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Abstract: Retroviral assembly is a highly coordinated step in the replication cycle. The process is
initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of
the plasma membrane (PM), where they facilitate the budding and release of immature viral particles.
Extensive research over the years has provided crucial insights into the molecular determinants of this
assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions
of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on
the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on
human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication
are consistent across different retroviruses, comparative studies revealed notable differences in
the structure and function of viral components. In this review, we present recent findings on the
assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from
HIV-1, focusing particularly on the molecular determinants of Gag–PM interactions and CA assembly.

Keywords: human T-cell leukemia virus type 1 (HTLV-1); human immunodeficiency virus type 1
(HIV-1); Gag polyprotein; matrix (MA); capsid (CA); plasma membrane (PM); phosphatidylinositol
4,5-bisphosphate (PI(4,5)P2)

1. Discovery of HTLV-1

Prior to their discovery in the early 1980s, the possible existence of human retroviruses
was highly controversial. Many factors, including multiple reports of “discoveries” of
human retroviruses that turned out to be cross-contaminations with animal retroviruses,
contributed to the consensus that human retroviruses did not exist. Two important technical
advances in the early 1970s specifically fueled the discovery of the first human retrovirus,
human T-cell leukemia virus type 1 (HTLV-1) [1,2]. First, a novel T-cell mitogenic factor,
later called interleukin-2 (IL-2), was characterized which allowed the cultivation of primary
blood cells. Second, a sensitive reverse transcriptase (RT) assay was developed, distin-
guishing RT from all other known cellular polymerases [3,4]. These technical advances
led to evidence of the presence of a human retrovirus (i.e., HTLV-1) [5,6], which paved the
way for the subsequent discovery of human immunodeficiency virus type 1 (HIV-1) as
the etiological agent of acquired immunodeficiency disease syndrome (AIDS). HTLV-1 is
classified in the deltaretrovirus genus of the subfamily orthoretrovirinae.
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2. Epidemiology

It has been difficult to accurately estimate the number of HTLV-1 carriers globally
as prevalence studies are lacking to allow for such determinations to be made. Some
estimates of the total number of people infected with HTLV-1 have ranged from 5 to 10
million, although the number is arguably higher due to the lack of adequate data (World
Health Organization [7]). There are several factors complicating such studies: (1) HTLV-1
is known to be highly localized in certain clusters or foci of endemicity and it is likely
that existing clusters are not identified; (2) reliable epidemiological data are not available
from many highly populated countries in the world, including China, India, and East
and Northwest Africa; and (3) epidemiological data are obtained through screening of
volunteers (e.g., blood donors, pregnant women, or hospitalized patients), and therefore
may not be entirely representative of the general population, introducing a selection bias.
Despite these challenges in accurately determining total HTLV-1 infection rates worldwide,
areas of high endemicity are known to include South America, Caribbean islands, sub-
Saharan Africa, Japan, and central Australia, whereas seroprevalence of HTLV-1 within
the United States appears to be low (5 cases/100,000 among first-time blood donors) [8].
A previous study has shown that HTLV-1 infection increases with age, in all areas with
high HTLV-1 prevalence, which is likely due to the accumulation of sexual contacts and
in general transmission events over time [8]. Taken together, due to the lack of reliable
epidemiological data, the actual prevalence of HTLV-1 carriers is likely to be much higher
than most current estimates.

There are three major ways HTLV-1 can be transmitted from one person to another.
First, vertical mother-to-child transmission via prolonged breastfeeding (>6 months) in-
creases the likelihood of up to 25% of virus transmission events [9–14]. Second, horizontal
transmission via blood transfusions from HTLV-1 seropositive donors represents a major
risk, with up to 63% of recipients acquiring HTLV-1 infection. Intravenous drug use also
presents a major risk of blood-borne horizontal transmission [15]. Third, the virus can
be transmitted sexually, more frequently from men to women, which helps explain why
seroprevalence increases with age, specifically in women [16–20].

HTLV-1 is expected to remain a persistent global health issue. Although HTLV-1 is less
known compared to other viruses like HIV-1, it remains a significant health concern due to
its potential to cause serious diseases (see below). Increased globalization and migration
could lead to changes in the distribution of HTLV-1. As people move between regions with
different prevalence rates, there is potential for new outbreaks or the spread of the virus
to areas previously less affected. Studying HTLV-1 is crucial for informing public health
strategies and policies, especially in regions with high prevalence. Effective screening
programs, prevention strategies, and educational initiatives are needed to manage and
reduce the burden of HTLV-1-related diseases.

3. Pathology

Chronic HTLV-1 infection is associated with two major diseases, adult T-cell leukemia/
lymphoma (ATLL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/
TSP) [5,6,21–24]. ATLL is a mature T-lymphoid malignancy of post-thymic pleomorphic
activated T lymphocytes. It is classified into four clinical forms (i.e., acute, chronic, smoul-
dering, and lymphomatous) based on leukemic manifestation in the blood, with organ
involvement, and by lactate dehydrogenase and serum calcium levels [25]. Acute ATLL
is the most common malignancy, with ~65% of patients presenting with this aggressive,
fast-growing type of ATLL. Hematopathological features include a raised white blood cell
count along with atypical “flower cells”, named for their petal-shaped, polylobated nuclei.
The lifetime risk of developing ATLL is higher in men (4–6%) than in women (2.6%), and
is associated with a high proviral load, age, and based upon certain genetic predisposi-
tions [22,23,26–28]. Current treatment options include antiviral therapy using zidovudine
plus interferon-alfa (AZT/IFN), multi-agent chemotherapy, or allogeneic hematopoietic
stem cell transplantation (allo-HSCT) [29]. The overall prognosis of acute ATLL remains
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poor, with a mean survival time of less than one year using traditional treatment meth-
ods [25]. However, higher survival rates have been reported for individuals receiving
allo-HSCT [30].

HAM/TSP, also described as “chronic progressive parainfectious myelitis”, is patho-
logically characterized as a progressive inflammation and subsequent degeneration of
white and gray matter in the spinal cord [31]. This degeneration results in a variety of
neurological symptoms, including spasticity and weakness of the lower extremities. Dis-
ease onset has commonly been observed within the fourth and fifth decade of life, with a
higher prevalence in women than in men (i.e., 3:1 ratio). Neurological symptoms have been
observed to develop in some individuals between two months and three years following
a blood transfusion contaminated with HTLV-1-infected T-cells. This strong correlation
supports the hypothesis that HTLV-1 transmission through such transfusions is a viable
model, suggesting that HAM/TSP can develop relatively quickly after infection [31]. Up to
4% of HTLV-1-infected individuals eventually develop HAM/TSP [32]; however, the exact
mechanism of disease development is unclear. It is speculated that chronic activation of
HTLV-1-specific immune responses may be related to higher expression levels of HTLV-1
antigens in individuals developing HAM/TSP [32]. Additionally, a recent study demon-
strated that a specific population of HTLV-1 specific CD8+ cytotoxic T-cells expressing a
unique T-cell receptor can trigger an excessive immune response against HTLV-1 infected
cells infiltrating the cerebrospinal fluid in HAM/TSP patients [33]. Furthermore, a high
proviral load due to the insertion of the viral genome in a highly transcriptionally active
region of the genome was associated with HAM/TSP [34].

