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Abstract 
The finite-volume theory has shown to be numerically efficient and 
stable for topology optimization of continuum elastic structures. The 
significant features of this numerical technique are the local 
satisfaction of equilibrium equations and the employment of 
compatibility conditions along edges in a surface-averaged sense. 
These are essential properties to adequately mitigate some numerical 
instabilities in the gradient version of topology optimization 
algorithms, such as checkerboard, mesh dependence, and local 
minima issues. Several computational tools have been proposed for 
topology optimization employing analysis domains discretized with 
essential features for finite-element approaches. However, this is the 
first contribution to offer a platform to generate optimized topologies 
by employing a Matlab code based on the finite-volume theory for 
compliance minimization problems. The Top2DFVT provides a 
platform to perform 2D topology optimization of structures in Matlab, 
from domain initialization for structured meshes to data post-
processing. This contribution represents a significant advancement 
over earlier publications on topology optimization based on the finite-
volume theory, which needed more efficient computational tools. 
Moreover, the Top2DFVT algorithm incorporates SIMP and RAMP 
material interpolation schemes alongside sensitivity and density 
filtering techniques, culminating in a notably enhanced optimization 
tool. The application of this algorithm to various illustrative cases 
confirms its efficacy and underscores its potential for advancing the 
field of structural optimization.
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1. Introduction
In structural engineering, topology optimization is a technique that searches for the best material distribution inside an
analysis domain based on an objective function and one or more constraints (Bendsøe and Sigmund, 2003). Therefore,
topology optimization allows for the discovery of innovative and high-performance structural designs, which attracted
the interest of mathematicians and engineers (Liu and Tovar, 2014). With the progressive development of computer
technology and computational mechanics over the last decades, the structural topology optimization tools have gradually
experienced improvements that allow the solution of medium and large-scale problems. In addition, topology optimi-
zation has become an effective strategy for generating innovative forms for additive manufacturing, architectural design,
and engineering (Zhuang et al., 2023). In general, compliance evaluation has played an important role in topology
optimization algorithms. Since the pioneer work ofMichell (1904), who derived the optimality criteria (OC) method, and
the reconstruction proposed by Bendsøe and Kikuchi (1988), a great part of the advances in topology optimization has
been achieved by employingmethodologies based on structural complianceminimization problems. Some studies on this
field can still be found in Liu et al. (2023), Yi et al. (2023), Lee et al. (2023), Arruda et al. (2022), Bouajila et al. (2021),
and Ferrari and Sigmund (2020). Recent advances in topology optimization have expanded to include anisotropic
composites, optimizing both material distribution and fibre orientation. Almeida et al. (2023) introduced a framework for
concurrent optimization of topology and fibre orientation in 3D-printed fibre-reinforced composites, effectively
minimizing compliance. This approach, particularly for materials like onyx, enhances stiffness and strength, offering
significant benefits for additive manufacturing of high-performance and lightweight structures.

In topology optimization algorithms, the interest is in determiningwhether we should putmaterial or not, which generates
a “black and white” design. Therefore, the structural material distribution is obtained by a binary “0-1”, where 0 indicates
void and 1 indicates the presence of material. However, this kind of topology optimization algorithms lead to an integer
programming problem, which has revealed to be an unfeasible approach for large scale topology optimization problems.
An alternative approach is the SIMP (Solid Isotropic Material with Penalization) method, which has been extensively
used due to its versatility, convergence, and ease implementation (Rozvany, 2009). In this approach, the material
properties can be evaluated inside each element of the discretized domain, and the design variables are the elements’
relative densities. Therefore, the mechanical properties are modeled by the material relative density raised to a penalty
factor that penalizes their intermediate values. Another interpolation scheme to penalize intermediate values of relative
density is the RAMP (Rotational Approximation of Material Properties) method proposed by Stolpe and Svanberg
(2001), which employs a concave penalty function to suppress these intermediate values in the objective function. Unlike
the SIMP method, the RAMP model presents non-zero sensitivity at zero density, so this model is especially efficient to
remedy some numerical difficulties presented in problems with very low densities (Deaton and Grandhi, 2014).

REVISED Amendments from Version 1

Significant updates were made to enhance clarity and address the reviewers’ comments. Although no changes were made
to the abstract, fourteen textual modifications were introduced in the main body of the manuscript, including clarifications
regarding the local stiffness matrix and a discussion on the impact of memory preallocation, outlining the trade-offs
between computational speed and memory usage.

Five new figures were incorporated into themanuscript. One figure presents a flowchart detailing the algorithm’s workflow,
providing a clearer understanding of the methodology. A second figure was added to present the convergence analysis of
the SIMP andRAMPmethodswith andwithout filtering. The sensitivity filter accelerates convergence by smoothing the local
response, while the density filter reduces thin bars but requiresmore iterations and higher computational costs. The RAMP
method provides gradual convergence and smaller discontinuities in the continued penalization scheme, in contrast with
the SIMP method, which is also more sensitive to mesh refinement.

Three added figures show optimized topologies obtained using the top99neo algorithm for comparison with those
previously generated using the Top2DFVT code, illustrating the differences in mesh dependency between the methods,
with the Top2DFVT demonstrating a lower sensitivity to mesh refinement. A comparison of computational efficiency
between the Top2DFVT and top99neo algorithms was introduced in the text, with the Top2DFVT exhibiting a higher
computational cost in some scenarios due to the larger number of degrees of freedom and offering advantages in terms of
numerical stability.

Thedata in the tableswerenot changed, and a reference suggestedby oneof the reviewerswas included in the introduction
to contextualize previous work on topology optimization of anisotropic composites.

These revisions ensure that the manuscript comprehensively addresses the reviewers’ concerns, enhancing the technical
depth and clarity while maintaining the integrity of the original data and abstract.

Any further responses from the reviewers can be found at the end of the article
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Different authors have developed educational algorithms to design optimized topologies in the last two decades. The
trailblazer top99 educational code written inMatlab proposed by Sigmund (2001) had promoted important impacts in the
topology optimization field, such as teaching of topology optimization tools in undergraduate courses, building simple
code for new researchers, and pioneering a new popular category of publications in the structural optimization field:
educational articles self-containing compact codes for teaching and research (Zhou and Sigmund, 2021). Beyond the
well-known top99 Matlab code, several computer tools for Matlab and other platforms are available, such as PETSc by
Smit et al. (2021) and Aage et al. (2015) for Python; TopOpt app by Aage et al. (2013) for language C; Stutz et al. (2022),
Aage and Lazarov (2013), and Borrvall and Petersson (2001) for C++ language; Liu et al. (2005) for Femlab; and Sokół
(2011) for Mathematica. However, a significant part of the proposed educational algorithms for topology optimization is
written in Matlab language, as top99neo by Ferrari and Sigmund (2020), an 88-line code for parametrized level-set
method byWei et al. (2018), top88 byAndreassen et al. (2011), top3d by Liu and Tovar (2014), PolyTop by Talischi et al.
(2012), HoneyTop90 by Kumar (2023), a 115-line code for multi-material topology optimization by Tavakoli and
Mohseni (2014), and GRAND by Zegard and Paulino (2014).

In the top99 topology optimization code, the performance of several operations can be increased by exploiting the
strengths of Matlab, such as loop vectorization and memory preallocation, and by restructuring the program, as moving
portions of code out of the optimization loop so they would be executed once (Andreassen et al., 2011). Therefore,
Andreassen et al. (2011) have proposed an 88-line code in Matlab for compliance minimization by allocating these
computational features (top88), which has substantially improved the computational performance of the optimization
algorithm. Later, Liu and Tovar (2014) have extended this algorithm to three-dimensional problems by also placing
other strategies for topology optimization of compliant mechanisms and heat conduction problems. With the evolution
of topology optimization research field and Matlab, the top88 code has become outdated, which has motivated the
publication of the new generation of the top99 code (top99neo) by Ferrari and Sigmund (2020), making some
improvements inmet the assembly operations, accelerating the Optimality Criteria (OC) method, filters implementation,
and extending to three-dimensional structures.

