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Abstract: While adeno-associated viral (AAV) vectors are successfully used in a variety of in vivo
gene therapy applications, they continue to be hampered by the immune system. Here, we sought
to identify innate and cytokine signaling pathways that promote CD8+ T-cell responses against the
transgene product upon AAV1 vector administration to murine skeletal muscle. Eliminating just
one of several pathways (including DNA sensing via TLR9, IL-1 receptor signaling, and possibly
endosomal sensing of double-stranded RNA) substantially reduced the CD8+ T-cell response at lower
vector doses but was surprisingly ineffective at higher doses. Using genetic, antibody-mediated,
and vector engineering approaches, we show that blockade of at least two innate pathways is
required to achieve an effect at higher vector doses. Concurrent blockade of IL-1R1 > MyD88 and
TLR9 > MyD88 > type I IFN > IFNaR pathways was often but not always synergistic and had limited
utility in preventing antibody formation against the transgene product. Further, even low-frequency
CD8+ T-cell responses could eliminate transgene expression, even in MyD88- or IL-1R1-deficient
animals that received a low vector dose. However, we provide evidence that CpG depletion of
vector genomes and including TLR9 inhibitory sequences can synergize. When this construct was
combined with the use of a muscle-specific promoter, transgene expression in muscle was sustained
with minimal local or systemic CD8+ T-cell response. Thus, innate immune avoidance/blockade
strategies by themselves, albeit helpful, may not be sufficient to prevent destructive cellular responses
in muscle gene transfer because of the redundancy of immune-activating pathways.

Keywords: adeno-associated virus; CD8 T cell; TLR9; IL-1; muscle

1. Introduction

Adeno-associated viral (AAV) vectors are widely used in clinical gene therapy for
in vivo transfer of therapeutic genes to various organs and cell types. These vectors contain
a DNA genome (single-stranded or self-complementary) that is devoid of viral coding se-
quences and packaged into a protein capsid. Tissue tropism and efficiency of gene transfer
to different cell types is determined by the choice of capsid, route of administration, and
vector dose. Transduction of skeletal muscle fibers by intramuscular (IM) administration
has undergone clinical trials for treatment of different forms of muscular dystrophy [1–3]
and for systemic protein delivery (for hemophilia B and α1-antitrypsin deficiency, for
example) [4,5] and also formed the basis for the first gene therapy product approved in the
Western world (Glybera for systemic delivery of lipoprotein lipase to treat lipoprotein lipase
deficiency) [6]. This approach has been further clinically tested for passive immunization
based on the delivery of antibodies against HIV [7–9] and is in development for delivery
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of Cas9 and gRNA (guide RNAs) for CRISPR-mediated gene editing of dystrophic mus-
cle [10,11]. Vascular delivery for the widespread correction of muscle forms the basis for a
recently studied gene therapy for patients with Duchenne Muscular Dystrophy (DMD) [12]
and is in advanced clinical testing for a variety of neuromuscular diseases [13]. Muscle
disorders that could benefit from direct IM injection include tibial muscular dystrophy,
facioscapulohumeral muscular dystrophy, and oculopharyngeal muscular dystrophy.

Although AAV vectors elicit less innate immunity and are less efficient in activating
CD8+ T-cell responses compared to many other vector systems, immune responses are
nonetheless a major hurdle for AAV-based gene therapies, especially when given at high
vector doses [14–18]. The IM route may increase immunogenicity (and is thus often used
for vaccine delivery), and the viral particles carry pathogen-associated molecular patterns
(PAMPs) that can be recognized by innate pattern recognition receptors. This is partic-
ularly well documented for sensing the AAV genome by the endosomal DNA receptor
TLR9 [19,20]. Initially discovered by Yang and colleagues, plasmacytoid dendritic cells
(pDCs) produce type I IFN upon activation of the TLR9-MyD88 signaling pathway [19].
These events may link innate immune sensing of the AAV genome to the induction of an
antigen-specific immune response. Priming of CD8+ T cells occurs through the cooperation
of pDCs and conventional DCs (cDCs), which present capsid or transgene product anti-
gens via MHC-I and activate CD8+ T cells upon sensing of type I IFN with their IFNaR
receptors [20,21]. Antigen presentation is likely carried out by XCR1+ cDCs, which are
particularly efficient in cross-presentation via MHC-I and are known to serve as a platform
for sequential interactions with CD4+ and CD8+ T cells [22,23]. CD4+ T-helper cells provide
co-stimulation that, in addition to cytokine signaling, is critical for the priming of CD8+

T cells [21,24,25]. In contrast to mammalian DNA, viral and bacterial genomes lack CpG
methylation [26,27]. Such unmethylated CpG motifs are particularly potent stimulators of
TLR9 [22,27,28]. Thus, a common strategy to reduce the risk of CD8+ T-cell activation in
AAV gene transfer is to synthesize gene constructs that lack CpG motifs (“CpG depletion”
strategy) [29–32]. Alternatively, sequences can be included in the AAV vector genome that
are inhibitory to TLR9 (TLR9i) [33]. TLR9 signaling also mediates early innate immune
responses in the target organ that can occur within hours after vector administration [34].
However, TLR9 is less critical for antibody formation (albeit some TLR9 ligands may en-
hance antibody formation by increasing recruitment of monocyte-derived dendritic cells
(moDCs), as we showed by co-administration of vector and oligodeoxynucleotides to
skeletal muscle) [35–37].

Our recent study in hepatic gene transfer uncovered a TLR9-independent pathway
that promotes CD8+ T-cell responses against the transgene product via IL-1R1-MyD88
signaling [25,38]. This mechanism involves infiltration of IL-1α/β-producing pDCs and
formation of pDC/XCR1+ DC/CD8+ T cell co-clusters in the liver. While both IL-1α and
IL-1β are contributing, CD8+ T-cell activation was found to be independent of inflamma-
somes. IL-1α serves as an “alarmin” in responses against pathogens, may be cell-bound or
extracellular, and does not require proteolytic processing to be active. Recombinant IL-1R
antagonist (anakinra) is an approved anti-inflammatory drug for blockade of the IL-1R1
receptor. Whether this pathway is important for muscle gene transfer has been unknown.