4. Routes of Transmission

The primary target of HTLV-1 in vivo is CD4+ T-cells [35–37]; however, infection of
CD8+ T-cells, dendritic cells, and monocytes has also been shown to a lesser extent [38–40].
In contrast to HIV-1, infection via free HTLV-1 particles is not efficient. In fact, plasma
derived from HTLV-1-infected patients is not thought to be infectious at all, either due to a
lack of free virions in the plasma, or virions contained in the plasma not being infectious [41].
Instead, direct cell-to-cell contact is the main mode of transmission for HTLV-1, both in vitro
and in vivo [42–45]. Two mechanisms of cell-to-cell transmission have been proposed:
(1) Virions assemble at the virological synapse, a tight junction between the infected and
the uninfected host cell, and bud directly into the synaptic cleft, or (2) a viral biofilm is
transferred on the cell surface at virological synapses [46]. Both routes provide enhanced
protection from immune recognition during transmission when compared to infection via
free virus particles [47,48].

During the cell-to-cell transmission of HTLV-1, the cytoskeleton of the infected cell is
remodeled leading to polarization of the microtubule organizing center (MTOC) towards
the cell-cell junction. Subsequently, Gag and Env proteins as well as viral RNA localize to
the cell-cell junction [49]. It has been shown that the inhibition of actin and tubulin polymer-
ization inhibited MTOC organization and HTLV-1 infectivity by more than 95%, indicating
that interactions of viral proteins required for assembly with cellular proteins associated
with the cytoskeleton are essential for viral infectivity [49,50]. However, the molecular
details of how Env and Gag localize at cell-to-cell junctions remain to be understood.

5. Attachment, Fusion, and Entry

Attachment of HTLV-1 to the host cell is facilitated by the binding of the surface
subunit (SU) gp46 to a receptor complex on the cell surface, which includes glucose trans-
porter 1 (GLUT1) [36,51], heparan sulfate proteoglycans (HSPGs) [35,52], and neuropilin-1
(NRP-1) [53–55] (Figure 1A). A possible sequence of events for cell entry involves the virus
first interacting with HSPGs, then with NRP-1, followed by GLUT1, ultimately leading
to membrane fusion. However, the precise details of these interactions remain unclear.
Despite these receptors being present in various cell types, HTLV-1 is predominantly found
in CD4+ T-cells. This preferential detection may be attributed to increased proliferation
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of CD4+ T-cells following HTLV-1 infection [56]. After the viral membrane has fused
with the cellular membrane, the viral capsid (CA) shell, containing two copies of genomic
RNA (gRNA), enters the cytoplasm. This marks the beginning of the HTLV-1 replication
cycle, which involves reverse transcription of the viral RNA genome. The specifics of
post-entry processes, including uncoating, reverse transcription, and nuclear import, are
not well understood.
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Figure 1. HTLV-1 and HTLV-1 replication cycles. (A) Mature HTLV-1 virion attaches to the host cell
receptor complex containing NRP-1, GLUT-1, and HSPGs. The mechanisms of reverse transcription
and uncoating have long been thought to occur in the cytoplasm but recent advances on the mech-
anisms of HIV-1 reverse transcription and uncoating (below) raised similar questions about other
retroviruses, including HTLV-1. Subsequent nuclear import and integration into the host genome
yields the provirus. Transcription and translation produce Gag, Gag-Pol, Env, accessory proteins, and
viral gRNA. Gag is trafficked to the PM for assembly via the MTOC, while Env is post-translationally
processed and trafficked to the cell surface through the ER and Golgi apparatus. Virus assembly and
maturation yield a new, infectious virus. (B) Mature HIV-1 virion attaches to the host CD4 receptor
and co-receptors (CCR5 or CXCR4). The virus core is then transported to the nucleus via microtubules,
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a process that appears to be accompanied by reverse transcription. Recent studies indicated that CA
core uncoating occurs in the nucleus near the integration sites. Transcription and translation produce
Gag, Gag-Pol, Env, accessory proteins, and viral gRNA. Gag is then trafficked to the PM for assembly,
while Env is post-translationally processed and trafficked to the cell surface through the ER and Golgi
apparatus. Virus assembly and maturation yield a new, infectious virus.

Conversely, over the past three decades, extensive research on HIV-1 attachment,
membrane fusion, and entry has resulted in a detailed understanding of these mechanisms
(reviewed in [57]). Briefly, the Env protein which is initially produced as a precursor
known as gp160, forms a trimer structure and then undergoes cleavage by a host furin-like
protease, resulting in two noncovalently associated fragments: gp120, involved in CD4
receptor binding, and gp41, which is responsible for fusion [57]. The mature viral spike is
composed of three copies of each fragment (gp120/gp41)3. Virus attachment is initiated
when gp120 binds to CD4, triggering conformational changes and allowing it to bind to a
coreceptor (CCR5 or CXCR4), leading to refolding of gp41 (Figure 1B) [58]. The cleavage
between gp120 and gp41 leaves the protein in a metastable state relative to its postfusion
conformation. Upon receptor binding by gp120, the N-terminal fusion peptide (FP) of gp41
translocates and inserts into the target cell membrane. This is followed by the refolding
of gp41 into a hairpin conformation, forming a six-helix bundle known as the postfusion
conformation. This arrangement brings the FP and transmembrane segments to one end of
the molecule, facilitating the fusion of the viral and target cell membranes. This process
involves the formation of a hemifusion stalk and subsequent fusion pore, leading to the
entry of the viral CA into the target cell.

