

med 0.001 (0.008) 0.108 .994 �0.001 (0.008) �0.182 .963

Smooth terms Edf (Ref.df ) F pFDR Edf (Ref.df ) F pFDR

s(age_c) 1.000 (1.000) 84.085 <.001 1.000 (1.000) 80.403 <.001

s(SID) 139.517 (144.000) 50.172 <.001 138.908 (144.000) 38.987 <.001

Note: Est.: estimated regression parameter; SE: standard error; edf: estimated degrees of freedom; Ref.df: reference degrees of freedom; pFDR: false

discovery rate corrected p value; s(age_c): smoothed mean-centred age; SES_c: mean-centred SES; med: medication status; sex: Males & Females; s(SID):

subject ID entered as a random effect; meanFWD_c: mean-centred mean FWD; eTIV_c: mean-centred eTIV; scanner: ordered factor of scanner type. Bold

indicates significance.
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responses following error trials (post-error slowing; Balogh &

Czobor, 2016). Alternatively, increased variability and skewness of RT

distributions may also be indicative of greater inconsistencies in task-

related performance (commonly termed inter-individual variability;

IIV), a phenomenon ubiquitous to this specific neurodevelopmental

population (Halliday et al., 2021; Kofler et al., 2013; Salum

et al., 2019). This idea of ADHD being associated with more inconsis-

tent task performance is not a new phenomenon (De Zeeuw

et al., 2008; Klein et al., 2006; Uebel et al., 2010). Indeed, a 2013

meta-analysis of 319 studies demonstrated that ADHD-diagnosed

individuals tended to have more variable performance than that of

neurotypical controls across a range of cognitive tasks (Kofler

et al., 2013). Perhaps most strikingly, Kofler and colleagues

demonstrated that group effects of poorer performance were amelio-

rated after controlling for RT variability, further lending support for

IIV as a significant behavioural phenotype in this disorder.

In addition to being more variable on go and stop trials, children

with ADHD also displayed a greater probability of engaging in trigger

(i.e., responding on stop-signal trials) and go failures (i.e., omissions on

go trials) across age compared to non-ADHD controls. In the context

of the race model, higher probability of engaging in trigger and go fail-

ures likely reflects lapses in attention with respect to stimulus detec-

tion or difficulties with vigilance to task-relevant stimuli (Logan &

Cowan, 1984; Matzke, Hughes, et al., 2017; Matzke et al., 2019;

Weigard et al., 2019). This is consistent with evidence of ADHD-

children showing marked impairments in error-processing and

TABLE 7 Parametric and smooth terms for the best-fitting models for right fronto-basal-ganglia circuit.

Parametric coefficients

Right IFG-preSMA FC (log) Right IFG-STN FC (log) Right preSMA-STN FC (log)

Est.(SE) t pFDR Est.(SE) t pFDR Est.(SE) t pFDR

Intercept �0.006 (0.014) �0.471 .769 0.042 (0.012) 3.523 .003 �0.010 (0.009) �1.033 .513

SES_c 0.000 (0.000) 1.828 .159 0.000 (0.000) 2.285 .071 0.000 (0.000) 1.196 .433

Sex 0.033 (0.017) 1.949 .129 0.030 (0.015) 2.019 .116 0.017 (0.011) 1.514 .274

meanFWD_c 0.001 (0.007) 0.188 .963 0.007 (0.007) 1.044 .512 �0.006 (0.007) �0.906 .572

eTIV_c 0.000 (0.000) 4.108 <.001 0.000 (0.000) 6.704 <.001 0.000 (0.000) 8.760 <.001

Scanner �0.012 (0.005) �2.572 .039 �0.012 (0.004) �2.943 .015 �0.024 (0.004) �5.526 <.001

med 0.004 (0.009) 0.410 .814 0.010 (0.008) 1.189 .433 0.001 (0.008) 0.163 .968

Smooth terms Edf (Ref.df ) F pFDR Edf (Ref.df ) F pFDR Edf (Ref.df ) F pFDR

s(age_c) 1.000 (1.000) 61.693 <.001 1.001 (1.001) 26.755 <.001 1.000 (1.000) 85.893 <.001

s(SID) 140.984 (144.000) 77.192 <.001 140.738 (144.000) 72.992 <.001 138.272 (144.000) 34.728 <.001

Note: Est.: estimated regression parameter; SE: standard error; edf: estimated degrees of freedom; Ref.df: reference degrees of freedom; pFDR: false

discovery rate corrected p value; s(age_c): smoothed mean-centred age; SES_c: mean-centred SES; med: medication status; sex: Males & Females; s(SID):

subject ID entered as a random effect; meanFWD_c: mean-centred mean FWD; eTIV_c: mean-centred eTIV; scanner: ordered factor of scanner type. Bold

indicates significance.