CD8+ T-cell responses against transgene products have been documented in some
DMD and α1-antitrypsin-deficient patients who received muscle-directed AAV gene trans-
fer [3,39–43]. More recently, we showed that potent CD8+ T-cell responses directed against
a Cas9 transgene product eliminated AAV-transduced muscle fibers in canine models [44].
Route of administration, vector design and dose, as well as the underlying mutation and
polymorphisms in the affected gene, impact the risk of such responses in gene replacement
therapy [13,31,34,45,46]. Inflammation or tissue damage may be sources of Damage Associ-
ated Molecular Patterns (DAMPs) that contribute to T-cell activation. In this study, we were
surprised to find induction of transgene product-specific CD8+ T cells upon IM adminis-
tration of AAV vector in TLR9 and IFNaR-deficient mice at frequencies similar to those in
wild-type (WT) mice when higher vector doses were used. Further investigations showed
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that multiple pathways, including IL-1 signaling, have redundant roles in promoting CD8+

T-cell responses. Eliminating a single pathway was sufficient to substantially reduce the
response at lower but not higher vector doses. We document the utility and limitations of
blocking innate immune pathways to prevent CD8+ T-cell responses in muscle-directed
gene transfer.

Our experiments utilized AAV serotype 1, which was the first capsid shown to di-
rect superior transduction of skeletal muscle and was also the capsid of the first gene
therapy vector to achieve regulatory approval in the Western world (Glybera, which was
administered by IM injection to patents with familial lipoprotein lipase deficiency) [6,47,48].
AAV1 has since been evaluated in multiple clinical trials in skeletal muscle, cardiac, and
diaphragm gene transfer for the treatment of a variety of inherited and acquired dis-
eases [1,2,49–54].

2. Materials and Methods
2.1. AAV Vector Production

All AAV vectors were of serotype 1. AAV expression cassette for chicken ovalbumin
(OVA) was under the control of either cytomegalovirus (CMV) promoter, or a combination
of CMV immediate early gene (IE) 1 enhancer and human elongation factor-1α (EF1α)
promoter, or the muscle-specific creatine kinase 8 (ck8) promoter (which was synthesized
according to information in US patent 10479821B2). The CpG-free OVA expression cassette
(with CMV enhancer/EF1α promoter) was purchased from InvivoGen (San Diego, CA,
USA). All AAV vectors were packaged using triple transfection of HEK293 T cells, purified
using iodixanol gradient centrifugation and titrated by quantitative polymerase chain
reaction (PCR) as previously reported [55].

2.2. Mouse Strains and Experiments

C57BL/6J WT, C57BL/6NJ WT, B6N.129S1-Tlr3tm1Flv/J (TLR3−/−), B6.129P2(SJL)-
Myd88tm1.1Defr/J (MyD88−/−), B6.129S7-IL1r1tm1Imx/J (IL-1R1−/−), C57BL/6J-Tbk1em10Lutzy/J
(TBK1−/−), B6.Cg-Ifih1tm1.1Cln/J (MDA5−/−), C57BL/6NJ-Rigiem1(IMPC)J/Mmjax (RIG-I−/−),
C57BL/6J-Ticam1Lps2/J (TRIF−/−), C57BL/6J-Sting1gt/J (STING−/−) mice were purchased
from Jackson Laboratories (Bar Harbor, ME, USA). TLR9−/− [20], CD11ccre × MyD88fl/fl

(CD11c-MyD88−/−) [20] and CD11ccre × IFNaRfl/fl (CD11c-IFNaR−/−) mice were bred
in house (all on C57BL/6J background) [21]. All mice were 6–8 weeks old at the start of
the experiment, and each experimental group consisted of five mice. Mice were housed
in the laboratory animal resource center facility at Indiana University (IU), Indianapolis.
These studies were conducted under protocols 21017 (approved on 15 April 2021) and
23173 (approved on 27 March 2024) by the Institutional Animal Care and Use Committee
(IACUC) of Indiana University School of Medicine.

Mice were injected into the quadriceps muscle with either 2 × 1010 vg or 2 × 1011 vg
of AAV vector in total volume of 50 µL. Type I IFN signaling was blocked by the admin-
istration of 250 µg of αIFNAR-1 (MAR1-5A3) antibody via intraperitoneal (IP) route [21].
IL-1 signaling was prevented by neutralization of cytokines IL-1α and IL-1β, with co-
administration of αIL-1α (clone ALF-161) and αIL-1β (clone B122) antibodies (200 µg
each) via IP route [25,56]. Control mice received an equal amount of isotype antibody. All
the antibody treatments were initiated one day prior to vector administration and were
continued for up to 6 weeks, 2 times/week. All in vivo blocking/neutralization antibodies
were from BioXcell (Lebanon, NH, USA).

2.3. Flow Cytometry

Peripheral blood mononuclear cells (PBMCs) were pretreated with TruStain FcX anti-
mouse CD16/CD32 (Fc receptor block; BioLegend, San Diego, CA, USA). CD8+ T cells
were distinguished from CD4+ T cells via a combination of CD3 and CD8 antibodies. OVA-
specific CD8+ T cells were assessed using MHC class I tetramer iTAg (H2-Kb-SIINFEKL;
MBL International, Woburn, MA, USA) as per the manufacturer’s instructions. OVA-
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specific CD8+ T cells were further analyzed for their activation status using antibodies
against CD44, CD62L and CD107 surface markers. PBMCs were surface stained at room
temperature for 20 min. PBMCs were washed, and red blood cells were lysed with Ver-
saLyse (Beckman Coulter, Brea, CA, USA). PBMCs were acquired on Attune (Invitrogen,
Waltham, MA, USA), and analysis was performed with FCS Express 7 (De Novo Software,
Pasadena, CA, USA). All the antibodies were purchased from Biolegend (San Diego, CA,
USA) unless stated otherwise.

2.4. Immunohistochemistry

AAV-injected muscles were frozen, as previously reported [57]. Briefly, excised mus-
cles were mounted on a 3-inch dowel using 10% (w/v) gum tragacanth (Sigma, St. Louis,
MO) in PBS. The dowel was then gently inverted and submerged into a 15.0 mL conical
tube that contained 5.0 mL of pre-chilled 2-methylbutane (isopentane; GFS chemicals, OH).
The 15.0 mL tubes were then stored at −20 ◦C until used. Frozen muscles were sectioned
(∼10 µm) using a cryostat (Leica Biosystems, Deer Park, IL, USA). Muscle sections were
mounted on poly-lysine-coated slides, and immunohistochemistry was performed as de-
scribed previously [46]. Sections were stained for OVA expression using rabbit α-OVA
(Abcam, Cambridge, UK) and CD8+ T (clone 53-6.7; Biolegend, San Diego, CA, USA)
cell infiltration. Fluorophore conjugated α-rabbit and α-rat secondary antibodies were
from Abcam. Sections were mounted with ProLong Diamond Antifade (Life Technolo-
gies, Carlsbad, CA, USA) mounting medium containing DAPI (2-(4-amidinophenyl)-1H-
indole-6-carboxamidine). Fluorescence images were captured with a Zeiss Axio Observer
7 microscope (Zeiss, Jena, Germany) and analyzed with ZEN Blue edition 3.5 software.