Araujo et al. (2020a,b) propose applying the finite-volume theory for topology optimization considering compliance
minimization. This theory has been shown to be numerically stable for optimization problems, especially its
checkerboard-free property, even when a non-filtering technique is employed. Numerical stability is an essential feature
of the finite-volume theory applied in topology optimization tools to obtain more reliable optimized topologies. Also,
this technique has shown to be well suitable method for elastic stress analysis in solid mechanics, investigations of its
numerical efficiency can be found in Araujo et al. (2021), Cavalcante et al. (2007a,b, 2008) and Cavalcante and Pindera
(2012a,b). The satisfaction of equilibrium equations at the subvolume level, concomitant to kinematic and static
continuities established in a surface-averaged sense between common faces of adjacent subvolumes, are features that
distinguish the finite-volume theory from the finite-element method. Thus, in the finite-volume theory, the connections
between adjacent subvolumes occur through subvolumes’ faces, which is more likely from the continuum mechanics
point of view.

This contribution provides a new topology optimization tool for the analysis of 2D structures using theMatlab language,
which starts from domain discretization and continues until data is post-processed. In addition, based on the authors’
knowledge, this is the first time a platform for optimizing structures using the finite-volume theory can be applied to
medium and large-scale problems, besides obtaining checkerboard-free and mesh-independent designs. The topology
optimization tool also incorporates the SIMP and RAMP methods and the sensitivity and density filters. Employing a
symmetric modified stiffness matrix also represents an advance since it accelerates the algorithm and establishes a
relation between resultant forces and displacements instead of tractions and displacements, which are energetically
conjugated static and kinematic quantities. These improvements have dramatically reduced the computational cost and
solved the oscillatory phenomenon issue through the RAMP approaches, especially compared with the results in Araujo
et al. (2020a). More details about the implementation can be found in the GitHub link (https://github.com/fvt7782/
Top2DFVT).

2. Finite-volume theory
In general, the finite-volume theory employs the stress and displacement fields and imposes boundary and continuity
conditions between adjacent subvolumes in an average-sense, which has guaranteed the checkerboard-free property
discussed in Araujo et al. (2020a). Additionally, the differential equilibrium equations are locally satisfied in an average-
sense (Araujo et al., 2021), and the displacement field in the subvolume is modeled by second-order polynomials defined
in local coordinates (Cavalcante et al., 2007a). The presented formulation has its roots in the standard version of the finite-
volume theory presented in Cavalcante and Pindera (2012a) for structured meshes formed by rectangular subvolumes.
Fundamentally, the structural analysis problem involves mechanical quantities evaluation, as applied loads, internal
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forces, displacements, and strains. The main objective is determining the stress and displacements when structural
discretized domains are employed, where stress-strain relation can be easily expressed.

Figure 1 presents the analysis domain in x1� x2 plane, which is discretized inNq subvolumes. The subvolume dimensions
are l qð Þ and h qð Þ for q¼ 1,… ,Nq, where x

qð Þ
1 and x qð Þ

2 represent the local coordinate system. Following Cavalcante and
Pindera (2012a), the displacement of a subvolume q can be approximated by an incomplete quadratic version of Legendre
polynomial expansion in the local coordinate system as follows:

u qð Þ
i ¼W qð Þ

i 00ð Þ þ x qð Þ
1 W qð Þ

i 10ð Þ þ x qð Þ
2 W qð Þ

i 01ð Þ þ
1
2

3x qð Þ
1

2� l qð Þ2

4

 !
W qð Þ

i 20ð Þ þ
1
2

3x qð Þ
2

2�h qð Þ2

4

 !
W qð Þ

i 02ð Þ, (1)

where i¼ 1,2 andW qð Þ
i mnð Þ are unknown coefficients of the displacement field. Therefore, the surface-averaged displace-

ment components of a generic subvolume are represented in Figure 2(a) and can be defined as

u q,pð Þ
i ¼ 1

l qð Þ

ð l qð Þ
2

�l qð Þ
2

ui x qð Þ
1 ,∓

h qð Þ

2

 !
dx qð Þ

1 , for p¼ 1,3

u q,pð Þ
i ¼ 1

h qð Þ

ðh qð Þ
2

�h qð Þ
2

ui � l qð Þ

2
,x qð Þ

2

 !
dx qð Þ

2 , for p¼ 2,4

: (2)

Similarly, considering the application of Cauchy’s law and the plane stress state, the surface-averaged traction
components at the subvolume faces can be evaluated as

t q,pð Þ
i ¼∓

1

l qð Þ

ð l qð Þ
2

�l qð Þ
2

σ2i x qð Þ
1 ,∓

h qð Þ

2

 !
dx qð Þ

1 , for p¼ 1,3

t q,pð Þ
i ¼� 1

h qð Þ

ðh qð Þ
2

�h qð Þ
2

σ1i � l qð Þ

2
,x qð Þ

2

 !
dx qð Þ

2 , for p¼ 2,4

, (3)

where t q,pð Þ
i are adequately represented in Figure 2(b).

Following Araujo et al. (2020a), the local system of equations for a generic subvolume can be established as

t qð Þ ¼K qð Þu qð Þ, (4)

where u qð Þ ¼ u q,1ð Þ
1 ,u q,1ð Þ

2 ,u q,2ð Þ
1 ,u q,2ð Þ

2 ,u q,3ð Þ
1 ,u q,3ð Þ

2 ,u q,4ð Þ
1 ,u q,4ð Þ

2

h iT
is the local surface-averaged displacement vector, t qð Þ ¼

t q,1ð Þ
1 , t q,1ð Þ

2 , t q,2ð Þ
1 , t q,2ð Þ

2 , t q,3ð Þ
1 , t q,3ð Þ

2 , t q,4ð Þ
1 , t q,4ð Þ

2

h iT
is the local surface-averaged traction vector, and K qð Þ is the local stiffness

Figure 1. Discretized reference domain and global coordinate system (left) and subvolume and local coordi-
nate system (right).
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matrix for a generic subvolume q. However, K qð Þ is a non-symmetric matrix, which increases the computational cost of
topology optimization problems based on the finite-volume theory when compared to the same approaches based on the
finite-element method. Additionally, the surface-averaged tractions are not energetically conjugated with the surface-

averaged displacements along the subvolume faces, which leads the K qð Þ matrix to be more a pseudo stiffness matrix.
FollowingAraujo et al. (2021), it can be defined amodified local system of equations in terms of resultant forces acting in
the edges of a subvolume q, which are energetically conjugated with the surface-averaged displacements, as follows

R qð Þ ¼L
qð Þ
t qð Þ ¼L

qð Þ
K qð Þu qð Þ ¼K

qð Þ
u qð Þ, (5)

where K
qð Þ ¼L

qð Þ
K qð Þ is the modified local stiffness matrix, which is found to be a symmetric 8 by 8 matrix, R qð Þ ¼

R q,1ð Þ
1 ,R q,1ð Þ

2 ,R q,2ð Þ
1 ,R q,2ð Þ

2 ,R q,3ð Þ
1 ,R q,3ð Þ

2 ,R q,4ð Þ
1 ,R q,4ð Þ

2

h iT
is the local resultant force vector, whose components are illustrated

in Figure 2(c), and L
qð Þ
can be defined as

L
qð Þ ¼

L q,1ð Þ 0 0 0

0 L q,2ð Þ 0 0

0 0 L q,3ð Þ 0

0 0 0 L q,4ð Þ

26664
37775 for L q,pð Þ ¼

L qð Þ
p 0

0 L qð Þ
p

" #
, (6)

where L qð Þ
1 ¼ l qð Þ, L qð Þ

2 ¼ h qð Þ, L qð Þ
3 ¼ l qð Þ and L qð Þ

4 ¼ h qð Þ as illustrated in Figure 1.