TABLE 8 Parametric and smooth terms for the best-fitting brain-behavioural models.

Parametric coefficients

Left preSMA-STN and sigma.true Left IFG-preSMA and tauS Right IFG-STN and tauS

Est. (SE) t p Est. (SE) t p Est. (SE) t p

Intercept 123.58 (11.11) 11.10 <.001 124.58 (13.58) 9.17 <.001 129.40 (13.48) 9.60 <.001

FC (log) slope �20.33 (2840.20) �0.01 .99 7189.68 (3419.69) 2.10 .04 �4684.68 (2273.08) �2.06 .04

SES_c �0.12 (0.09) �1.28 .20 �0.27 (0.10) �2.65 .01 �0.20 (0.10) �1.89 .06

Group �19.42 (8.09) �2.40 .02 �12.58 (9.01) �1.40 .16 �16.20 (9.22) �1.76 .08

med �2.27 (10.85) �0.21 .83 �22.02 (12.29) �1.79 .07 �23.20 (12.55) �1.85 .07

Sex 11.35 (8.14) 1.39 .16 3.24 (9.12) 0.36 .72 9.76 (9.30) 1.05 .30

Scanner 6.09 (10.34) 0.59 .56 15.56 (14.01) 1.11 .27 5.86 (13.51) 0.43 .66

Smooth terms Edf (Ref.df ) F p Edf (Ref.df ) F p Edf (Ref.df ) F p

s(age_c) 1.00 (1.00) 7.20 .01 1.66 (2.01) 5.37 .01 1.34 (1.58) 5.22 .01

age_c � FC (log) slope 1.68 (1.99) 5.72 .01 – – – – – –

s(SID) 66.23 (142.00) 1.00 <.01 36.51 (142.00) 0.36 .02 45.27 (142.00) 0.49 <.001

Note: Est.: estimated regression parameter; SE: standard error; edf: estimated degrees of freedom; Ref.df: reference degrees of freedom; p: p value; FC

(log) slope: slope of FC; s(age_c): smoothed mean-centred age; SES_c: mean-centred SES; med: medication status; sex: Males and Females; s(SID): subject

ID entered as a random effect; scanner: ordered factor of scanner type; age_c � FC (log) slope: age � FC (log) slope interaction. Bold indicates significance.
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performance adjustment in response to changing task demands

(Karalunas & Huang-Pollock, 2013; Shiels et al., 2012). Furthermore,

the application of the parametric race model in a longitudinal sample

demonstrated, for the first time, that these deficits are consistent

across the transition from childhood to adolescence. These effects

were robust after adjusting for medication status and SES, suggesting

that aberrant performance on the SST is a stable behavioural pheno-

type in childhood ADHD. It is also important to note that performance

on the SST for both children with and without ADHD improved with

age, supporting previous longitudinal studies of a general improve-

ment in executive functioning from childhood to adolescence (Curley

et al., 2018; Madsen et al., 2020; Singh et al., 2022; Williams

et al., 1999).

Together with the cross-sectional findings of Weigard et al.

(2019), the results of the present work further support the growing

consensus that ADHD-related SST performance deficits may be the

consequence of impairments in attentional-based processes that

affect the fidelity and consistency of stopping performance. Recent

neurophysiological models of response inhibition posit that successful

stopping is concomitant with a range of peripheral cognitive mecha-

nisms, such as stimulus detection and attentional monitoring

(Diesburg & Wessel, 2021; Jana et al., 2020; Skippen, 2019). In the

classic SST, stop-signals occur on a subset of trials to ensure that

the go response is the default behaviour (Verbruggen, 2019). Given

this design characteristic, the outcome of response inhibition during

the SST is invariably confounded by the reliability to which the indi-

vidual can successfully detect and attend to the signal. Here, the

observed performance differences in the SST are not necessarily

the result of inefficient inhibitory mechanisms, but rather a failure to

successfully engage in attentional mechanisms that allow for more

consistent on-task performance. Nonetheless, traditional methods of

quantifying SSRT often use summary measures (i.e., the mean) which

cannot account for these features in the data, leading to potentially

erroneous interpretations of performance differences in the SST

(Matzke et al., 2013; Matzke, Hughes, et al., 2017).