2.5. Antibody Assays

Mouse plasma was analyzed for OVA-specific IgG2c antibodies as previously pub-
lished [34,35]. An amount of 10 µg/mL of OVA was used for coating ELISA wells. Plasma
was used at 1:40 dilution in dilution buffer (5% bovine serum albumin and 0.05% Tween
20 in 1X phosphate buffered saline). HRP-conjugated goat anti-mouse IgG2c (Southern-
Biotech, Birmingham, AL, USA) was used as the detection antibody. Data were acquired
using an Epoch 2 microplate spectrophotometer (BioTek, Winooski, VT, USA) with GEN
5-3.11 software.

2.6. Statistical Analysis

All data are presented as means ± standard error of the mean (SEM). Data were
analyzed using GraphPad Prism 10.3.1 software (San Diego, CA, USA). Multiple unpaired
t-tests with Holm–Šídák post hoc correction were used, and p-values of ≤0.05 were consid-
ered significant and are indicated as (* p ≤ 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001).

3. Results
3.1. Single-Stranded AAV Vector Induces TLR9-Independent CD8+ T-Cell Response Following
High-Dose Intramuscular Injection

The objective of this study was to identify innate immune pathways that drive the
activation of transgene product-specific CD8+ T cells in AAV gene transfer to skeletal
muscle. We utilized the AAV1 serotype, which efficiently transduces muscle and has
been extensively tested in clinical settings. The choice of OVA as transgene allowed us
to track OVA-specific CD8+ T cells over time in the periphery with MHC class I tetramer.
Sensing of the AAV genome (in particular unmethylated CpG motifs, which are typical
for viral DNA) by TLR9 is widely viewed as the critical innate signal for priming of CD8+

T cells in the context of AAV gene transfer. In earlier studies, we found that vectors with
self-complementary genomes (scAAV) more strongly activate TLR9-dependent immune
responses than traditional single-stranded (ssAAV) vectors [34]. Consistent with prior
literature, IM administration of 2 × 1011 vector genomes (vg) of scAAV1-CMV-OVA induced
a strong CD8+ T-cell response against OVA in WT mice that peaked (~10% of total CD8+ T
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cells) at 2 weeks following vector administration while TLR9−/− mice had a substantially
lower (~2% of total CD8+ T cells) response and MyD88−/− mice failed to mount a CD8+

T-cell response against the transgene product (Figure 1A) [19,22,29,35,58]. Using a ssAAV1-
CMV-OVA vector resulted in an equally high CD8+ T-cell response in WT mice (Figure 1B).
To our surprise, TLR9−/− mice showed the same level of CD8+ T-cell induction as WT mice
when the ssAAV1-CMV-OVA vector was administered (Figure 1B).
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Figure 1. AAV genome conformation and vector dose dictate innate sensing and cellular response
to AAV-encoded transgene product in muscle. (A) Kinetics of OVA-specific CD8+ T-cell response
in C57BL/6 − WT, TLR9−/− and MyD88−/− mice following intramuscular gene transfer with
a high dose (2 × 1011 vg) of scAAV1 vector. (B) Kinetics of OVA-specific CD8+ T-cell response
in C57BL/6J − WT and TLR9−/− mice following intramuscular gene transfer with a high dose
(2 × 1011 vg) of the ssAAV vector. (C,D) Kinetics of OVA-specific CD8+ T-cell response in C57BL/6J
− WT and knockout mice lacking specific innate sensor (either universally or in a particular cell
type), following intramuscular gene transfer with high (2 × 1011 vg; (C)) and low (2 × 1010 vg; (D))
dose of the ssAAV1 vector. Each experimental group consisted of five mice. Data are presented as
mean ± SEM. The level of statistical significance between WT and knockout mice is indicated as
* p ≤ 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. Non-significant differences are not indicated.

3.2. TLR9, Type I IFN, and IL-1R1 Are Crucial for Maximum CD8+ T Cell Response to the
Transgene Product at Lower but Not at Higher Vector Doses

Given this unexpected result, we decided to investigate the innate sensing require-
ments of the ssAAV1-CMV-OVA vector in influencing the transgene product-specific cellu-
lar responses. We injected either 2 × 1010 vg (low) or 2 × 1011 vg (high) of the ssAAV1-CMV-
OVA vector into the quadriceps muscles of C57BL/6J − WT, TLR9−/− and MyD88−/−

mice (n = 5) and evaluated the frequencies of circulating OVA-specific CD8+ T cells in
PBMCs as a function of time (Figure 1C,D and Supplementary Figure S1A,B). OVA-specific
CD8+ T-cell responses were again similar in TLR9−/− and WT mice at the high dose, while
TLR9−/− mice showed a substantial reduction in the response at the low-vector dose
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(Figure 1C,D). Mice deficient in MyD88 had minimal responses at both vector doses (~2%
at the high dose and delayed response of <1% at the low dose; Figure 1C,D). In WT mice,
the peak of the response (average of ~12% of total CD8+ T cells) at the low-vector dose is
observed at 3 weeks, one week later compared to the high-vector dose (average of ~19% at
week 2; Figure 1B–D). Given our recent discovery that mice lacking IL-1R1 fail to develop
CD8+ T-cell responses against OVA in hepatic AAV gene transfer [25], we investigated the
role of IL-1 signaling in transgene product-specific cellular response in muscle gene transfer.
We evaluated the frequencies of circulating OVA-specific CD8+ T cells in IL-1R1−/− mice
following intramuscular (IM) delivery of either 2 × 1010 vg (low) or 2 × 1011 vg (high) of
the ssAAV1-CMV-OVA vector. At the high-vector dose, IL-1R1−/− mice had a modest
reduction in OVA-specific CD8+ T cells (no statistical difference) compared to WT and
TLR9−/− mice (Figure 1C). However, at the low dose, a significant reduction in OVA-
specific CD8+ T cells was observed in comparison to WT mice, which was also lower than
in TLR9−/− mice (Figure 1D). Combined, these results suggest a redundant role of TLR9
and IL-1R1 pathways in activating CD8+ T cells against the transgene product. Both path-
ways are required for a maximal response at low-vector doses, while at high doses, either
pathway may be sufficiently active to drive the response (or, alternatively, replaced by a
third pathway). Interestingly, at the 2 × 1011 vg dose, IL-1R1−/− had fewer OVA-specific
CD8+ effector T (Teff) cells and a higher portion of T effector memory cells (TEM) at 2 weeks
when compared to WT and TLR9−/− mice, which was reversed at subsequent time points
(Supplementary Figure S1C). While the magnitude of the CD8+ T-cell response is identical
in the absence of the IL-1R, the Teff response is delayed and then prolonged.