Therefore, the modified global system of equations can be written as

Figure 2. Degrees of freedom in a generic subvolume: (a) surface-averaged displacements, (b) surface-
averaged tractions, and (c) resultant forces along edges.
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R¼Ku, (7)

where K¼PNq

q¼1Q
qð ÞTK qð Þ

Q qð Þ is the modified global stiffness matrix, obtained by summing the individual contribution

of each subvolume of the discretized domain, with Q qð Þ and Q qð ÞT being the kinematic and static incidence matrices,
respectively, R is the global resultant force vector, and u is the global surface-averaged displacement vector.

Themodified global stiffness matrix allows the adoption of energetically conjugated quantities, i.e., the surface-averaged
displacements and the resultant forces acting on the subvolume faces. This adjustment not only guarantees better physical
consistency but also improves computational efficiency by enabling the use of solvers optimized for symmetric systems.
As a result, the time required to solve the modified global system of equations is significantly reduced, bringing the
computational cost closer to the finite element method-based approaches while retaining the benefits of the finite-volume
theory in terms of numerical stability and checkerboard-free solutions.

3. Topology optimization problems for compliance minimization
A significant portion of the progress in topology optimization has been made through the consideration of compliance
minimization problems, whose concepts are well-established in the context of finite-element strategies. In this study, we
implement the compliance minimization problem using linear elastic stress analysis based on the finite-volume theory.
According to Araujo et al. (2021), the total work done by external loadings and the total strain energy of a deformed
structure are equal for quasi-static analysis in the context of the standard finite-volume theory. As a result, the nested
topology optimization problem for compliance minimization can be written as

Find ρwhich minimizesC ρð Þ¼PNq

q¼1u
qð ÞTK qð ÞT

u qð Þ ¼PNq

q¼1Eq ρq
� �

u qð ÞTK qð Þ
0

T
u qð Þ

subject to :
V ρð Þ
V

¼ f

0≤ ρq ≤ 1

,

8>>>>>><>>>>>>:
(8)

where C ρð Þ is the compliance function, defined as twice the work done by external loadings, ρ is the relative density
vector, ρq is the relative density associated with the subvolume q, K

qð Þ
0 is the subvolume modified stiffness matrix for a

subvolume with unit Young’s modulus, f is the volume fraction, and V ρð Þ and V are the material and reference domain
volumes, respectively.

The problem presented in Eq. (8) is solved with a nested iterative loop, where at each iteration, the displacement u is
computed by solving the modified global system of equations presented in Eq. (7). The two major material interpolation
functions are implemented in the algorithm: SIMP (Sigmund, 2007) and RAMP (Stolpe and Svanberg, 2001). The
Young’s modulus EqðρqÞ of each subvolume can be evaluated by the following expressions:

Eq ρq
� �

¼Eminþρpq E0�Eminð Þ for SIMP

Eq ρq
� �

¼Eminþ
ρq

1þa 1�ρq
� � E0�Eminð Þ for RAMP

, (9)

where p and a are the penalization factors for SIMP and RAMP methods, respectively, E0 is the material stiffness, and
Emin is the soft (void) material stiffness, which is a non-zero positive low value to avoid the singularity in the stiffness
matrix. Figure 3 shows the concavity of the penalization functions performed by the SIMP and RAMP methods as
presented by Eq. (9), where the ratio Emin=E0 is adopted as 10�9. The RAMPmethod presents a more gradual increase in
its concavity when compared to the SIMP method, which softens the numerical response of this method. The function
concavity observed in the RAMP method is smoother and presents a slower convergence to the limit relative density
values (0 or 1), as observed in the green (RAMP for a¼ 1) and blue (RAMP for a¼ 2) lines, which incurs in a more
gradual convergence for this method. On the other hand, the SIMPmethod concentrates the relative density values in 0 or
1, as observed in concavity of the orange (SIMP for p¼ 2) and yellow (SIMP for p¼ 3) lines, promoting a faster
convergence to the black and white design.
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3.1 Objective function gradient
The gradient of the compliance with respect to the subvolume density ρr can be determined by

∂C ρð Þ
∂ρr

¼
XNq

q¼1

∂u qð ÞT

∂ρr
K

qð ÞT
u qð Þ þu qð ÞT ∂K

qð ÞT

∂ρr
u qð Þ þu qð ÞTK qð ÞT ∂u qð Þ

∂ρr

24 35: (10)

Employing K
qð ÞT ¼K

qð Þ
, the Eq. (10) can be simplified to

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ þ2

XNq

q¼1
u qð ÞTK qð Þ ∂u qð Þ

∂ρr

� �
: (11)

The Eq. (11) can be rewritten as

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ þ2uTK

∂u
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ þ2RT

p

∂uu
∂ρr

þ2RT
u

∂up
∂ρr

, (12)

whereRp andup are the prescribed force and displacement vectors, respectively, andRu anduu are the unknown force and
displacement vectors, respectively. In terms of these vectors, the global system of equations can be decomposed as
follows

Rp

Ru

� �
¼ Kpu Kpp

Kuu Kup

" #
uu
up

� �
: (13)

The subscripts in Eq. (13) reflect the relationship between prescribed and unknown quantities, where the first index refers
to forces and the second to displacements. The letter “u” denotes unknown quantities, while “p” represents prescribed
ones. Therefore, the submatrix Kpu expresses the coupling between prescribed forces and unknown displacements, while
Kpp defines the relationship between prescribed forces and prescribed displacements. Similarly, Kup describes the
interaction between unknown forces and prescribed displacements, and Kuu corresponds to the relationship between
unknown forces and unknown displacements. This indexing scheme distinguishes between the interactions of prescribed
and unknown quantities within the stiffness matrix.

Once ∂up=∂ρr ¼ 0, the Eq. (12) can be simplified to

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ þ2RT

p

∂uu
∂ρr

: (14)

Thus, there are two cases, as described below.

Figure 3. SIMP and RAMP methods’ penalization functions.
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Case 1: prescribed displacement (Rp ¼ 0 and up 6¼ 0), which implies in the maximization of C ρð Þ.

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ (15)

Case 2: prescribed force (Rp 6¼ 0 and up ¼ 0), which implies in the minimization of C ρð Þ.

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ þ2uTuKpu

∂uu
∂ρr

(16)

Differentiating Rp ¼Kpuuu in relation to ρr , follows

0¼ ∂Kpu

∂ρr
uuþKpu

∂uu
∂ρr

∴ Kpu
∂uu
∂ρr

¼�∂Kpu

∂ρr
uu: (17)

Thus

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ �2uTu

∂Kpu

∂ρr
uu: (18)

Considering up ¼ 0, follows

uTu
∂Kpu

∂ρr
uu ¼ uT

∂K
∂ρr

u¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ: (19)

This implies

∂C ρð Þ
∂ρr

¼ u rð ÞT ∂K
rð Þ

∂ρr
u rð Þ �2u rð ÞT ∂K

rð Þ

∂ρr
u rð Þ ¼�u rð ÞT ∂K

rð Þ

∂ρr
u rð Þ, (20)

which results in

∂C ρð Þ
∂ρr

¼�dEr ρrð Þ
dρr

u rð ÞTK rð Þ
0 u rð Þ, (21)

where

dEr ρrð Þ
dρr

¼ pρp�1
r E0�Eminð Þ for SIMP

dEr ρrð Þ
dρr

¼ 1þa

1þa 1�ρrð Þ½ �2 E0�Eminð Þ for RAMP:
(22)

The examples analyzed in the following sections are associated with the second case, where a prescribed force is applied,
and all the prescribed displacements are zero.