6. Uncoating, Reverse Transcription, and Integration

Whereas the timing, sequence, and mechanisms of uncoating and reverse transcription
have been extensively studied for HIV-1, similar studies have yet to be performed on HTLV-
1. Recent studies provided compelling evidence that HIV-1 uncoats in the nucleus, near the
integration site (Figure 1B) [59–65]. It has been also shown that the efficient uncoating of
nuclear HIV-1 cores requires the synthesis of a double-stranded DNA genome > 3.5 kb and
that the efficiency of core uncoating correlates with genome size [65]. It is unclear whether
reverse transcription and uncoating of HTLV-1 are linked, or whether the CA core can enter
the nucleus prior to uncoating, as is the case with HIV-1 (Figure 1B) [66]. Additionally, the
initial trigger for reverse transcription in HTLV-1 is not well defined, though the viral RT
begins converting the RNA genome into complementary DNA (cDNA) soon after entering
the host cytoplasm, forming the RT complex (RTC). As reverse transcription progresses, CA
molecules are likely lost from the RTC. For HIV-1, CA is crucial for reverse transcription
and nuclear entry [59–63]; however, the role of CA in these processes for HTLV-1 is not
well understood. It is also unclear whether reverse transcription in HTLV-1 is completed in
the cytoplasm or the nucleus.

Translocation into the nucleus is required for the integration of the viral DNA into the
host genome. The integrase (IN) enzyme plays a crucial role in this process by binding to
the long terminal repeats (LTRs) of the proviral DNA to form a DNA/IN complex known as
the intasome [67–69]. IN then processes the 3′ ends of the viral DNA by removing several
nucleotides, creating the reactive 3′-OH groups necessary for the enzymatic reaction of
integration. The intasome then interacts with the host DNA’s phosphate backbone, leading
to the irreversible insertion of the proviral DNA. This proviral DNA is subsequently
replicated with each cell division [70–73]. In vivo, HTLV-1 proviral DNA integrates into
transcriptionally active regions and areas with high gene density [74]. However, in vitro
studies with HeLa cells suggest that HTLV-1 does not exhibit a preferred integration
site [75], similar to the integration patterns in avian sarcoma virus (ASV). The integration
site preferences for different retroviruses are likely influenced by structural similarities in
the IN enzyme, interactions with chromosomal proteins, or variations in interactions with
host factors [67,75,76].
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7. HTLV-1 Genome

The HTLV-1 genome is 9.1 kb long, flanked by 5′ and 3′ LTRs. The unspliced, full-
length gRNA serves as the viral genome and as a template for Gag, Pro, and Pol (Figure 2).
Regulatory and accessory genes are located downstream of the envelope (Env) gene and
are denoted as the pX region. The pX region contains multiple, overlapping open read-
ing frames (ORFs), encoding for viral factors such as transactivator protein (Tax), Rex,
p12, p13, and p30, which are transcribed via leaky scanning and differential splicing of
the viral RNA [24,77]. Tax, a 40-kDa protein, interacts with numerous host proteins to
modulate key signaling pathways, including the NF-κB pathway, which is crucial for the
survival, proliferation, and transformation of HTLV-1-infected T-cells [24]. Tax alone is
capable of immortalizing human T-cells in vitro, highlighting its role as a major oncogenic
factor. It promotes cellular transformation by inhibiting DNA repair mechanisms, induc-
ing DNA damage, and inactivating the tumor suppressor p53 [78–83]. Additionally, Tax
binds to the Tax responsive element I (TRE-1) in the HTLV-1 LTR, which consists of three
21-base pair repeats [79]. This interaction facilitates the recruitment of host factors such
as cyclic AMP response element-binding proteins (CREB) and CREB-binding proteins
(CBP/p300), which are necessary for the transactivation of the viral promoter and initiation
of transcription [84,85]. Rex, a 27-kDa RNA-binding protein, is crucial for viral replication
as it stabilizes and exports unspliced gag/pol mRNA and singly spliced env mRNA from
the nucleus [86–89]. Interestingly, the HTLV-1 genome also encodes an antisense basic
leucine zipper factor (HBZ) which acts as an agonist to Tax [90,91]. HBZ RNA promotes
T-cell proliferation, while HBZ protein suppresses Tax-mediated viral transcription through
the 5′ LTR, indicating its dual role in different molecular forms [92,93]. The accessory
proteins p12, p13, and p30 are important for viral infectivity in vivo but appear to be
dispensable in vitro [24,94].
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Figure 2. HTLV-1 genome and RNA transcripts. Genome encodes for Gag, Pro, Pol, Env, Tax, Rex,
and pX genes. pX region contains genes of Rex, Tax, p30, p12, p13, and HBZ (antisense transcript).
mRNA transcripts are 5′-capped and 3′-polyadenylated. Alternative splicing yields mRNA for Env,
Tax, Rex, p12, p13, p30, and HBZ.
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8. Genome Packaging

During the late stage of the HTLV-1 replication cycle, the full-length, unspliced gRNA
serves as a template for the translation of Gag, Gag-Pro, and Gag-Pol proteins as well
as genome packaging into assembling virions. The Gag protein is composed of three
major domains, matrix (MA), CA, and nucleocapsid (NC). Gag and Pol are separated by
Pro, which overlaps both at the 3′-region of Gag and the 5′-region of Pol [88]. Ribosomal
frameshifts within Gag and Pro result in relatively lower expression of Gag-Pro and Gag-
Pro-Pol, generating an estimated ratio of Gag to Gag-Pro/Gag-Pro-Pol of 20:1. This ratio
is conserved across retroviruses [95]; altering this ratio has been shown to impact RNA
binding and significantly reduce viral infectivity in HIV-1 [95]. HTLV-1 particles are
assembled with two unspliced copies of gRNA, selected from a pool of viral and cellular
RNAs [96]. Selective genome packaging is mediated by specific interactions between the NC
domain of Gag and the gRNA packaging signal (Ψ), located in the 5′-untranslated region
(5′-UTR) [97]. The 5′-UTR also plays a role in regulating gRNA dimerization, initiating
reverse transcription, and translation through interactions with cellular factors [97,98].
Recent studies have shown that the MA domain of HTLV-1, but not the NC domain,
binds short hairpin RNAs derived from the putative Ψ site [98]. The primer-binding site
and a region within the Ψ site form stable hairpins that interact with MA. Additionally,
besides the known palindromic dimerization initiation site (DIS), a second DIS in HTLV-
1 gRNA has been discovered, with both palindromic sequences specifically binding to
the NC domain [98]. Unlike HIV-1, where gRNA dimerization is crucial for efficient
RNA packaging ([99,100] and references therein), gRNA dimerization does not seem to be
necessary for effective RNA packaging in HTLV-1 [98].