Previous studies have shown that TLR9 activation by the AAV genome in pDCs results
in type I IFN production, which is sensed by the IFNaR receptor on cDCs [20,21]. Consistent
with this pathway and the above-described results in TLR9−/− animals, CD11c-IFNaR−/−

(only CD11c+ cells lack type I IFN receptor) mice show a significant reduction in the
CD8+ T-cell response at the low (2 × 1010 vg) but not the high (2 × 1011 vg) vector dose
(Figure 1C,D). We have previously shown that IFNaR but not MyD88 expression is required
in cDCs in TLR9-dependent responses to AAV [21]. If IL-1R1 signaling is required in cDCs,
then the [MyD88fl/fl × cre-CD11c] mice (which lack MyD88 in CD11chi cDCs but not in
pDCs) should have substantially reduced CD8+ T-cell responses to OVA. This is indeed
what we observed at the low-vector dose (Figure 1D). Although not reaching statistical
significance, the average response was also reduced (by ~3-fold) compared to WT mice at
the high-vector dose (Figure 1C).

To assess the effect of CD8+ T-cell responses on OVA expression in muscle fibers,
we performed immunohistochemistry on muscle sections from ssAAV1 injected mice
(n = 3/experimental group). Transduced muscles from the WT, TLR9−/−, and IL-1R1−/−

mice all showed both widespread OVA expression targeted by CD8+ T-cell infiltration two
weeks after high-dose vector administration (Figure 2A). Therefore, the systemic T-cell
response correlated with a local immune response in the muscle. When we stained muscles
from WT, MyD88−/− or IL-1R1−/− mice after administration of the low-dose vector, we
found similar levels of muscle fiber transduction, accompanied by CD8+ T-cell infiltration
in all three strains at 2 weeks, while some residual infiltrating CD8+ T cells but no OVA-
expressing fibers were detected at 8 weeks (Figure 2B). Therefore, even low-frequency CD8+

T-cell responses were likely sufficient to target and eliminate transgene expression.
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Figure 2. CD8+ T cells infiltrate and surround muscle fibers expressing OVA. (A) Muscle sections
from C75BL/6J − WT, TLR9−/−, and IL-1R1−/− mice showing OVA-expressing muscle fibers (red)
and CD8+ T cells (green) infiltrate 2 weeks after administration of a high dose (2 × 1011 vg) of the
ssAAV1-CMV-OVA vector. Also shown is the un-injected WT muscle (negative control). Images
were generated using a 20× (top panel) or 40× (lower panel) objective. (B) Images (20×) of muscle
sections of C57BL/6J − WT, MyD88−/−, and IL-1R1−/− mice 2 or 8 weeks after administration of
low dose (2 × 1010 vg) of the ssAAV1-CMV-OVA. (C) Images (20×) of muscle sections of C57BL/6J
− WT 8 weeks after administration of a high dose (2 × 1011 vg) of the ssAAV1-CMV-OVA (left
two images) or ssAAV1-ck8-CpG−-OVA-io2 (right two images) vector. In some images, the CD8+ T
cells are indicated with green asterisks. Images are representative of transduced muscle from n = 3
mice/experimental group.
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3.3. Potential Role for dsRNA Sensing

Since blocking either TLR9 or IL-1R1 signaling did not entirely prevent transgene
product-specific cellular response, we probed if alternative innate immune sensors could
drive these T-cell responses. First, we assessed the role of the endosomal innate sensor TLR3,
a sensor of double-stranded (ds) RNA, on transgene product-specific cellular responses. We
compared the OVA-specific CD8+ T-cell response in WT- and TLR3-deficient C57BL/6NJ
mice following IM administration of AAV1 vector encoding OVA. For unknown reasons,
C57BL/6NJ mice have a weaker CD8+ T-cell response following AAV gene transfer than
C57BL/6J mice and thus require a dose of 2 × 1011 vg to yield a measurable response [25].
WT C57BL/6NJ mice showed a modest response after IM administration of 2 × 1011 vg,
which was nearly absent in TLR3−/− mice (Figure 3A). Unlike most TLRs, which signal
through MyD88, TLR3 utilizes TRIF (TIR-domain-containing adaptor protein-inducing
interferon-β) as its cytoplasmic adaptor. To further confirm the findings in TLR3−/− mice,
we assessed the frequency of OVA-specific CD8+ T-cells in TRIF−/− mice following IM
administration of the ssAAV1 vector. Compared to WT C57BL/6J mice, TRIF−/− mice had
a significantly attenuated CD8+ T-cell response against OVA at the low dose (2 × 1010 vg),
while no difference was seen at the high dose (2 × 1011 vg; Figure 3B,C). Thus, TLR3-TRIF
signaling may play a role when using limited vectors.
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Figure 3. Differential requirements for TLR3 and cytoplasmic nucleic acid sensors at different vector
doses. (A) Kinetics of OVA-specific CD8+ T-cell response in C57BL/6NJ − WT and TLR3−/− follow-
ing intramuscular gene transfer with a high dose (2 × 1011 vg) of the ssAAV1 vector. (B,C) Kinetics
of OVA-specific CD8+ T-cell response in C57BL/6J − WT and knockout mice lacking specific cy-
toplasmic nucleic acid innate sensor, following intramuscular gene transfer with low (2 × 1010 vg;
(B) and a high dose (2 × 1011 vg; (C)) of the ssAAV1 vector. Each experimental group consisted of
five mice. Data are presented as mean ± SEM. Significant differences between WT and knockout
mice are denoted as follows: the level of statistical significance is indicated as * p ≤ 0.05, ** p < 0.01,
*** p < 0.001, and ****p < 0.0001. Non-significant differences are not indicated.