3.2 Optimality criteria method
The proposed optimization problem is solved employing the OC method. Following Sigmund (2001) and Andreassen
et al. (2011), a heuristic updating scheme identical to the scheme proposed in Bendsøe (1995) can be employed as

ρnewq ¼

max 0,ρq�m
� �

, if ρqB
η
q ≤ max 0,ρq�m

� �
,

min 1,ρqþm
� �

, if ρqB
η
q ≥ min 1,ρqþm

� �
,

ρqB
η
q, otherwise

,

8>>>>><>>>>>:
(23)

where m is a positive move-limit, η is a numerical damping factor, and Bq is the optimality condition defined as
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Bq ¼
� ∂C

∂ρq

λ ∂V
∂ρq

, (24)

where the Lagrange multiplier λ can be found by means of a bisection algorithm.

The damping factor can be employed to regularize possible oscillations during the optimization, mainly when no filtering
techniques are employed. The parameter η is directly related to the method performance, once this affects the speed
variation ofBη

q (Montes, 2016). A high value for η can accelerate the optimization convergence process, whichmay cause
oscillations in the displacement field for the low-density regions (Ma et al., 1993). Also, the adoption of minor values of η
can prevent divergence in the topology optimization algorithm; however, this results in small changes in the design
variables, which leads to a slower convergence process (Ma et al., 1993). The value of η that provides the faster
convergence for the overall process is 1/2, so it is recommended tomaintain the damping factor as close as possible of this
value.

3.3 Mesh-independent filters
As discussed by Araujo et al. (2020b), the topology optimization problem based on the finite-volume theory is a
checkerboard-free approach; however, it is observed the occurrence of themesh-dependency numerical issue. As a result,
for topology problems employing the finite-volume theory, filtering techniques are employed to circumvent the mesh
dependence issue. Filtering techniques intend to regularize topology optimization numerical issues by using density or
sensitivity-based methods. For the density-based methods, each subvolume is redefined by a weighted average of the
densities in the subvolume neighborhood, which modifies the sensitivities after the finite-volume analysis. For the
strategy based on sensitivity methods, the finite-volume theory analysis is performed, and the sensitivities are consis-
tently calculated; subsequently, they are heuristically recalculated by weighted averaged functions of the sensitivities in
the neighboring subvolumes (Sigmund, 2007).

For the sensitivity-based strategy, the employed filtering technique modifies the subvolumes’ sensitivities as follows

∂C

∂ρq
¼ 1

max γ,ρq
� �P

iϵN
bHqi

X
iϵN
bHqiρi

∂C

∂ρi
, (25)

where γ¼ 10�3 is a small positive real value introduced to avoid division by zero, N is the set of subvolumes i for which
the center-to-center distance Δ q, ið Þ to subvolume q is smaller than the filter radius rmin, and bHqi is a weight factor
evaluated as (Andreassen et al., 2011)

bHqi ¼ max 0,rmin�Δ q, ið Þð Þ, (26)

The density filter modifies, besides the sensitivities, the original densities ρq as follows

bρq ¼ 1P
iϵN
bHqi

X
iϵN
bHqiρi, (27)

wherebρq are referred to as the physical densities, as the application of a density filter causes the original densities ρq to lose
their physical meaning (Sigmund, 2007). When the density filter is employed, the objective function sensitivities with
respect to the physical densities bρq are given by Eq. (21) once the design variables ρq are replaced by bρq.
4. Software description
Top2DFVT is an algorithm developed to obtain optimized topologies using the finite-volume theory for linear elastic
continuum structures. The first use of this algorithm performed byAraujo et al. (2020a) was based on the implementation
suggested by the top99 code (Sigmund, 2001), where some operations, such as the filtering procedure and matrices
assembly, dramatically increase the computational cost. Therefore, the main features of the top88 code are now explored
in this version, such as loop vectorization and memory preallocation, which are strengths of Matlab explored in this
program. Additionally, some parts of the code are moved out of the optimization loop, guaranteeing they are only
performed once. From the top99neo code, the fsparse function is implemented for finite-volume theory matrices
assembly, which guarantees a gain of computational efficiency by accelerating the preallocation of these large matrices.
The program also explores two new advances in the OC method promoted by the top99neo code. The first advancement
incorporates a better approximation for the initial guess of the interval of theLagrangemultiplier λ in the bisectionmethod.
This improvement reduces the number of iterations operated by the OC method by suggesting initial values closer to the
final solution in the iterative process of the bisection method. The second advancement involves avoiding the application
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of a filter at each bisection step when checking the volume constraint with the physical field. This alternative reduces the
processing time of each bisection iteration and represents another improvement inspired by the top99neo code.

The proposed algorithm is a collection of Matlab functions written in 175 lines, disregarding the commented lines, that
implement the design domain, material properties, finite-volume theory analysis, topology optimization, mesh-
independency filters, and post-processing, as shown in the flowchart in Figure 4. In the data initialization step, the
design domain and material properties are defined as inputs to the topology optimization problem, and homogeneous
rectangular subvolumes are adopted in the discretized domain. The relative density of each subvolume in the discretized
domain is taken as constant. The finite-volume theory analysis is performed for structured meshes considering linear
elastic materials for plane stress state. The gradient-based topology optimization problem for compliance minimization is
solved employing the OC method, considering a move limit of 0.2. The stopping criterium is set up as follows: 1% of
tolerance for the maximum change in the design variables between successive steps. Two mesh-independent filters are
implemented: a sensitivity filter and a density filter based on the filtering approaches presented by Andreassen et al.
(2011). Finally, the algorithm prints the obtained optimized topology and the investigated numerical aspects, such as the
number of iterations, processing time, compliance estimations, etcetera.

In the Top2DFVT implementation, memory preallocation is crucial in enhancing computational efficiency by reducing
the time required for matrix assembly and solving linear systems. However, this performance gain comes at the expense
of increased memory usage, as large data structures must be allocated in advance. This trade-off between computational

Figure 4. Flowchart of the Top2DFVT for the topology optimization of linear elastic continuum structures.

Page 11 of 46

F1000Research 2024, 13:805 Last updated: 30 OCT 2024



speed andmemory consumption is a common consideration in the design of topology optimization algorithms.While the
memory overhead is manageable for medium-sized problems, it can become significant for large-scale applications.
Therefore, careful management of memory resources is essential to balance efficiency and scalability.

4.1 Software architecture
The algorithm is initialized by entering the following line in the Matlab command prompt:

Top2DFVT(L,H,nx,ny,volfrac,penal,frad,ft,varargin)

where L and H indicate the horizontal and vertical analysis domain length, respectively, nx and ny are the number of
subvolumes in the horizontal and vertical directions, respectively, volfrac is the prescribed volume fraction constraint,
penal is the penalty factor, frad is the filter radius, ft specifies whether sensitivity filter (ft = 1), or density filter (ft = 2), or
no filter (ft = 0), and varargin activates the use of the fsparse routine when set up as ‘fast’. In Top2DFVT.m file, the major
sections are default parameters’ declaration, initialization of design variables, domain initialization, local stiffness matrix
calculation, material interpolation, filtering initialization, topology optimization iterative process, and post-processing.