9. Gag Oligomerization

Retroviral Gag oligomerization, the process by which Gag proteins assemble into
higher-order structures known as lattices, is crucial for the proper formation of immature
viral particles. Disruption of Gag oligomerization can result in the production of abnor-
mal or non-infectious virions, significantly impacting viral replication and pathogenic-
ity [101,102]. For HIV-1, Gag proteins are initially present as monomers and low-order
multimers (e.g., dimers) in the cytoplasm before they are targeted to the plasma membrane
(PM). Higher-order Gag multimers are formed mainly at the PM [103]. Gag interactions
with viral RNA occur in the cytoplasm of the infected cell and are independent of Gag’s
ability to localize to the PM. Nucleic acids also promote the efficient assembly of Gag
in vitro [104–106]. Comparative studies of subcellular localization revealed that HTLV-1
Gag localizes on the PM at low cytoplasmic concentrations as a monomer, while HIV-1 Gag
forms higher-order oligomers in the cytoplasm before membrane binding [107]. At the PM,
this results in the formation of Gag clusters that can be visualized as Gag puncta using
fluorescent tagging techniques [108]. Leveraging photoconvertible fluorescent proteins
and total internal reflection fluorescence microscopy, studies have shown that additional
HTLV-1 Gag molecules were recruited to Gag puncta primarily from the PM, whereas
HIV-1 Gag puncta biogenesis occurred by recruitment of cytoplasmic Gag molecules [108].

In addition to NC–RNA interactions, Gag multimerization on the PM is primarily
driven by the CA domain. Advances in cryo-electron microscopy (cryo-EM) and cryo-
electron tomography (cryo-ET) techniques have provided high-resolution structural in-
sights into immature HIV-1 CA, revealing a hexameric arrangement [109–111]. Cryo-ET
studies of immature HIV-1 particles revealed that Gag hexamers are formed by subsequent
additions of Gag dimers, indicating that Gag dimers form the basic building block for
assembling the Gag hexamer [112]. Interestingly, although HTLV-1 Gag is thought to
localize to the PM as a monomer, previous studies have shown that HTLV-1 Gag forms
disulfide-linked dimers via Cys61, located in the MA domain of Gag [113]. However, the
biological relevance of this dimerization remains unclear. Given that HTLV-1 Gag does not
seem to form dimers until it reaches the PM and that HTLV-1 Gag puncta primarily recruit
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additional Gag molecules from the PM rather than from the cytoplasm, it is plausible that
HTLV-1 and HIV-1 assemble in a broadly similar manner but through different mechanisms.

10. Gag Targeting to the Plasma Membrane

During the late phase of the infection cycle, retroviral Gag polyproteins are targeted
to the PM for assembly, budding, and virus release [108,114–125]. For most retroviruses,
including HTLV-1, Gag proteins undergo post-translational modification in which a myris-
toyl (myr) group is added to the N-terminus of the MA domain of Gag. Gag binding to
the PM is mediated by the MA domain, which for most retroviruses contains a bipartite
signal consisting of the myr group and a highly basic region (HBR). The HBR is a conserved
feature in MA proteins across multiple genera within the Retroviridae family [121,126,127].
Studies have established that the assembly of Gag at the PM is influenced by several factors
such as protein multimerization, the presence of cellular and viral RNA, and the type of
lipids as well as the saturation levels of acyl chains [119,120,128–146].

For many retroviruses including HIV-1, Gag targeting to the PM has been shown to
be dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) [123,125,144,147,148], a
signaling lipid in the inner leaflet of the PM [149]. Overexpression of polyphosphoinositide
5-phosphatase IV (5ptaseIV), which cleaves the 5′-phosphate group from PI(4,5)P2, thus de-
pleting it within the cell, resulted in a marked decrease in HIV-1 Gag localization to the PM
and hence virus-like particles (VLPs) [120]. In addition to HIV-1, other retroviruses such as
equine infectious anemia virus, murine leukemia virus (MLV), ASV, and Mason-Pfizer mon-
key virus showed sensitivity to PI(4,5)P2, implicating PI(4,5)P2 as a major determinant for
PM targeting of retroviral Gag and virus assembly and release [120,123,143,144,147,150–153].

The inner leaflet of the PM contains approximately 1 mol% of PI(4,5)P2 and/or
PI(3,4,5)P2, while negatively charged lipids like phosphatidylserine (PS) are more abundant,
making up about 10 mol% [154,155]. Similar to PI(4,5)P2, PS is preferentially found on the
inner leaflet of the PM and in endocytic membranes, potentially serving as an attractive
partner for cellular proteins targeting the PM [156]. Synergistic binding between PS and
PI(4,5)P2 has been observed for the MA protein of ASV, indicating that some retroviruses
may utilize PS for membrane targeting in addition to PI(4,5)P2 [150], suggesting that some
retroviruses may engage PS for membrane targeting in addition to PI(4,5)P2. However, as
most studies on retroviral MA proteins have focused on specific interactions of MA with
PI(4,5)P2, the role of PS in membrane targeting and whether MA proteins can engage PS
via a specific binding site remains unclear. For HIV-1, MA interacts with PS but requires
PI(4,5)P2 in order to induce cluster formation [157].

Compared to HIV-1, HTLV-1 Gag exhibits less sensitivity to the depletion of PI(4,5)P2
caused by the overexpression of 5ptaseIV, indicating that PI(4,5)P2 may play a lesser role in
HTLV-1 replication [143]. While HIV-1 binds much more effectively to liposomes containing
both PS and PI(4,5)P2, HTLV-1 Gag has shown similar binding to liposomes with either PS
alone or PS combined with PI(4,5)P2, as long as the overall negative charge is preserved.
These findings suggest that PI(4,5)P2 is not crucial for HTLV-1 Gag’s membrane binding,
which is likely driven by electrostatic interactions [143]. Previous studies have shown that
HIV-1 MA binding to RNA negatively regulates membrane binding by preventing the
HBR from interacting with membranes that lack PI(4,5)P2, thus preventing non-specific
binding [128,135,158]. Comparative studies of HTLV-1 and HIV-1 Gag binding revealed
that treating HIV-1 Gag-like constructs with RNAse increased their affinity for negatively
charged membranes, whereas the interaction of HTLV-1 MA with membranes remained
unaffected by RNAse treatment. This suggests that RNA interactions are less significant for
HTLV-1 than for HIV-1 [143,144].