Cytoplasmic RNA sensors, RIG-I and MDA5, have recently been shown to be critical
in the innate sensing of AAV [59]. To interrogate a potential role for cytoplasmic sensors
of dsRNA, we assessed OVA-specific CD8+ T-cell responses in mice deficient in MDA5 or
RIG-I pathways (MDA5−/− and DDX58−/−, respectively). Lack of MDA5 only slightly
delayed the response at a low-vector dose (2 × 1010 vg), whereas at a high-vector dose
(2 × 1011 vg), OVA-specific CD8+ T-cell response was comparable to WT mice (Figure 3B,C).
Mice that were deficient for RIG-I signaling (DDX58−/− C57BL/6NJ mice) had robust CD8+

T-cell responses when compared to WT C57BL/6NJ mice (compare Supplementary Figure
S2 and Figure 3A). In summary, we find evidence for a role of TLR3-TRIF signaling but not
MDA5 or RIG-I in CD8+ T-cell response to OVA in AAV muscle gene transfer.

Finally, we evaluated the role of cytoplasmic dsDNA sensing in the activation of
transgene product-specific CD8+ T-cell response following AAV gene transfer in muscle.
For this, we utilized C57BL/6J mice deficient in stimulator of interferon genes (STING),
a downstream adaptor molecule of cytoplasmic DNA sensor cyclic GMP-AMP synthase
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(cGAS). STING−/− mice showed an elevated response at a low dose (2 × 1010 vg) and a
somewhat reduced response at a high dose (2 × 1011 vg) when compared to WT C57BL/6J
mice. These differences were found to be statistically non-significant (Supplementary
Figure S3). Therefore, signaling through STING in response to cytoplasmic DNA sensing
may not be required for CD8+ T-cell responses against the transgene product. Interestingly,
C57BL/6J mice deficient in TBK1 (TANK binding kinase 1), which integrates TLR3-TRIF,
MDA5/RIG-I-MAVS, and cGAS-STING signaling pathways lacked responses at both vector
doses (Figure 3B,C).

3.4. Simultaneous Block of Two Innate Pathways Indicates Redundancy at High-Vector Doses and
Provides Path for Targeted Therapeutic Intervention

A logical next step based on our findings was to target two pathways when performing
high-dose gene transfer. Given that vector engineering strategies are available to reduce
TLR9 signaling and a drug to block the IL-1R1 is already approved and in clinical use in
the form of a recombinant human IL-1R antagonist, we focused on these two pathways.
For initial proof-of-principle, we used a combination of knockout mice and antibody
treatment (Figure 4). TLR9−/− mice were treated with a combination of α-IL-1α and
α-IL-1β antibodies, starting 1 day before IM administration of 2 × 1011 vg of the ssAAV1-
CMV-OVA. Alternatively, IL-1R1−/− mice were treated similarly with α-IFNaR (to block
type I IFN signaling downstream of TLR9 and other pathways). In both experiments,
the frequency of induced OVA-specific CD8+ T cells was significantly reduced (~3-fold
at the 2-week peak response) compared to mice that received isotype control antibody
(Figure 4A,B). In conclusion, disruption of two signaling pathways reduces CD8+ T-cell
responses against the transgene product at high-vector doses.
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Figure 4. Combined inhibition of TLR9 and IL-1 signaling leads to an abrogated cellular response
to AAV-encoded transgene product in muscle. (A) Kinetics of OVA-specific CD8+ T-cell response in
TLR9−/− mice following intramuscular gene transfer with a high dose (2 × 1011 vg) of the ssAAV1
vector. TLR9−/− mice were treated with an isotype control antibody (black line) or a combination of
anti-IL-1α and anti-IL-1β antibodies (brown line). (B) Kinetics of OVA-specific CD8+ T-cell response
in IL-1R1−/− mice following intramuscular gene transfer with a high dose (2 × 1011 vg) of the
ssAAV1 vector. IL-1R1−/− mice were either treated with an isotype control antibody (charcoal black
line) or with anti-IFNaR1 antibody (pink line). Each experimental group consisted of five mice. Data
are presented as mean ± SEM. Significant differences between WT and knockout mice are denoted
as follows: the level of significance is indicated as *** p < 0.001. Non-significant differences are
not indicated.
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To further explore this approach, we constructed vector genomes with reduced TLR9
activation. The ssAAV1-OVA-CpG− vector contains an OVA expression cassette that en-
tirely lacks CpG motifs (containing CMV enhancer, EF1α promoter, and CpG-depleted OVA
cDNA; analogous to published constructs expressing LacZ or human factor IX; Figure 5G
and Table 1) [22,29]. At the low dose (2 × 1010 vg), the response in WT mice was signifi-
cantly lower compared to the CpG+ ssAAV1-CMV-OVA vector (80 CpG motifs) that we
had used in all prior experiments (Figure 5A). However, at the high dose (2 × 1011 vg),
the ssAAV1-OVA-CpG− vector elicited slightly higher CD8+ T-cell responses than CpG+

ssAAV1-CMV-OVA, albeit this did not reach statistical significance (Figure 5C). While
treatment with α-IL-1α and α-IL-1β failed to reduce the response to high-dose ssAAV1-
OVA-CpG−, IL-1R1−/− mice showed a somewhat reduced response, which was, however,
not lower than the response to conventional (i.e., CpG+) ssAAV1-CMV-OVA vector in WT
mice (Figure 5C).
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OVA-specific CD8+ T-cell response in C57BL/6J − WT mice following intramuscular gene transfer
with low dose (2 × 1010 vg) of CpG+ (blue line) or CpG− (plum line) ssAAV1 vector. (B) Kinetics of
OVA-specific CD8+ T-cell response in C57BL/6J − WT mice following intramuscular gene transfer
with low dose (4 × 1010 vg) of the ssAAV1 vector with (magenta line) or without (blue line) TLR9
inhibitory sequence (io2). (C) Kinetics of OVA-specific CD8+ T-cell response in C57BL/6J − WT
(blue, orange and light green lines) and IL-1R1−/− (black line) mice following intramuscular gene
transfer with a high dose (2 × 1011 vg) of CpG+ (blue line), CpG− (orange, light green, and black
line). In two of the three groups (black, orange, and light green lines) of mice that received the
CpG− AAV1 vector, IL-1 signaling was inhibited either by using IL-1R1−/− mice (black line) or
with anti-IL-1α and anti-IL-1β antibodies (light green line). (D) Kinetics of OVA-specific CD8+ T-cell
response in C57BL/6J − WT (blue, magenta, and purple lines) and IL-1R1−/− (black line) mice
following intramuscular gene transfer with a high dose (2 × 1011 vg) of the ssAAV1 vector with
(black, magenta, and purple line) or without (blue line) TLR9 inhibitory (io2) sequence. In two of
the three groups (black, magenta, and purple line) of mice that received an AAV1 vector containing
TLR9 inhibitory (io2) sequence, IL-1 signaling was inhibited either by using IL-1R1−/− mice (black
line) or with anti-IL-1α and anti-IL-1β antibodies (purple line). (E) Kinetics of OVA-specific CD8+