The default parameters indicate the value of the applied concentrated load, the material Young’s modulus, the soft
material stiffness, the Poisson ratio, the type of penalization method, the damping factor, and the maximum number of
iterations. Fundamentally, the soft material stiffness must be aminimal value larger than zero, and the type of penalization
method can be chosen between ‘SIMP’ or ‘RAMP’ for the material interpolation scheme. While the initialization of the
design variables step establishes the discretization of the analysis domain by indexing each subvolume, allocating the
relative density, and the volume-constrained gradient matrix. Therefore, the design domain is assumed to be rectangular
and discretized in rectangular subvolumes. An example of a coarsemesh composed of 12 subvolumes with four edges per
subvolume and two degrees of freedom (DOFs) per face is shown in Figure 5.

The subvolume is indexed row-wise from left to right and down to up, as represented by the bold number shown in
Figure 5. Similarly, the subvolume faces are numbered from left to right and down to up, however, the horizontal faces are
first indexed, followed by the indexing of the vertical faces, as illustrated in Figure 5. As a result, twoDOFs are defined in
each subvolume face, where the DOFs 2j�1 and 2j correspond to the horizontal and vertical displacement of face j,
respectively. The DOFs assemblage is operated by the subroutine:

[dof,ndof,ijK] = DOFassembly(nx,ny)

where dof is the matrix containing the subvolume DOFs, ndof is the total number of DOFs, and ijK is the indexing matrix
employed for the global stiffness matrix assemblage.

The row iK and column jK index vectors are generated by a Kronecker matrix product with a unit vector of 8 lines. The
resulting vectors iK and jK are structured so that the iK(i) and jK(j) indices correspond to the assemblage of the stiffness
matrix for the subvolume q. The assembly of the global system of equations is performed by employing the sparse
function inMatlab, which takes three vectors as input arguments: the first and second contain the row and column indices
of the non-zero entries, while the third vector contains the entry values of the sparse vectors and matrices. It can be also
suggested the use of the fsparse routine, developed by Engblom and Lukarski (2016), which enhances the sparse

Figure 5. Analysis domain with 12 subvolumes and face indexing.

Page 12 of 46

F1000Research 2024, 13:805 Last updated: 30 OCT 2024



assembly by providing a better ordering of the performed operations. Although Ferrari and Sigmund (2020) have
achieved a speedup of 170-250% in the algorithm compared to sparse function on a single-core processor, the
performance achieved in our computational environment is similar for both routines. The fsparse routine is performed
by setting the variable varargin as ‘fast’, while the absence of values for this variable indicates the use of the ‘sparse’
routine.

The structure supporting conditions are prescribed in supp vector by specifyingwhichDOFs of the discretized domain are
fixed, while the natural boundary conditions are specified directly in the global force vector F by addressing the DOFs
with prescribed loads and their respective magnitude force values. The assemblage of the global stiffness matrix is
operated by the function

K = StiffnessAssemblage(sK)

for sK = K0(:)*E(:)’, where K0 is the local stiffness matrix for a unitary elastic modulus obtained with the function

K0 = LocalStiffMatrix(nu,l,h)

and E is the chosen material interpolation scheme. While the local stiffness matrix is symmetric, rounding errors during
the assembly of the global stiffness matrix using the sparse or fsparse commands can cause asymmetry. To correct this,
symmetry is enforced at the global level, improving the efficiency of theMatlab backslash (\) command, as recommended
by Andreassen et al. (2011).

After solving the global system of equations, the subvolume compliance and its sensitivities are calculated. The objective
function value is obtained by adding the individual contribution of each subvolume in the discretized domain, while the
subvolume sensitivities are modified considering the aspects of the chosen filtering technique. Subsequently, the design
variables are updated by the OC method. The convergence criterium is adopted as 1% of tolerance for the maximum
change in design variables. As post-processing step, the investigated numerical aspects are printed, followed by the
plotting of the optimized topology. Finally, the processing time is computed for the performed analysis.

5. Illustrative examples
The performed example is a cantilever deep beam subject to a concentrated load, as shown in Figure 6. In this case, the
vertical and horizontal averaged displacements at the edges of the left border of the structure are fixed, so the supp vector
is set up as

supp = unique (dof(1:nx:end-nx+1,7:8))

and the concentrated load is positioned in themiddle of the right border in the structure, therefore, the global force vector F
is given by

F = sparse (dof (nx*(ny+1)/2,4)’,1,P,ndof,1)

In this example, the dimensions of the cantilever deep beam are L¼ 100 andH¼ 50, and the concentrated load is applied
at the center of the free edge. To ensure the load is applied to the face of a single subvolume, the number of subvolumes in

Figure 6. Cantilever deep beam.
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the vertical direction must be odd. Furthermore, to generate an analysis domain with square subvolumes, the number of
subvolumes in the horizontal direction must be twice the number of those in the vertical direction.

The data initialization is set up as P¼�1, for the applied concentrated load, E0 ¼ 1, for the Young’s modulus,
Emin ¼ 10�9, for the soft material stiffness, ν¼ 0:3, for the Poisson’s ratio, η¼ 1=2, for the damping factor,
move¼ 0:2, for the move-limit, and maxit¼ 100, for the maximum number of iterations. For the approaches using the
SIMP model, the damping factor is adjusted to 1/2.6 to avoid the oscillatory phenomenon, as discussed by Araujo et al.
(2020a,b). The computational environment in terms of programming language and machine can be defined as Matlab
R2023a (64-bits) forWindows 11, accompanied by theOptimization and Parallel Computing toolboxes, and processor of
12th Gen Intel(R) Core (TM) i7-1260P 2.10 GHz, RAM 16.0 GB DDR5.

Considering the same parameters employed by Araujo et al. (2020a) in the filtering scenario, the algorithm can be started
by the following command:

Top2DFVT(100,50,202,101,0.4,1:0.5:4,0.71,1)

which consists in the application of the sensitivity filter considering the adjacent subvolumes with a filter radius of 0.71,
given by approximately 1:01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2qþh2q

q
, where lq and hq represent the subvolume dimensions, and a volume fraction of

40% of the total volume. The fsparse routine can be performed by including varargin = ‘fast’ in the Top2DFVT
command. The obtained optimized topologies for the SIMP model are shown in Figure 7, where Figure 7a, 7b, and 7c
show the optimized topologies obtained by employing the sensitivity, density, and no filtering techniques, respectively.
The investigated numerical aspects are presented in Table 1. In general, the obtained optimized topologies have shown to
be checkerboard-free and the employed filtering techniques have qualitatively reduced the mesh dependency issue.
Araujo et al. (2020a,b) have already verified these features; however, the current algorithm has obtained similar results by
reducing the computational cost by 99.8%. For instance, the same analysis performed for a cantilever deep beam using the
sensitivity filter with a mesh of 20,402 subvolumes took 10 hours, 28 minutes, and 37 seconds in Araujo et al. (2020a),
while the same analysis employing the Top2DFVT algorithm took only 1 minute and 6 seconds, as shown in Table 1.

For the RAMP approach, the penalty factor variable is adjusted to penal = 0:0.5:3, and the variable model is modified to
‘RAMP’. The optimized topologies obtained for the RAMP model are shown in Figure 8, considering the application of
the sensitivity filter, Figure 8a, density filter, Figure 8b, and no filtering, Figure 8c. In general, they are checkerboard-free
optimized topologies with a reduction in the obtained structural compliance values compared to the optimized topologies
generated by the SIMP model, as presented in Table 1. The no-filter approach generated an optimized structure like the
optimized topologies obtained by employing the SIMP model and mesh-independent filters. Thus, the RAMP model
coupled with the finite-volume theory has shown to be checkerboard-free and mesh-independent for the cantilever

Figure 7. Optimized topologies for the cantilever deep beam employing the SIMP material interpolation.
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deep beam example, which are desired features for manufacturing purposes. In addition, the sensitivity filter for RAMP
model has obtained better results by reducing the optimized structural perimeter even more. Table 1 also presents the
investigated numerical aspects for the cantilever deep beam example considering the RAMPmodel. The approach based
on the sensitivity filter has presented the lowest number of iterations and computational cost, while the density filter has
shown the highest processing time. The minimum value for structural compliance is observed when the no-filtering
technique is employed.