Thus, our findings of ADHD-related increases in trigger and go

failures highlight the importance of considering these other perceptual

and attentional processes that affect motor inhibition. These results

have important ramifications when understanding of ADHD as a dis-

order of inhibition. Given that attentional difficulties are one of the

hallmark features of ADHD, future work should investigate the degree

to which other behavioural symptoms in ADHD that have previously

been thought to be driven by inhibition problems (i.e., hyperactivity/

impulsivity) might be in fact attributable, at least in part to deregulated

attention. Clarifying the distinction between deficits in attention and

overt-stopping performance also has important clinical implications

for the ongoing development of targeted intervention strategies in

ADHD. Specifically, interventions directed towards improving top-

down attentional and vigilance systems may be more effective in

improving inhibitory control deficits and its associated corollaries,

than interventions solely directed at improving behavioural stopping.

In sum, our behavioural findings underscore the argument that

ADHD-related performance deficits in the SST are not solely due to

modular deficits in stopping behaviour, but rather in more general

cognitive processes that influence performance across tasks

(i.e., attention).

4.2 | Fronto-basal-ganglia WM maturation and
associations with response inhibition in typical
and atypical development

The transition to adolescence is marked by extensive reorganisation

of structural connections within the brain, which in turn, correspond

to rapid gains in higher-order cognitive functions (Goddings

et al., 2021). Therefore, the next major aim of this study was to

explore whether the observed age-related deficits in SST performance

in children with ADHD are associated with altered developmental tra-

jectories of fronto-basal-ganglia WM organisation. In contrast to our

hypothesis, our neuroimaging models found no evidence of disrupted

fronto-basal-ganglia WM development in children with ADHD. More

specifically, both groups displayed comparable age-related increases

in fibre cross-section (FC (log)) across the bilateral IFG-preSMA,

preSMA-STN and right IFG-STN pathways. Further, both ADHD and

non-ADHD children demonstrated similar trajectories for associations

between age-changes in FC (log) and SST performance. Our brain-

behavioural models revealed that developmental reductions in the

propensity of engaging in extreme responses during stop trials (tau)

were driven by greater change in FC (log) of the left IFG-preSMA and

right IFG-STN pathways. We also observed a significant age-by-FC

(log) interaction in the left preSMA-STN with respect to reductions in

variability in correct responses to go trials (sigma.true). Taken

together, while WM maturation within fronto-basal-ganglia circuitry

may contribute to age-related changes in SST performance, this effect

does not differ between ADHD and non-ADHD children.

Recent longitudinal FBA studies have observed altered white

matter profiles across several frontal, striatal and associative tracts

(Damatac et al., 2020; Fuelscher et al., 2021; Hyde et al., 2021), which

may provide evidence for a maturational lag in brain development in

ADHD (El-Sayed et al., 2003; Shaw, 2007; Sripada et al., 2014).

Returning to our results, the lack of significant group differences may

point to a possible ‘normalization’ of these pathways in ADHD to

levels similar to neurotypical children during later childhood and into

adolescence. This is supported by previous longitudinal studies exam-

ining the developmental trajectories of grey matter in children with

ADHD have demonstrated that the remittance of ADHD symptom-

atology can be explained by a convergence of neural features from

atypical baseline levels toward more typical brain structure in adoles-

cence and adulthood (i.e., the ‘convergence model’; Shaw, 2013).

Hence, it is possible that any arrested developmental processes in

relation to fronto-basal-ganglia WM in ADHD might have already

been resolved at earlier developmental stages, leading to similar

developmental trajectories during early-to-mid adolescence. However,

these claims are speculative at best and future work is warranted to

explore these questions. Together with our behavioural findings, our

results suggest that whilst children with ADHD show consistent
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deficits in SST performance across this age-span, they show compara-

ble trajectories of fronto-basal-ganglia WM development.