11. How HIV-1 and HTLV-1 MA Interact with Lipids and Membranes

The MA domain of Gag is a relatively small α-helical protein, consisting of four to five
α-helices, with an unstructured C-terminus that serves as a flexible linker to the CA do-
main (Figure 3A). Ray crystallography studies of HIV-1 unmyristoylated MA [myr(–)MA]
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revealed that the protein adopts a trimer arrangement [159]. In contrast, NMR studies
indicate that myr(–)MA exists as a monomer in solution [160–165]. Structural and biophys-
ical studies of the HIV-1 myristoylated MA (myrMA) protein have shown that it exists
in a monomer–trimer equilibrium with the myr group adopting both sequestered and
exposed conformations, leading to the proposed myr switch mechanism [162–164]. The
myr switch can be modulated by factors such as membrane association, inclusion of the CA
domain, and solution pH [162,163,165]. The MA–MA interface within the trimer has been
characterized using hydrogen-deuterium exchange mass spectrometry, aligning with the
proposed interface observed in the crystal structure of the HIV-1 myr(–)MA trimer [166].
The trimer interface was consistent with the proposed MA–MA interface observed in the
crystal structure of the HIV-1 myr(–)MA trimer [166]. Additionally, studies suggest that
HIV-1 myrMA can form higher-order oligomers, such as hexamers of trimers, on mem-
branes containing PI(4,5)P2 [139,167]. In fact, the X-ray structure of myrMA indicates that
it can form a hexameric lattice even in the absence of a membrane [168]. The trimer–trimer
interactions in the lattice are mediated by the N-terminal loop of one MA molecule and
α-helices I-II, and the 310 helix of an MA molecule from an adjacent trimer.
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in membrane binding (blue sticks). For HIV-1 myrMA, the following residues are not shown for
clarity: myr group, residues 2–3 and 115–132. For HTLV-1 myr(–)MA, the following residues are not
shown for clarity: 1–2 and 94–99. (B) Surface representation of the HIV-1 myrMA structure (PDB
code 2H3I) highlighting residues that exhibited substantial chemical shift changes upon binding of
tr-P(4,5)P2 (PDB code 2H3V) and IP3 (left and middle, respectively). Structures are viewed in identical
orientations. The structure of HTLV-1 myr(–)MA bound to IP3 is shown on the right. (C) Models of
HIV-1 myrMA and HTLV-1 myr(–)MA bound to membrane showing interactions between PI(4,5)P2

and/or PS and the HBR. Membrane bilayer was constructed by CHARMM-GUI [169].

Pioneering NMR-based structural studies have shown that HIV-1 myrMA binds
directly to PI(4,5)P2 analogs with truncated acyl chains (tr-PI(4,5)P2), inducing a conforma-
tional change that triggers myr exposure [163]. It was also found that tr-PI(4,5)P2 adopts an
“extended lipid” conformation in which the 2′-acyl acid chain and the inositol head group
bind to a hydrophobic cleft, while the 1′-acyl acid and exposed myr group bracket the HBR
(Arg22, Lys26, Lys27, Lys30, and Lys32) [163]. In addition to the HBR residues, Trp36, Arg76,
Thr81, and Ser77 were implicated in the binding of tr-PI(4,5)P2 (Figure 3B). Recent cryo-ET
data suggested that PI(4,5)P2 may bind to myrMA differently in the immature vs. mature
HIV-1 particles [170]. This has prompted investigations into an alternate binding mecha-
nism for PI(4,5)P2 binding mechanism [163]. NMR studies of myrMA binding to inositol
1,4,5-trisphosphate (IP3), the polar headgroup of PI(4,5)P2, revealed that Lys27, Gln28, Lys30,
and Lys32 constitute the IP3 binding site. These residues, located in the HBR, do not reside
within the hydrophobic cleft (Figure 3B) [163]. NMR and cryo-ET studies suggested that
PI(4,5)P2 binds to HIV-1 myrMA through two distinct structural sites during the processes
of assembly and maturation [168,170]. In a recent study, computational approaches utiliz-
ing long-timescale molecular dynamics simulations of the myrMA multimeric assemblies
of immature and mature virus particles using a realistic asymmetric membrane model
focused on the myrMA-lipid interactions and the lateral organization of lipids around
myrMA complexes [171]. It was shown that the mature myrMA complex exhibits a greater
number of stable interactions with PS and PI(4,5)P2 at the trimeric interface compared
to the immature complex. Notably, an alternative PI(4,5)P2-binding site in the immature
myrMA complex was identified, where the PI(4,5)P2 headgroup interacted with multiple
basic amino acids, including Arg4, Lys30, and Lys32. It was also shown that in contrast to
the immature myrMA complex, the 2′-acyl chains of two PI(4,5)P2 molecules in the mature
myrMA complex occupied binding pockets formed by residues in helix-4, as previously
reported in the NMR study [163]. Together, these findings support a mechanism by which
HIV-1 MA binding to the PM is mediated by the myr group, the HBR and possibly the acyl
chains of PI(4,5)P2 (Figure 3C).

Recent NMR studies of HTLV-1 myr(–)MA revealed that the globular domain, span-
ning residues 21 to 93, comprises four α-helices, while residues 94 to 130 exhibit con-
formational flexibility (Figure 3A) [172]. Similar to HIV-1, HTLV-1 myr(–)MA exists as a
monomer in solution. Currently, there is no structural data available for the HTLV-1 myrMA
protein, and it remains unclear whether the myr group adopts sequestered or exposed
conformations as observed for HIV-1. Previous work has indicated that the myr group is
essential for membrane targeting of HTLV-1 Gag in cells [113,173,174]. However, unlike
the typical observations with HIV-1, the binding of the HTLV-1 Gag G2A mutant, which
lacks the myr group, is not entirely inhibited when expressed in cells, as shown by dual-
color z-scan fluorescence fluctuation spectroscopy [107]. Overall, HTLV-1 MA–membrane
interactions appear to be more robust than for HIV-1, likely due to stronger affinities for
anionic phospholipid membranes and the absence of MA–RNA interactions that could
hinder membrane binding. The potential independence from PI(4,5)P2 for Gag–PM binding
suggests an alternative binding mechanism, allowing MA to compensate for the lack of
PI(4,5)P2 specificity, possibly by interacting more effectively with other membrane lipids,
such as PS.
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Structural, biophysical, and biochemical studies revealed that HTLV-1 myr(–)MA
contains a HBR harboring a PI(4,5)P2 binding site (HBR residues: Arg3, Arg7, Arg14, Arg17,
Lys47, Lys48, and Lys51) [172,175]. Despite the lack of PI(4,5)P2 dependence in cells, soluble
analogs of PI(4,5)P2 bind with significantly higher affinity in vitro compared to other
retroviral MA proteins that do depend on PI(4,5)P2 for assembly, including HIV-1 [172].
Specifically, the affinity of HTLV-1 myr(–)MA to soluble analogs of PI(4,5)P2 was >20-fold
higher than that observed for HIV-1, and ~100-fold higher than for ASV MA [172]. However,
when evaluating lipid interactions in the context of membranes, myr(–)MA demonstrated
about three-fold lower affinity for PI(4,5)P2 compared to HIV-1 myrMA [161,172]. The
presence of PS enhanced the binding affinity of HTLV-1 myr(–)MA to PI(4,5)P2, suggesting
a synergistic effect. The incorporation of PS in large unilamellar vesicles (LUVs) yielded a
similar fraction of protein-bound as in PI(4,5)P2–enriched LUVs if the total negative charge
was maintained, indicating a charge-based rather than a lipid-specific binding mode [172].
For HIV-1, it was demonstrated that liposomes containing both PS and cholesterol bound
myrMA with significantly greater affinity than those with only PS or cholesterol [161],
supporting proposals that cholesterol may indirectly enhance the ability of PS to bind
MA [133]. Altogether, structural studies confirmed that HTLV-1 MA contains a PI(4,5)P2
binding site with binding primarily driven by electrostatic interactions rather than specific
interactions with PI(4,5)P2. Consistent with this observation, HTLV-1 myr(–)MA lacked
specificity to the location of the phosphate group as PI(4,5)P2 and PI(3,5)P2 bound with a
similar affinity [172]. This result is analogous to that observed for HIV-1 MA [161]. Given
that PI(3,5)P2 is approximately 100-fold less abundant in cells than PI(4,5)P2 [176], efficient
Gag binding to the PM is likely a result of the higher relative concentration of PI(4,5)P2
rather than differences in MA affinity [161].