Adopting the continued penalization scheme, combined with a highly restrictive local convergence criterion, increases
the number of iterations in the investigated examples, especially for the most refined meshes, where achieving local
convergence is more challenging. The smooth local response produced by the sensitivity filter accelerates convergence
compared to the optimization process without filtering techniques, a result not observed with the density filter. Figure 9
displays the objective function histories throughout the optimization process of the cantilever deep beam for the SIMP

Table 1. Investigated numerical aspects of the cantilever deep beam with a discretization of 20,402
subvolumes.

SIMP method

Analysis Sensitivity filter Density filter No filter

Compliance (J) 88.12 91.02 87.90

Filter radius 0.71 0.71 0

Number of iterations 368 577 391

Processing time (sparse) 1min 6s 1min 58s 1min 3s

Processing time (fsparse) 1min 5s 1min 38s 1min 10s

RAMP method

Analysis Sensitivity filter Density filter No filter

Compliance (J) 85.86 87.69 84.49

Filter radius 0.71 0.71 0

Number of iterations 397 614 451

Processing time (sparse) 1min 1s 1min 38s 1min 16s

Processing time (fsparse) 1min 3s 1min 41s 1min 13s

Figure 8. Optimized topologies for the cantilever deep beam employing the RAMP material interpolation.
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and RAMP methods, highlighting that the density filter demands more iterations for convergence. In contrast, the
optimization process with the sensitivity filter achieves the fastest convergence. The RAMP method provides closer
values for the objective function throughout the optimization process for the three approaches adopted: results without
filters, with the sensitivity filter, and with the density filter. Furthermore, the RAMP method demonstrates a more stable
convergence process than the SIMP method for these approaches. Notably, the jumps in the continued penalization
scheme are significantly smaller for the RAMPmethod than those between different penalty factors in the SIMPmethod.

For computational efficiency, the fsparse routine is also implemented; however, for the performed analyses, such a
difference in computational cost does not justify using the fsparse routine. However, a gain in computational performance
is observed by around 30% when meshes with size between 105 and 106 subvolumes are employed. From Table 1, the
non-filtering approach has obtained the optimized topologies with theminimum compliance. In contrast, the density filter
approach has obtained the optimized topologies with the maximum values for compliance. In general, Top2DFVT
provides a platform to perform 2D topology optimization of structures inMatlab, starting from a domain initialization for
structured meshes to data post-processing. Several computational tools have been proposed for topology optimization
employing analysis domains discretized with essential features for finite-element approaches. As previously discussed,
the finite-volume theory is an alternative technique to the finite-element method in the context of topology optimization
algorithms. In addition, this is the first contribution to offer an algorithm that shows the implementation of standard finite-
volume theory for structured meshes problems in Matlab. This investigation employs the finite-volume theory in
topology optimization for compliance minimization problems.

Top2DFVT offers some advantages, such as:

a) It generates checkerboard-free optimized topologies even when a non-filtering approach is employed.

b) It can be applied to medium and large-scale problems, as the implementation and computational performance
are suited to these approaches.

c) It employs different material interpolation methods for topology optimization, such as RAMP and SIMP
models.When the non-filtering technique is employed, the optimized topologies generated by theRAMPmodel
usually reduce the perimeter compared to those optimized topologies obtained by the SIMP approach.

The Top2DFVT algorithm is currently being employed for educational and research purposes to promote the advantages
of the finite-volume theory in the numerical analysis of structures.

6. Numerical results
In this contribution, three examples are analyzed employing the compliance minimization problem based on the finite-
volume theory for linear elastic materials under plane stress state, where the RAMP and SIMP approaches are employed
to interpolate the material stiffness. The investigated examples are a cantilever beam subjected to a concentrated load, a
Messerschmitt-Bölkow-Blom (MBB) beam, and an L-bracket beam subject to a concentrated load. Some numerical
aspects are also investigated during the analyses, such as the number of iterations, processing time, and compliance

Figure 9. Objective function histories for the SIMP and RAMP methods.
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estimation. The continued penalization scheme is adopted for the compliance minimization problem, where the penalty
factor increases gradually (Δp¼ 0:25) from 1 to 4 for SIMP and from 0 to 3 for RAMP. A maximum of 200 iterations is
assumed for each performed penalty factor along the optimization process.

6.1 Cantilever deep beam
A classical problem in topology optimization is the cantilever deep beam, whose analysis domain and boundary
conditions are illustrated in Figure 10. In this example, it is observed a region of stress concentration where the
concentrated load is applied. The adopted geometrical and physical parameters can be described as H¼ 450 mm, L¼
900 mm, d¼ 10 mm, P¼ 1000 N, E¼ 200 GPa (Young Modulus), and ν¼ 0:3 (Poisson’s ratio). The proposed
optimization problem consists of minimizing the structural compliance, with a volume constraint of 40% of the total
volume.

Figure 11 shows the obtained optimized topologies for the approach based on the finite-volume theory considering the
SIMP material interpolation method, while Table 2 presents the investigated numerical parameters for each performed
analysis. Although the non-filtering approach has obtained the lowest value for the objective function, the sensitivity filter
results have presented the lowest computational cost and optimized topologies that better controls the length scale issue,
by reducing the formation of thin bars. The density filtering results have shownmore thin bars in the optimized topologies
when compared to the sensitivity filter, and higher values for the compliance function in the overall investigation. For the
SIMP method and considering the non-filtering strategies, the damping factor is adjusted to 1/2.6 to avoid divergence
during the optimization process.

The algorithm known as top99neo, proposed by Ferrari and Sigmund in 2020, is used as a benchmark source for the
traditional finite-element method for bilinear elements. The algorithm uses the continued penalization scheme, gradually

Figure 10. Cantilever deep beam with dimensions and boundary conditions.

Figure 11. Optimized topologies for the cantilever deep beam obtained by the SIMP approach.
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increasing the penalty factor (Δp¼ 0:25) from 1 to 4, similar to the finite-volume theory approach. Each penalty factor is
subjected to 25 iterations. The Heaviside projection parameters are updated throughout the optimization process. The
parameter β starts at 2 and increases to 16 by an increment of Δβ¼ 2 every 25 iterations. Figure 12 shows the optimized
topologies obtained using the density filter. The filter radius changes to reflect the exact size of the filter radius employed
in the finite-volume theory approaches for eachmesh size (1.5, 3, and 6, respectively). The optimized topologies obtained
using the finite-element approach are more mesh-dependent, even when filtering strategies are employed, as compared to
the optimized topologies obtained using the finite-volume theory approach, especially in the case of the results with the
sensitivity filter. The computational cost for the finest mesh is 2 minutes and 30 seconds, with a maximum of 350
iterations. The total number of degrees of freedom for the finite-element approach is 132132, while the finite-volume
theory approach has a total of 260280 degrees of freedom, which partially explains the difference in computational costs.
As the top99neo algorithm employs finite elements with unitary dimensions, it is not feasible to compare the obtained
values for the objective function of the optimized topologies.