The lack of significant group effects, whilst contrary to our hypoth-

esis, is aligned with previous nonsignificant cross-sectional findings in

relation to associations between WM organisation and ADHD-related

SST performance (Albajara Senz et al., 2020; Bessette & Stevens, 2019;

Tremblay et al., 2020). However, the current study was the first to

directly test this relationship in the fronto-basal-ganglia circuit, a net-

work that has been well established in healthy individuals to be critical

for inhibitory control (Aron, Durston, et al., 2007; Aron, Behrens,

et al., 2007). In lieu of these findings, this has important ramifications

about the pathophysiology of ADHD as it is possible that the observed

functional deficits of poor SST performance outcomes in ADHD

(as seen in the results of the parametric race model analyses) are inde-

pendent of the structural integrity of this core inhibitory control net-

work. Instead, the mechanisms underpinning ADHD-related inhibitory

deficits (as seen in our behavioural models) may lie elsewhere. A recent

meta-analysis by Zhang et al. (2017) of 225 fMRI studies assessing the

neural substrates of response inhibition established that an extensive

spatially distributed neural system comprising frontostriatal and

ventral–attentional networks subserves inhibitory control. The distrib-

uted nature of the ventral attention and frontostriatal networks at sub-

serving a range of cognitive functions would suggest that white matter

tracts underlying these networks may also contribute to inter-individual

differences in other cognitive processes involved in the inhibitory

response (i.e., attention, stimulus detection) (Boen et al., 2021; Luna

et al., 2021; Thomson et al., 2022a). As such, future work should con-

sider the maturation of these alternative networks in explaining the

development of response inhibition during childhood and the degree to

which the maturational profiles of these alternative networks differ in

children with ADHD. To this end, by incorporating these other net-

works together with the parameters derived from the parametric race

model, we would be better able to disentangle the neurostructural cor-

relates that underpin these specific processes on overall response inhib-

itory performance.

Age-related increases in FC (log) may be driven by increased myeli-

nation or enlargement of the extracellular space between fibre bundles

during development (Genc et al., 2018, 2020). In the context of the

FBA framework, increased tract morphology may likely facilitate more

efficient neural communication between brain regions (Genc

et al., 2018). Thus, our findings demonstrate that greater maturation of

fronto-basal-ganglia tract morphology may improve the functional

integrity this circuit, leading to better task-based performance at later

developmental ages by way of reduced variability and fewer extreme

responses. At a broad level, these findings corroborate indirect DTI-

based evidence of associations between increased white matter tract

organisation and more consistent performance across a range of cogni-

tive paradigms (Fjell et al., 2011; Tamnes et al., 2012). For example, a

study by Tamnes et al. (2012) found that increased within-subject vari-

ability in the speed of correct responses on a Flanker Task was associ-

ated with reductions in FA, MD and RD within the corticospinal tract,

the left superior longitudinal fasciculus, the uncinate fasciculus, the for-

ceps minor, and in the genu and splenium of the corpus callosum.

In contrast, we did not find any significant age effects for fronto-

basal-ganglia fibre density (FD). Prior studies in typically developing

children report that FD increases during childhood (Genc et al., 2018).

Given that no such effects reached significance in the current study,

these findings may indicate that microstructure within the fronto-

basal-ganglia circuit does not mature dramatically during the transition

to adolescence. Alternatively, it is possible at such effects may be sub-

tle. This mirrors our previous study in typically developing children,

suggesting that the development of fronto-basal-ganglia WM is

uniquely localized to large-scale morphological changes, rather than

microstructure (Singh et al., 2022).