In a follow-up study, it was found that the PI(4,5)P2 binding site in HTLV-1 MA
features a lysine-rich motif comprised of Lys47, Lys48, and Lys51 (Figure 3B). Substituting
all three lysine residues significantly impaired binding to both IP3 and LUVs containing
PI(4,5)P2 [175]. Additionally, an arginine-rich motif (Arg3, Arg7, Arg14, and Arg17) was
identified as essential for MA binding to membranes containing PS and/or PI(4,5)P2
(Figure 3B) [175]. The disruption of the PI(4,5)P2 binding site by substitution of the three
lysine residues abolished binding to LUVs containing PI(4,5)P2. Equilibrium flotation
centrifugation and fluorescence z-scan analyses further demonstrated the importance of the
lysine-rich motif in membrane targeting of Gag [175]. Interestingly, the HTLV-1 myr(–)MA
triple-lysine mutant bound to LUVs containing PS with similar efficiency as wild-type
(wt), indicating that the interaction with PS is facilitated by the arginine-rich motif [175].
The substitution of the Lys- and/or Arg-rich regions severely attenuated VLP production,
indicating that these sites are critical for virus assembly [175]. Collectively, these findings
support a mechanism by which HTLV-1 MA binding to the PM is mediated by the myr
group, structured Lys-rich, and unstructured Arg-rich motifs (Figure 3C). In summary,
data support a novel mechanism by which HTLV-1 Gag targeting the PM is mediated by
the myr group and the Arg- and Lys-rich motifs, governed by charge-charge interactions,
and is enhanced by acidic lipids such as PI(4,5)P2 and PS. These findings emphasize
key differences in the assembly pathways of HTLV-1 compared to other retroviruses,
including HIV-1.

12. Capsid-Capsid Interactions

Following HIV-1 Gag proteolysis, CA spontaneously assembles into a fullerene cone
housing the genome, viral enzymes (IN and RT), and some accessory proteins. This CA core
consists of approximately 1500 CA monomers assembled into 250 hexamers and exactly
12 pentamers to facilitate the curvature on the top and bottom of the core necessary to form
a closed structure [177]. The CA protein consists of two independently folded subdomains,
the N-terminal domain (CANTD) and the C-terminal domain (CACTD) (Figure 4A). For
HIV-1, mutations in the CACTD were shown to severely impair viral infectivity, number of
virions, and cone formation [101]. Inositol hexaphosphate (IP6) was recently identified as
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an essential cofactor for CA assembly of HIV-1 and ASV [178,179]. In both HIV-1 and ASV,
IP6 is localized within the core of the CA hexamer, coordinated via two rings of positively
charged residues (Arg18 and Lys25), thus stabilizing the hexamer structure. IP6 has been
shown to dramatically enhance immature particle assembly; the depletion of IP6 from cells
or the mutation of residues that bind IP6 led to severely attenuated particle production and
infectivity [180,181]. It has also been shown that an immature HIV-1 Gag lattice is required
to concentrate IP6 into virions to catalyze mature CA assembly [182]. Disabling the ability
of HIV-1 to enrich IP6 does not prevent immature Gag lattice formation or production of
the virus. However, without sufficient IP6 molecules in each virion, HIV-1 can no longer
build a stable CA and fails to become infectious [182].
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Figure 4. HIV-1 and HTLV-1 Gag hexamer structures. (A) The two HIV-1 CA molecules are displayed
on the side of the hexamer, with CANTD in cyan and CACTD in orange. HIV-1 SP1 domains are
shown in blue. The PDB codes are HIV-1 (5L93) [109], HTLV-1 CANTD (8PUG) [183], and HTLV-1
CACTD (8PUH) [183]. The cross-section of the HTLV-1 Gag lattice reconstruction map suggests a
distinctive arrangement of the CANTD and CACTD compared to HIV-1. (B) Shown is the top view of
the HIV-1 hexamer structure, which was generated by fitting HIV-1 CA (5L93) into the EM density of
the immature HIV-1 lattice (EMD: 4017). The top view of the HTLV-1 Gag hexamer structure shown
was generated by fitting CANTD and CACTD separately into the EM density of the immature HTLV-1
CA lattice (EMD: 17942). The flexible linker between HTLV-1 CANTD and CACTD is unstructured and
is therefore not shown.

The cryo-ET and subtomogram averaging of HTLV-1 immature particles have further
characterized the novel HTLV-1 immature Gag lattice stabilization that is driven by the
CANTD [183]. Comparative analysis of the side views of the HIV-1 and HTLV-1 Gag hexamer
structures provides evidence that the cross-section of the HTLV-1 Gag lattice reconstruction
map forms a distinctive arrangement of the CANTD and CACTD compared to that of HIV-1
(Figure 4B), supporting the distinct structural differences between these viruses.