Figure 13 shows the obtained optimized topologies for the approach based on the RAMPmethod. In general, the RAMP
method has obtained checkerboard-free optimized topologies by reducing the structural perimeter when the non-filtering

Table 2. Convergence analysis for the cantilever deep beam problem.

SIMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(mm)

No filter 90x45 371 10s 448.87 0

180x90 813 4min 11s 391.94 0

360x180 1183 25min 53s 375.57 0

Sensitivity
filter

90x45 213 6s 471.97 15

180x90 323 1min 25s 406.38 15

360x180 334 4min 18s 402.01 15

Density filter 90x45 525 15s 491.85 15

180x90 1450 7min 33s 450.89 15

360x180 2497 29min 35s 472.49 15

RAMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(mm)

No filter 90x45 545 15s 435.65 0

180x90 900 3min 12s 382.82 0

360x180 1164 24min 26s 369.74 0

Sensitivity
filter

90x45 350 9s 453.54 15

180x90 408 54s 394.17 15

360x180 465 5min 4s 391.36 15

Density filter 90x45 1010 30s 464.51 15

180x90 2040 4min 44s 420.37 15

360x180 2309 47min 10s 419.01 15

Figure 12. Optimized topologies for the cantilever deep beam employing the top99neo algorithm.
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strategy is employed in comparison to the same approach employing the SIMP approach, which is a desired feature for
manufacturing purposes. On the other hand, the optimized topologies obtained by the SIMP method usually present a
higher structural perimeter by producing more thin bars. Additionally, the RAMP method has obtained a well-defined
black-and-white design with lower values for the compliance function, as presented in Table 2.

Table 2 presents the numerical aspects of the performed investigations for the cantilever deep beam example. In general,
the RAMP method has presented a higher number of iterations and processing time, although the obtained optimized
topologies have presented the lowest values for the objective function. The filter radius is calculated to be slightly higher

than 1:01
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2qþh2q

q
for the coarse mesh. Therefore, the optimized topology obtained for the finest mesh employing the

sensitivity filter is very similar to that obtained for the coarse mesh without filtering techniques. This is only possible
because the finite-volume theory is a checkerboard-free numerical technique in topology optimization algorithms.

6.2 Half MBB beam
Other classical problem for topology optimization of continuum structures is the Messerschmitt-Bölkow-Blom (MBB)
beam. In this case, only half of the structure is analyzed as shown on Figure 14, where the geometric and physical
parameters are taken asH¼ 300mm, L¼ 900mm, d¼ 10mm,P¼ 1000N,E¼ 78GPa (YoungModulus), and ν¼ 0:25
(Poisson’s ratio). The volume fraction for the minimum compliance optimization problem is assumed as 40% of the total
structure volume.

Figure 15 shows the optimized topologies obtained considering the application of the SIMP method, while Table 3
presents the investigated numerical aspects for each performed analysis. The topology optimization technique considers
the non-filtering, sensitivity, and density filtering scenarios. The adopted filter radius is slightly higher than half of the
subvolume’s diagonal length for the coarsest mesh, which can be written as 1:01

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2qþh2q

q
and approximated by 15 mm.

The no-filter analysis generally generates topologies with more thin bars, while the sensitivity filter obtains cleaner

Figure 13. Optimized topologies for the cantilever deep beam obtained by the RAMP approach.

Figure 14. Half-MBB beam with dimensions and boundary conditions.
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topologies with a reduced structural perimeter. Besides, the density filter has not presented the same efficiency as the
sensitivity filter in reducing the structural perimeter in the final optimized topology, and the obtained compliance is higher
when compared to the other approaches. Regarding computational cost, the sensitivity filter approach obtained the lowest
processing time and number of iterations, while the density filter approach presented the highest processing time and
number of iterations.

Figure 16 shows the optimized topologies obtained employing the top99neo algorithm, where the penalty factor increases
gradually (Δp¼ 0:25) from 1 to 4 after every 25 iterations until a maximum of 350 iterations, and the beta parameter
increases gradually from 2 to 16 (Δβ¼ 2), after every 25 iterations, similarly to the cantilever deep beam example. The
optimized topologies shown in Figure 16 are mesh dependents even when filtering strategies are employed. The filter
radius is assumed to be 1.5 for the 90�30 mesh, 3 for the 180�60 mesh, and 6 for the 360�120 mesh. When a similar
filter radius is employed in the context of the finite-volume theory, this technique demonstrates a less mesh sensitivity

Figure 15. Optimized topologies for the MBB beam obtained by the SIMP approach.

Table 3. Convergence analysis for the half MBB beam problem.

SIMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(mm)

No filter 90x30 538 10s 3160.01 0

180x60 804 1min 19s 2873.54 0

360x120 1352 11min 4s 2759.59 0

Sensitivity
filter

90x30 410 8s 3174.88 15

180x60 533 48s 3050.52 15

360x120 921 7min 26s 2989.76 15

Density filter 90x30 843 15s 3586.61 15

180x60 1819 4min 59s 3524.15 15

360x120 2490 20min 51s 3560.40 15

RAMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(mm)

No filter 90x30 811 15s 2921.81 0

180x60 1315 2min 50s 2731.09 0

360x120 1617 17min 14s 2654.87 0

Sensitivity
filter

90x30 538 10s 3049.43 15

180x60 747 1min 51s 2935.32 15

360x180 1040 8min 27s 2923.79 15

Density filter 90x30 1191 21s 3174.77 15

180x60 2289 4min 11s 3084.24 15

360x120 2450 21min 16s 3087.59 15

Page 20 of 46

F1000Research 2024, 13:805 Last updated: 30 OCT 2024



behavior when compared to finite element-based strategies. Regarding computational efficiency, the top99neo code has
presented a processing time of 86 seconds for the finest mesh. Generally, the Top2DFVT algorithm presents a higher
computational cost when compared to theQ4 finite element-based algorithm. The number of degrees of freedom partially
explains this higher computational cost once the total number of degrees of freedom for the finest mesh considering the
top99neo algorithm is 87362, while in the Top2DFVT algorithm, the total number of degrees of freedom for the same
analysis is 173760. Furthermore, the number of iterations for this example is relatively high for the finite-volume theory
approaches once the top99neo algorithm adopts a maximum of 350 iterations.

Figure 17 shows the optimized topologies for the analyses employing the RAMPmethod, where the adopted filter radius
is the same as those employing the SIMP method. The RAMPmethod has generally obtained optimized topologies with
better control of the structural perimeter, even when the non-filtering technique is employed. Additionally, the optimized
topology obtained for the coarse mesh without filtering techniques is geometrically close to the optimized topologies for
the finest mesh employing filtering strategies. Therefore, the results obtained for the coarse mesh in the no-filter strategy
employing the RAMP method could be adopted as the solution for the optimization problem. Table 3 presents the
investigated numerical aspects, where the number of iterations and processing time are usually higher for this method
when compared to the SIMP approach.

6.3 L-bracket beam
Another analyzed topology optimization problem for stress concentration in two-dimensional structures is the L-bracket
beam, whose analysis domain and boundary conditions are illustrated in Figure 18. In the L-bracket beam problem,
it is observed a high level of stress concentration in the corner, which is important to check how the new Top2DFVT
code leads to these kinds of topology optimization problems. The employed geometric parameters for this beam are
assumed as d¼ 5 cm, L¼ 100 cm, andP¼ 200 kN, while the adoptedmaterial properties areE¼ 70GPa (elastic moduli)

Figure 16. Optimized topologies for the MBB beam employing the top99neo algorithm.

Figure 17. Optimized topologies for the MBB beam obtained by the RAMP approach.

Figure 18. L-bracket beam domain, with d=5 cm, P=200 kN, and L=1 m.
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and ν¼ 0:25 (Poisson’s ratio). The proposed optimization problem consists of minimizing the structural compliance
function under a volume constraint of 40% of the total volume.