4.3 | Strengths, limitations and future directions

Strengths of this study include the use of more specific measures to

quantify the development of response inhibition and fronto-

basal-ganglia WM. The FBA framework is robust to intra-voxel

changes in fibre orientation (Dhollander et al., 2021; Raffelt

et al., 2017), thus providing a more biologically specific approach with

which to quantify changes in WM properties compared to tensor-

based models. Further, the parametric race model provides a multivar-

iate framework for quantifying intraindividual changes in RT distribu-

tion for go and stop trials, whilst simultaneously accounting for

attention-based contaminants (Matzke, Love, & Heathcote, 2017;

Matzke et al., 2019). Nevertheless, some limitations of the present

work must be considered. Previous work by Matzke, Love, and Heath-

cote (2017) demonstrated poorer parameter recovery in datasets con-

taining lower numbers of stop-trials. Hence, while it is possible that

the low number of stop-trials in the current study (48 trials) may have

impacted upon the reliability of our parameter estimates, the STOP-IT

paradigm (Verbruggen et al., 2008) is arguably the most popular vari-

ant of the SST to date, and largely conforms to best-practice guide-

lines for the administration of the SST (Verbruggen, 2019). While

increasing the number of stop-trials does improve validity, we must

be mindful of the feasibility of doing so in experimental studies of clin-

ical populations, especially in children or those characterised by defi-

cits of attention (such as ADHD). Increasing trial numbers in these

cases may encourage poor task adherence and introduce additional

confounds in subsequent estimation of SST performance. As such,

future studies aiming to replicate these effects must strike a balance

between feasibility and validity.

In addition, ADHD is a heterogeneous disorder, and therefore,

the extent to which inhibitory deficits are expressed may differ

between symptom profiles. Due to the limited number of participants

across the three timepoints, we were not able to conduct subgroup

analyses considering the differential effects of ADHD presentation

(e.g., primarily inattentive, or hyperactive) on age-related trajectories

of response inhibition and fronto-basal-ganglia WM. Furthermore, as

results from the current study are taken from a population-based sam-

ple, the observed effects may differ to clinical cohorts, which are char-

acterized by more severe symptoms. Hence, future work should seek

to replicate the current findings across different ADHD subtypes to
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see if these trajectories are a consistent phenotype. Finally, we note

that our study was impacted by relatively high attrition rates, resulting

in an unbalanced dataset across the three timepoints. Furthermore,

our attrition analysis on a subset of participants revealed significant

differences in SST performance in the ADHD group who had com-

pleted one, two or all three timepoints for both behavioural and imag-

ing samples (See Supporting Information). Hence, it is possible that

the high attrition rates in our study may have impacted our power at

detecting significant group effects in our neuroimaging and brain-

behavioural models. Given that this study utilised a pre-collected sam-

ple, the ability to control for any attrition-related biases are minimal.

Hence, we cannot rule out any effects that this may have on our main

findings. Furthermore, it is important to acknowledge that there has

been much discussion around the need for large sample sizes to

robustly investigate brain-behavioural relationships (see Marek

et al., 2022). Whilst we recommend that future studies should con-

sider replicating these findings in larger cohorts to ascertain the

robustness of these effects, we note that the current study adopted

an a priori tract of interest approach along with tract-averaged values

of fixelwise metrics to reduce the number of comparisons in our anal-

ysis of brain-behavioural effects. Nevertheless, it must be noted that

the use of tract averaged values limits the ability to identify

fixel-specific associations in WM organisation to phenotypical out-

comes. However, since the completion of the present study, newer

methods such as ModelArray (Zhao et al., 2023) have been developed

that allows for the application of advanced mixed modelling of fixel-

level data in repeated-measures cohorts (albeit without using cluster-

based CFE), thus providing a promising alternative for future work to

further identify the role of WM neurodevelopment in response inhibi-

tion across healthy and clinical populations.

5 | CONCLUSION

We identified consistent deficits in SST performance in the ADHD

group relative to controls. By using the parametric race model, we

observed that children with ADHD not only had higher within-subject

variability and extreme responding on the SST, but also engaged in

more task-related failures across the age-span (i.e., trigger and go fail-

ures) compared to non-ADHD controls, thus highlighting the potentially

important contribution of attentional mechanisms on the efficacy of

stopping performance. In contrast, no group differences emerged for

the development of fronto-basal-ganglia WM, with both ADHD and

non-ADHD children demonstrating similar age-related increases in FC

(log) within selected tracts of the circuit. Finally, both ADHD and non-

ADHD children showed similar trajectories in the relationship between

fronto-basal-ganglia circuit maturation and reductions in the skewness

of the stop trial distribution and variability in correct go trials.
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