T-cell response in C57BL/6J − WT (blue and red line) and IL-1R1−/− (green line) mice following
intramuscular gene transfer with a high dose (2 × 1011 vg) of the CpG− ssAAV1 vector with (red and
green line) or without (blue line) TLR9 inhibitory (IO2) sequence. IL-1R1−/− mice (green line) were
used to test the combined effect of TLR9 (CpG depletion and TLR9 inhibitory sequence) and IL-1
inhibition on transgene product-specific CD8+ T-cell response following AAV muscle gene transfer.
(F) OVA-specific CD8+ T-cell response in C57BL/6J − WT mice following intramuscular gene transfer
with a high dose (2 × 1011 vg) of the ssAAV1-ck8-CpG−-OVA-io2 vector. (G) Cartoon depicting the
arrangement of AAV expression cassettes with native, CpG− and/or TLR9 inhibitory (io2) sequence
of AAV vectors used in the present study. Each experimental group consisted of five mice. Data
are presented as mean ± SEM. Significant differences between control and experimental mice are
denoted with *. In Figure D, significance is shown between WT mice-AAV1-OVA (blue line) and WT
mice–AAV1-OVA-io2 + anti-IL-1α and anti-IL-1β (purple line) and between WT mice-AAV1-OVA
(blue line) and IL-1R1−/− mice–AAV1-OVA-io2 (black line). The level of significance is indicated as
* p ≤ 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. Non-significant differences are not indicated.

Table 1. Effect of vector genome engineering and IL-1 blockade on CD8+ T response against OVA
upon ssAAV1-OVA vector IM administration.

Vector Dose Low High

IL-1 blockade ↓ -

TLR9i (io2) ↓ -

TLR9i (io2) + IL-1 blockade nd ↓
CpG depletion ↓ -

CpG depletion + IL-1 blockade nd -

CpG depletion + TLR9i (io2) nd ↓

CpG depletion + TLR9i (io2) +
IL-1 blockade nd

↓
(but not lower than CpG depletion +

TLR9i without IL- blockade)

CpG depletion + TLR9i (io2) +
muscle-specific promoter nd ↓↓

↓ indicates reduced response compared to standard ssAAV-CMV-OVA vector given without immune modulation
(↓↓ indicates most robustly reduced response); - indicates no effect on the magnitude of response; nd—experiment
not done.

In an alternate approach to block TLR9 activation, we constructed a vector (ssAAV1-
OVA-io2), in which the TLR9 inhibitory sequence io2 was added downstream of the OVA
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cDNA in the original CpG+ ssAAV1-CMV-OVA vector (Figure 5F) [33]. Impressively, no
response was observed at a dose of 4 × 1010 vg (Figure 5B). However, this effect was again
lost at the high (2 × 1011 vg) vector dose (Figure 5D). In contrast to our experience with the
CpG− vector, IL-1 signaling blockade using either α-IL-α and α-IL-1β treatment in WT or
performing gene transfer in IL-1R1−/− mice significantly reduced the CD8+ T-cell response
against OVA after high-dose ssAAV1-OVA-io2 administration (Figure 5D). Subsequently,
we concorporated the io2 sequence into the CpG− vector to create ssAAV1-CpG−-OVA-io2
(Figure 5G). The addition of io2 resulted in a highly significant, 3-fold reduction in the
CD8+ T-cell response against OVA in WT mice and also reduced, albeit to a lesser extent,
the response in TLR9−/− mice (Figure 5E and Supplementary Figure S4). However, as
with ssAAV1-OVA-CpG− parent vector, IL-1 blockade failed to further reduce the response
(Figure 5E). In contrast, replacement of the ubiquitous enhancer/promoter sequence in
this construct with the muscle-specific ck8 promoter, as utilized in our recent canine study,
reduced the CD8+ T-cell response to nearly undetectable at the high (2 × 1011 vg) vector
dose (Figure 5F) [44]. Moreover, robust transduction of muscle in WT mice was sustained
for at least 8 weeks with this vector (which combines CpG depletion, io2, and tissue-specific
promoter). However, modest CD8+ T-cell infiltration was still observed (Figure 2C). This
is in sharp contrast to muscles from mice that had received the original CpG+ ssAAV1-
CMV-OVA vector and mostly lacked OVA expression and CD8+ T-cell infiltration at the
8-week time point (Figure 2C), indicating that transgene expression was lost, and the local
response had mostly resolved. The few areas with scarce residual OVA-expressing fibers,
which were found in 3/3 WT mice, were targeted by CD8+ T cells (Figure 2C).