For HTLV-1, previous studies have estimated that, on average, approximately 1300
to 1600 copies of Gag are packaged in HTLV-1 immature particles [184]. In contrast to
HIV-1, the HTLV-1 immature CA core has an unordered polyhedral-like structure that
can vary in size. The HTLV-1 immature Gag lattice has regions with a curvature that
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follows the viral membrane, and other regions that have a flattened lattice morphology
that can be distant from the viral membrane. The HTLV-1 CANTD consists of a β-hairpin
and a centralized coiled-coil-like structure of six α-helices, and a CACTD that contains
four α-helices that are connected by a flexible linker (Figure 4A). Previous utilization of a
panel of Gag proteins with chimeric HIV-1/HTLV-1 CA domains helps to identify distinct
differences between the HIV-1 and HTLV-1 CANTD and CACTD [185]. In particular, the Gag
protein expressing a CA chimera with HIV-1 CANTD and HTLV-1 CACTD did not result in
Gag oligomerization or virus particle release regardless of the parental Gag background.
Without CA-driven dimerization, the chimeric-CA Gag proteins in the HTLV-1 background
could be translocated to the PM; in contrast, in the HIV-1 background, the chimeric-CA
Gag proteins remained largely in the cytoplasm [185]. This observation, along with the
observation that chimeric Gag proteins with the HTLV-1 CANTD produced particles that
were morphologically similar to those of HTLV-1 particles provided evidence that HTLV-1
CANTD plays a critically important role in HTLV-1-immature particle morphology. The
observations that HTLV-1 CANTD can functionally replace HIV-1 CACTD, but that the HIV-1
CANTD cannot replace HTLV-1 CACTD helped to establish clear differences in CA structure
and function of HTLV-1 CA to that of HIV-1 CA.

Site-directed mutagenesis studies of HTLV-1 CANTD were conducted to demonstrate
that the CANTD is critical for mediating Gag–Gag interactions [185,186]. Several residues
(i.e., Met17, Gln47, Phe48, and Tyr61) were identified as essential for CA-CA and Gag-Gag
interactions. Modeling studies suggested that Met17 and Tyr61 are located at the dimer
interface, while Gln47 and Phe48 are found at the trimer interface. The novel roles of
the HTLV-1 CANTD and CACTD in immature particle formation are further supported by
structural studies that indicate the role of the CANTD in HTLV-1 immature Gag lattice
stabilization, as well as by mutational studies of the conserved HTLV-1 major homology
region in the CACTD that implicate a structural role in facilitating CA-CA interactions
mediated by the CANTD. Due to these distinct differences in CA-CA interactions compared
to HIV-1, the HTLV-1 immature Gag lattice has a different morphology than that of HIV-1
(Figure 4B).

13. Env Incorporation into Viral Particles

For HIV-1, Gag and Env proteins are transported to the PM through independent
mechanisms (Figure 1) [187–190]. Env is synthesized as a 160-kDa precursor in the rough
endoplasmic reticulum, where it is glycosylated and subsequently cleaved in the Golgi
apparatus to form the surface (gp120) and transmembrane (gp41) subunits (reviewed
in [191]). The gp41 subunit consists of a fusogenic ectodomain, a transmembrane (TM)
domain, and a C-terminal cytoplasmic tail (gp41CT) (Figure 5A). Without gp41, there is no
fusion and no infectivity. Notably, the gp41CT domain is remarkably long (150 residues)
for most lentiviruses but significantly shorter (20–40 residues) for other retroviruses such as
HTLV-1 (Figure 5A) [191]. The biological implications of the variable length and its effect on
Env incorporation are not well understood. Structural studies of gp41CT associated with
detergent micelles have shown that the N-terminal 45 residues of gp41CT are disordered
and do not interact with the membrane [192]. However, the C-terminal domain (residues
46–150) consists of three consecutive amphipathic α-helices (LLP2, LLP3, and LLP1) and
is tightly associated with the membrane (Figure 5B) [192]. Other NMR-based studies of
the TM–gp41CT domain in bicelles have shown similar structural arrangements for the
gp41CT motif [193].

The mechanism by which the Env protein is recruited and incorporated into virus
particles remains poorly understood. Genetic studies indicate that for HIV-1, both the
gp41CT and a well-formed MA lattice (Figure 5C) are essential for incorporation and
infectivity in physiologically relevant cell types [194–196]. It appears that it is not sufficient
to only embed gp41CT in the MA layer, but it is necessary for the MA layer to undergo
a cleavage-induced maturation step for gp41 to become fully active [197]. Studies have
shown that the substitution of several residues in MA (L13E, E17K, L31E, V35E, and E99V)
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impaired Env incorporation in HIV-1 particles [189,190,198–200]. Notably, the substitution
of residue Gln63 with Arg suppressed Env incorporation defects caused by the L13E,
E17K, L31E, V35E, and E99V mutations, as well as a gp41CT mutation that has the same
phenotype [189,190,198,199]. The Freed laboratory provided biochemical evidence that MA
trimerization is an obligatory step for Env incorporation and demonstrated a correlation
between loss of MA trimerization and loss of Env incorporation [199]. Structural and
biophysical studies indicated that A45E, T70R, and L75G mutations in myrMA did not alter
the overall structure and folding of MA and caused only minor structural perturbations in
the trimer interface and had a minimal effect on the MA monomer–trimer equilibrium [201].
The X-ray structure of the myr(–)MA Q63R protein revealed hydrogen bonding between
the side chains of Arg63 and Ser67, providing evidence for an additional intermolecular
interaction in the trimer interface [201]. These findings provided further evidence for an
interplay of MA trimerization and Env incorporation into HIV-1 particles.
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Figure 5. Comparison of Env CT. (A) Schematic representation of the gp41 subunits, indicating
the lengths of their respective cytoplasmic tails (25 and 150 amino acids for HTLV-1 and HIV-1,
respectively. (B) Secondary structure representation of the HIV-1 gp41CT protein based on the NMR
data [192]. (C) HIV-1 Env incorporation is mediated by interaction between the MA domain of the
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roles in cell-to-cell infection and syncytium formation.

It has also been reported that Gag assembly promotes the aggregation of small Env
clusters into larger domains that were completely immobile; truncation of gp41CT ab-
rogated Gag’s ability to induce Env clustering and restored Env mobility at assembly
sites [202]. Super-resolution microscopy data also indicated that recruitment of Env to viral
assembly sites is dependent on gp41CT [188]. Nanoscale single particle tracking of Env
on the PM has demonstrated that Env immobilization at sites of Gag assembly requires
gp41CT but does not require the curvature of the lattice [203]. Env was restricted to subviral
regions within the Gag lattice, indicating that an interaction between gp41CT and MA may
be responsible for Env retention in budding particles.

To explore the dynamics of Env recruitment, a recent study utilized a chemical dimer-
izer system to manipulate HIV-1 assembly through reversible depletion of PI(4,5)P2 as
visualized by super-resolution and live-cell microscopy [204]. This method enabled the con-
trol and synchronization of HIV-1 assembly, as well as the monitoring of Env recruitment
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to individual nascent assembly sites in real-time. Tracking individual virions revealed that
Gag and Env accumulate at HIV-1 assembly sites with similar kinetics. The depletion of
PI(4,5)P2 hindered Gag’s targeting of the PM and prevented the formation of Env clusters,
indicating that Env recruitment depends on Gag assembly. In cells with pre-assembled Gag
lattices, PI(4,5)P2 depletion led to the disintegration of the entire assembly domain, causing
the rapid loss of both Gag and Env clusters from the PM. These findings suggested that
Gag induces and maintains a membrane microenvironment that attracts Env. Disruption of
this microenvironment by PI(4,5)P2 depletion appears to result in the loss of Env from the
assembly domain [204].