3.5. Effect of Innate Immune Pathways on Antibody Formation against Transgene Product

In some of the experiments that explored the roles of TLR9 and IL-1R1 (and their
common cytoplasmic adaptor MyD88), we also assessed antibody formation against OVA in
select experimental groups injected with ssAAV1-CMV-OVA. IgG2c typically constitutes the
dominant subclass in C57BL/6J mice in response to OVA. C57BL/6J mice produced IgG2c
against OVA (starting at week 3) at a vector dose of 2 × 1010 vg (Figure 6A). This response
was delayed by 1 week in mice deficient in MyD88 and TLR9 (Figure 6A). Responses in the
knockout mice were generally weaker than in WT mice, except for TLR9−/−, which reached
a maximum titer similar to that of WT mice. IgG2c formation in IL-1R1−/− mice was only
detectable at low titer by weeks 5–6 (Figure 6A). At the high dose (2 × 1011 vg), WT mice
showed IgG2c formation against OVA within 2 weeks, and titers increased by week 4 to
levels 2–4-fold higher than for the low dose (Figure 6B). Mice deficient in MyD88, or IL-1R1,
produced substantially lower titers, while TLR9−/− mice, except for the week 6 time point,
had titers comparable to WT mice (Figure 6B). The IL-1 blockade in TLR9−/− mice that
received 2 × 1011 vg lowered IgG2c formation against OVA by ~2-fold (Figure 6C). In all
high-dose cohorts, every experimental group developed peak titers of at least 5 µg/mL.
Overall, the effect of innate immune blockade on antibody formation against the transgene
product was modest. Similarly, the replacement of the ubiquitous enhancer/promoter
with the muscle-specific ck8 promoter in the ssAAV1-CpG−-OVA-io2 construct (albeit very
effective in limiting CD8+ T-cell responses) still resulted in substantial antibody formation
against OVA (Figure 6D).
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Figure 6. Minimal effect of innate immune blockade on transgene product-specific antibody for-
mation following AAV1 muscle gene transfer. (A,B) Time course of OVA-specific IgG2c antibodies
following low (2 × 1010 vg; (A)) and high (2 × 1011 vg; (B)) dose administration of the ssAAV1
vector in C57BL/6J − WT and knockout mice lacking a specific innate sensor. (C) OVA-specific
IgG2c antibodies following high (2 × 1011 vg) dose of the ssAAV1 vector in TLR9−/− mice, which
were either treated with isotype control antibody (blue line) or a combination of anti-IL-1α and
anti-IL-1β antibodies (red line). (D) Antibody formation against OVA in C57BL/6J − WT injected
with ssAAV1-ck8-CpG−-OVA-io2 vector. Each experimental group consisted of five mice. Data are
presented as mean ± SEM. The level of significance between WT and knockout mice is indicated as
* p ≤ 0.05, ** p < 0.01, and **** p < 0.0001. Non-significant differences are not indicated.

4. Discussion

Similar to responses against viral pathogens, anti-viral vector CD8+ T-cell responses
are triggered by innate immune signals, which may be derived from sensing of PAMPs
featured by the viral vector particles (e.g., capsid or genome) or the infected tissue (damage-
associated molecular patterns, which may derive from the viral infection of the vector
administration method). Key cellular components in response to AAV vectors include
pDCs (which sense the viral DNA genome via the endosomal receptor TLR9 and are
able to infiltrate the infected tissue), cDCs (which respond to cytokine conditioning by
pDCs and present antigen via MHC-I to CD8+ T cell and via MHC-II to CD4+ T cells),
and CD4+ T helper cells (which provide co-stimulation) [19–21]. IFNα/β is produced
by pDCs upon TLR9 stimulation, while pDCs may also produce IL-1α/β during TLR9-
independent responses [20,21,25]. A complex picture emerges while attempting to identify
innate response pathways in skeletal muscle that are critical for the induction of CD8+

T-cell responses to AAV-encoded transgene products. At lower vector doses, disruption
of a single innate signaling pathway substantially reduces the response, while two or
more pathways must be blocked at higher doses of the ssAAV, indicating redundancy in
stimulating pathways (including sensing of IL-1, DNA, and dsRNA).
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Further, we show that alternative methods to TLR9 blockade (depletion of CpG motifs
and inclusion of TLR9i sequences) can be combined. However, surprisingly, not every
vector construct responded to the IL-1 blockade. We also find that responses to scAAV,
which we previously reported to more strongly direct TLR9 signaling and drive more
destructive CD8+ T-cell responses, are more TLR9 dependent even at higher vector doses,
suggesting a skewing of innate signaling toward TLR9 and downstream pathways for
scAAV vectors [34,58].

While optimal, CD8+ T-cell activation appears to depend on multiple innate pathways
to be intact at low-vector doses, likely acting in concert; the ability to dampen CD8+ T-cell
responses against the transgene product by avoiding or blocking innate signaling pathways
is limited at high doses. While we experienced variability in the OVA-specific CD8+ T cell
frequencies in WT mice between experiments, a vector dose of 2 × 1011 vg consistently
resulted in a more rapid response that peaked at 2 weeks, while a ten-fold lower vector
dose induced a response that peaked at 3 weeks. At the high dose, a blockade of a single
pathway had little effect, while a blockade of two pathways typically reduced but did
not entirely eliminate the response. Mice deficient in MyD88 or TBK1, which are critical
components of multiple signaling pathways, had low or no responses upon high-dose gene
transfer, consistent with the notion that multiple innate signaling pathways contribute
redundant activation signals. However, the scAAV vector, in contrast to ssAAV, showed
a substantially weaker response in TLR9−/− mice even at a high-vector dose; a residual
CD8+ T-cell response indicates that additional activation signals exist regardless of the
vector genome configuration.

Others have shown that AAV vectors may generate double-stranded RNA (dsRNA)
upon transduction through inherent promoter activity in the inverted terminal repeats
(ITRs) [59]. If exported into the cytoplasm, this dsRNA could be sensed by MDA5 and
RIG-I, thereby inducing type I IFN expression as was shown in hepatocytes. Whether
these events link to adaptive immune responses is unknown. We find some evidence for
the involvement of dsRNA by the TLR3-TRIF pathway (but not MDA5 or RIG-I) in CD8+

T-cell activation upon muscle gene transfer. While experimental results in both TLR3 and
TRIF-deficient mice support a contributing role for this pathway, the differences in the
timeline and degree of reduction of the responses (likely at least in part caused by the
differences in background strains) prevent us from making solid conclusions about the
robustness of the contribution relative to other pathways. Contribution of the endosomal
receptor TLR3, which is expressed by cDCs (but not pDCs), may not necessarily reflect
expression from the AAV vector but uptake of dsRNA released by damaged cells, a known
potent DAMP [60]. Other DAMPs not investigated here, such as heat shock proteins, may
also play a role. It is possible that the IM route, which causes some level of tissue damage at
the injection site, increases the likelihood of generating DAMPs. Local antigen presentation
plays an important role in B- and T-cell activation in skeletal muscle, as we have previously
shown, which prompted a limit on the dose per injection site in a muscle-directed AAV
gene therapy trial for hemophilia B [61–63].