HTLV-1 Env is synthesized as a precursor protein (gp62), which is then folded,
oligomerized, and glycogenized in the epithelial system. This precursor is then trans-
ported via the Golgi and cleaved by cell enzymes to form the surface glycoprotein (SU;
gp46) and the transmembrane glycoprotein (TM; gp21) [205]. The subunits are divided into
trimers, which are maintained through non-coagulation, where SU resides in the extracel-
lular space and TM is embedded into the cell membrane or viral envelope [205]. SU and
TM work together to allow viral entry. SU binds directly to cell surface receptors, whereas
TM allows the fusion of viral and cell membranes. While no structural data is available
on the mature SU gp46, the X-ray structure of the ectodomain of gp21 revealed a coil-coil
arrangement [206]. HTLV-1 contains a short CT (24 amino acids) located at the C-terminus
of TM (Figure 5A) [207]. Although structural data of the TM and CT of HTLV-1 are lacking;
the CT appears to contain functional motifs that play important roles in cell-to-cell infection
and syncytium formation (Figure 5C) [208,209]. Limited mutagenesis studies on HTLV-1
MA have shown Env proteins were incorporated with the mutated MA constructs at a level
similar to that of the wt provirus [210]. Detailed investigation of the mechanism of Env
incorporation into HTLV-1 particles is warranted

14. Virus Maturation

Gag and Gag-Pol are incorporated into the budding virus particle at a specific ratio
(20:1 Gag:Gag-Pol), a conserved feature across retroviruses. Maintaining this ratio is
essential for virus structure and infectivity [95,211]. Proteolytic cleavage of Gag and
Gag-Pol via the viral protease (Pro) is initiated either during or after budding, marking
the final process of the retroviral life cycle: maturation. Cleavage of Gag and Gag-Pol
proceeds at different rates, likely influenced by protein sequence and structure. It has
been shown that, in vitro, cleavage of HIV-1 Gag occurs fastest at the SP1-NC cleavage
site, followed by SP2-p6, MA-CA, NC-SP2, and, finally, CA-SP1 [212]. Cleavage initiates
a cascade of major structural rearrangements to form the mature virus particle [213]. For
HIV-1, changes can be summarized as follows: (1) The cleaved NC protein nucleates and
condensates with the viral RNA [214,215]. (2) Cleavage of the SP1 domain and the MA
domain from CA leads to a major structural rearrangement of CA which temporarily
liberates IP6 from the hexamer and allows for the formation of the distinct viral cone shape.
Within this mature CA hexamer, IP6 is bound to Arg18 located in CANTD and stabilizes
the CA shell [216–219]. (3) MA remains associated with the membrane but undergoes
major structural re-organization [170]. As discussed above, cryo-ET data indicated that
the MA domain undergoes dramatic conformational change to allow for the formation
of distinct hexameric lattices in the immature and mature particles (Figure 6) [170]. The
propensity of MA to form a lattice has been reported by Barklis et al. using cryo-electron
diffraction of 2D crystals of MA on a lipid monolayer [167]. As discussed above, myrMA
is capable of forming a hexamer of trimers lattice even in the absence of PI(4,5)P2 and
membrane (Figure 6) [168]. The MA lattice is increasingly seen as central to the mechanism
of Env incorporation [189,190,199,220]. HTLV-1 maturation, on the other hand, is not well
understood. While the proteolytic sites are known, cryo-ET studies of immature and mature
virus particles of HTLV-1 have failed to reveal distinct viral lattices, even for the relatively
large CA domain [184,221,222]. Furthermore, it is not known if HTLV-1 MA forms an
ordered lattice in the immature or mature particles. Difficulties in obtaining structural
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data of HTLV-1 particles via EM are compounded by the low particle production and
pleomorphic, incomplete shells rather than distinct cone-shaped structures.
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Figure 6. Comparison of MA lattices based on structural data. (A) Schematic representation of the
myrMA lattice in the immature and mature states based on the cryo-ET data [170]. The trimer–trimer
interactions are mediated by the N-terminal domain in the vicinity of the myr group, while the
PI(4,5)P2 binding pocket is empty. In the mature myrMA lattice, PI(4,5)P2 is bound to the cleft and
myrMA trimer–trimer interactions are formed by the HBR and PI(4,5)P2. (B) Schematic illustration
of the myrMA lattice based on the X-ray structure of myrMA. In this lattice, myrMA–myrMA
interaction at the trimer–trimer interface is mediated by the N-terminal residues. Of note, myrMA–
myrMA interaction at the trimer–trimer interface places the myr groups (red) in juxtaposition.
The HBR and PI(4,5)P2 binding cleft are also shown. Hexagons and triangles denote C6 and C3
symmetry, respectively.

15. Conclusions

HTLV-1 continues to be a growing and persistent threat due to its severe health impacts
and the challenges associated with current treatments. Although significant progress has
been made in understanding the molecular mechanisms of retroviral replication, there
are still major gaps in our knowledge. While the general replication cycle is similar
among retroviruses, comparative studies revealed important differences in the replication
pathways and the structure and function of viral components. This review highlighted
both the similarities and differences in the replication processes of HIV-1 and HTLV-1. We
also discussed recent advances in understanding the molecular determinants of HTLV-1
and HIV-1 assembly, with a particular focus on the interactions between Gag and MA with
the membrane, as well as CA assembly. Despite these advances, crucial aspects of HTLV-1
replication, such as virus entry, uncoating, reverse transcription, assembly, and budding,
remain poorly understood.

Treatment options for HTLV-1-related conditions are currently limited, with existing
therapies often being costly and not always effective. This underscores the urgent need for
further research to develop more affordable and effective treatments. The progress seen in
HIV-1 drug development offers hope that similar breakthroughs could lead to effective and
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affordable therapies for HTLV-1. The success of new HIV-1 drugs that target CA assembly,
such as Lenacapavir, ref. [223] offers a promising model for HTLV-1. Insights gained from
virus assembly and replication mechanisms of HIV-1 could guide the creation of analogous
strategies for HTLV-1. By leveraging innovative drug development approaches, we might
achieve more cost-effective treatments and potentially revolutionize HTLV-1 management.
Continued research and heightened awareness are crucial for reducing the impact of this
virus and improving global health outcomes.
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