Two innate/cytokine signaling pathways have previously been identified to link
to CD8+ T-cell activation, namely TLR9 > MyD88 > type I IFN > IFNaR [20,21] and
IL-1α,β > IL-1R1 > MyD88 [25]. In both cases, the critical cytokine is expressed by pDCs.
The IL-1R1 pathway was specifically identified as a requisite for TLR9-independent CD8+

T-cell responses against the transgene product at low dose gene transfer to the liver, result-
ing in CD8+ T cell in the hepatic microenvironment, while higher vector doses resulted in
immune tolerance induction [46]. This contrasts with the more rapid and potent responses
seen in muscle-directed gene transfer. Here, we provide multiple pieces of evidence for
diminished CD8+ T-cell responses to high-dose muscle gene transfer if both TLR9 and IL-1
signaling are targeted. For example, the addition of the TLR9i sequence io2 combined
with IL-1 blockade (genetic or antibody-mediated) was effective, albeit it could not en-
tirely prevent the response. Curiously, the CpG-depleted vector failed to be influenced
by IL-1 blockade, at least at high doses. The addition of io2 reduced the response to the
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high-dose CpG− vector in WT mice, which could not be further reduced again by IL-1
blockade. There is no obvious reason why this construct induces CD8+ T-cell responses in
an IL-1-independent fashion—a phenomenon that requires further study. It is possible that
the combination of CMV enhance/EF1α promoter in the CpG-depleted construct is more
active in antigen-presenting cells. However, this would not alleviate the need for activation
signals or cytokine stimulation of DCs for T-cell activation.

Importantly, our results demonstrate that CpG depletion and TLR9i approaches can be
combined to reduce T-cell responses. At a high dose, the ssAAV1-OVA-CpG+, ssAAV1-OVA-
CpG−, and ssAAV1-OVA-io2 vectors produced similarly potent CD8+ T-cell responses
against OVA in WT mice. Success in reducing the response in WT mice injected with
the high dose of the combination vector ssAAV1-CpG−-OVA-io2 would not have been
predicted based on the results with ssAAV1-OVA-CpG+ in TLR9-deficient mice. It is
possible that io2 further reduced TLR9 signaling that may occur in response to CpG motifs
in the ITRs or to accidentally packaged plasmid backbone sequences. However, this
outcome also raises the possibility that io2 has additional effects besides TLR9 inhibition, as
has been speculated by others [33,64]. The modest effect in TLR9-deficient mice in reducing
the response to ssAAV1-OVA-CpG− is consistent with but does not prove this conclusion.
Although experiments in STING-deficient mice did not reveal an effect of cytoplasmic DNA
sensing, we cannot rule out a role for io2 in blocking a DNA or other innate sensor yet to
be identified. It is possible that these knockout mice have skewed responses due to the
upregulation of other/compensatory pathways, as perhaps suggested by the somewhat
increased or decreased responses at different vector doses relative to those in WT mice.

In previous studies, we found no evidence for TLR2 involvement in CD8+ T-cell
responses to AAV capsid or transgene product in muscle or liver-directed gene transfer
and, therefore, did not conduct further studies of this receptor here [20,25,35]. However,
others found evidence for sensing of AAV capsid by TLR2 of human liver macrophages
and developed a strategy to incorporate a TLR2 inhibitory peptide into the capsid [65]. As
we cannot entirely rule out a role for the innate sensing of a capsid as another activation
signal, this strategy might be tested in muscle gene transfer.

5. Conclusions

Our findings have multiple mechanistic and therapeutic implications. Intramuscular
AAV vector administration triggers multiple innate immune pathways that promote CD8+

T-cell activation against the transgene product (Figure 7). A blockade of any of these
weakens the T-cell response at lower vector doses, while redundancy of activation signals
requires targeting at least two pathways at higher vector doses, supporting clinical observa-
tions that high-vector doses pose a greater risk for immunotoxicities. The IL-1R1 pathway
recently identified to promote CD8+ T-cell responses in hepatic AAV gene transfer is also
active in skeletal muscle, where it is similarly crucial as TLR9. This scenario is distinct from
low-dose liver gene transfer, where IL-1R1 deficiency but not TLR9 deficiency abrogates
CD8+ T-cell activation against the transgene product [25]. In the context of muscle gene
transfer, IL-1R1 appears to also have a role in the transition of transgene product-specific
CD8+ T cells into a memory phenotype. The IL-1R1 receptor has multiple ligands, and its
regulation is complex. Hence, these roles may not only reflect the sensing of IL-1 cytokines
but also, for example, regulation by the IL-1R antagonist.

High-vector doses, efficient gene transfer, and strong promoters, among other factors,
increase levels of the expressed antigen, which is expected to increase antigen presentation
to T cells. In this study, we used an antigen that contains a strong CD8+ T cell epitope.
Which vector dose constitutes a high or low dose for immune responses varies for different
transgene products and hosts, depending on the number and strength of T-cell epitopes.
For instance, while the delivery of full-length dystrophin may provide superior muscle
strength compared to micro-dystrophins, they also contain a larger set of potential T
cell epitopes [66,67]. In a prior study on IM F9 gene transfer in hemophilia B mice, we
found that the CpG-depleted vector (using the same enhancer/promoter elements as here)
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substantially reduced but again did not eliminate CD8+ T-cell responses (using a similar
AAV1 vector dose as the high dose in this study with the OVA transgene) [22]. Innate
immunity triggered by AAV genomes with high CpG contents may cause diverse treatment
complications. Examples include enhanced CD8+ T-cell responses to capsids, loss of F9
gene expression in AAV-transduced livers of hemophilia B patients, or inference with
neuronal structure and function upon CNS gene transfer as recently shown in a mouse
model [20,22,29–32,38,68]. Our study supports that the combination of CpG depletion and
the inclusion of TLR9i sequences could be further explored to minimize these effects.
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The sum of our findings shows that, albeit helpful, it is difficult to entirely prevent
destructive T-cell responses in muscle gene transfer by targeting innate immune pathways.
Additional vector engineering and immune modulation strategies should be employed.
While the use of muscle-specific promoters has not always yielded the desired effect, the
inclusion of micro-RNA targets for elimination of the transgene’s transcript in DCs may
be helpful, for example [69–71]. Nonetheless, our study shows encouraging results when
including a muscle-specific promoter in an expression cassette that is not only CpG-depleted
but also contains a sequence that inhibits TLR9 (and possibly additional pathways). The
ck8 promoter introduces nine CpG motifs, which may, however, be counteracted by the
inclusion of io2 (and still represents an ~1-log reduction in CpG contents compared to the
original vector). Diseases with inflamed muscle, such as muscular dystrophies, are likely
to supply additional tissue-derived DMAPs, which may necessitate additional immune
suppression [13,72].
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CD8+ T cell response in peripheral blood of mice transduced with AAV1-OVA vectors; Figure S2:
OVA specific CD8+ T cell response in C57BL/6NJ mice deficient in RIG-I as a function of vector
dose; Figure S3: OVA specific CD8+ T cell response in mice deficient in cytoplasmic DNA sensing;
Figure S4: OVA specific CD8+ T cell response in mice deficient in TLR9 and transduced with CpG
depleted vector.
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