Figure 19 shows the optimized topologies obtained by the SIMP approach for the L-bracket beam problem, considering
the absence of filtering techniques and the implementation of the sensitivity and density filters, respectively. The
sensitivity filter has reduced the formation of thin bars along the optimized topologies, while the density filter has
obtained irregular optimized topologies with the appearance of substantial gray regions. On the other hand, the no-filter
strategy has generated well-defined optimized topologies with more thin bars, especially when compared to the
sensitivity filter strategy. As Araujo et al. (2020a) suggested, the damping factor is adjusted to 1/2.6 for all performed
approaches employing the SIMP to guarantee the absence of the oscillatory phenomenon to any employed filter radius.
Table 4 presents the investigated numerical aspects for the performed analyses employing the SIMP method.

The top99neo algorithm is also performed considering the L-bracket beam problem, and the obtained optimized
topologies can be observed in Figure 20. As in the previous examples, the same numerical parameters are employed
for the physical model, such as the gradual increase in the penalty factor, from 1 to 4 withΔp¼ 0:25, and in the Heaviside
Projection β parameter, from 2 to 16 with Δβ¼ 2. In terms of computational cost, the top99neo code has presented a
processing time of 1 minute and 1 second for the finest mesh, considering a total of 350 iterations, while the Top2DFVT
algorithm has presented a processing time of 39 seconds with a total of 155 iterations for of the SIMP method and the
sensitivity filter. This difference in processing time can be partially explained by the difference in the total number of
iterations observed during the topology optimization analyses. For this example, the Top2DFVT algorithm, considering
the sensitivity filter approach, presents a reduced number of iterations for convergence.

Figure 21 presents the obtained optimized topologies by the RAMPmethod for the L-bracket beam problem. The RAMP
method has generally reduced the formation of thin bars, demonstrating less sensitivitywith the adoptedmeshes. As in the
SIMPmethod, the sensitivity filter has shown to be more efficient by reducing the formation of thin bars in the optimized
topologies, and the density filter has obtained more irregular topologies with the presence of gray regions. The RAMP
method is more stable numerically, and the adopted damping factor is 1/2, which guarantees a faster convergence for the
analyses. However, the number of iterations is usually higher for the RAMP method.

Table 4 presents the investigated numerical aspects of the optimized structures, such as the total number of iterations,
processing time, and compliance estimation.When the sensitivity filter is employed, there is a remarkable decrease in the
number of iterations and computational costs. However, the obtained values for structural compliance are lower when the

Figure 19. Optimized topologies for the L-bracket beam obtained by the SIMP approach.
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non-filtering strategy is performed. In general, the RAMP method has been shown to efficiently produce checkerboard-
free optimized topologies with lower values for structural compliance. Thus, these results demonstrate the proposed
approach’s efficiency and justify its use in topology optimization problems of continuum elastic structures since it better
controls numerical issues associated with checkerboard and length scale. The filter radius is slightly higher than

1:01
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2qþh2q

q
for the coarse mesh. As a result, the filter guarantees the absence of mesh dependency, especially when

the RAMP method or the sensitivity filter are employed.

Table 4. Convergence analysis for the L-bracket beam problem.

SIMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(cm)

No filter 40x40 404 4s 4469.64 0

80x80 698 35s 17388.97 0

160x160 946 4min 11s 68743.32 0

Sensitivity
filter

40x40 274 2s 4794.02 3.6

80x80 226 10s 19461.58 3.6

160x160 155 39s 81058.11 3.6

Density filter 40x40 653 6s 6149.43 3.6

80x80 1140 1min 51s 25552.58 3.6

160x160 2585 11min 19s 115640.37 3.6

RAMP method

Analysis Mesh Number of
iterations

Processing
Time

Compliance
(J)

Filter radius
(cm)

No filter 40x40 272 2s 4434.37 0

80x80 692 35s 17241.14 0

160x160 894 6min 38s 67478.81 0

Sensitivity
filter

40x40 278 2s 4714.58 3.6

80x80 202 10s 19325.52 3.6

160x160 226 51s 77303.15 3.6

Density filter 40x40 590 5s 5848.89 3.6

80x80 1640 1min 41s 24364.83 3.6

160x160 2546 20min 6s 98444.69 3.6

Figure 20. Optimized topologies for the L-bracket beam employing the top99neo algorithm.
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7. Conclusions
This study introduces the Top2DFVT, an innovative Matlab algorithm tailored for the topology optimization of two-
dimensional elastic structures via the finite-volume theory. This contribution addresses compliance minimization
problems, presenting a checkerboard-free methodology that mitigates numerical instabilities like mesh dependence
and local minima, commonly encountered in gradient-based optimization techniques. The algorithm showcases
improved computational efficiency and the ability to generate optimized topologies for medium to large-scale problems
by employing two material interpolation schemes, SIMP and RAMP, alongside sensitivity and density filters. Such
advancements facilitate the design of high-performance structures with potential applications in various engineering
domains.

This algorithm can provide checkerboard-free optimized topologies and reduce mesh dependence or length scale issues,
mainly when the RAMP method is employed. The optimized topologies obtained without filtering techniques for the
coarse meshes and employing the RAMP method are similar to those obtained with filtering strategies for the finer
meshes. Usually, filtering techniques are based on image processing that geometrically changes the sensitivity or the
relative density values. Therefore, obtaining optimized structures without filtering techniques provides more reliable and
efficient designs. Besides, the optimized topologies without filtering strategies are well-defined “black and white”
designs, where intermediate values of relative densities are reduced.

The approach based on the finite-volume theory is also performed by employing a sensitivity filter to solve problems
related to mesh dependence and length scale issues. The adopted strategy to define the filter radius consists of using
approximately the subvolume’s or element’s diagonal of the coarse mesh. The continued penalization scheme is adopted
for the compliance minimization problem, which guarantees a gradual convergence for the overall process. When the
SIMP method is employed, the OC method’s damping factor can be adjusted to 1/2.6 to avoid divergence during the
optimization process, especially when non-filtering strategies are employed.

Although the finite-volume theory employed in the TOP2DFVT algorithm effectively mitigates checkerboard patterns,
filtering techniques remain essential for producing manufacturable designs. Filters such as sensitivity and density filters
play a crucial role in controlling the characteristic length scale, thereby reducing the formation of thin structural elements
that could cause fabrication and structural stability challenges. Additionally, applying these filters contributes to a
smoother distribution of material, resulting in a more uniform stress distribution across the structure.

Figure 21. Optimized topologies for the L-bracket beam obtained by the RAMP approach.
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However, results obtained without filters can also be explored effectively within the finite-volume theory framework.
Whenworkingwith coarser meshes, the larger subvolumes naturally limit the appearance of thin elements, which helps to
define a more favorable topology from a manufacturing perspective. These larger subvolumes act as a resolution control
mechanism, preventing the appearance of fine bars that could lead to structural issues such as localized buckling or stress
concentration. Thus, the finite-volume theory provides a flexible approach for generating optimized topologies that
balancemanufacturability and structural robustness by carefully selecting themesh size and employing or omitting filters
as appropriate.

In topology optimization without filters, distinct “black and white” designs can typically be achieved, representing clear
material and void regions. When filters such as sensitivity or density filters are applied, gray regions often emerge in the
design. These gray elements represent intermediate density values that compromise the binary nature of the solution. To
mitigate this issue and increase the discreteness of the topology, volume-preserving Heaviside projection is a commonly
used strategy. The Heaviside projection function sharpens the transition between material and void by pushing
intermediate densities towards 0 or 1, thereby reducing the gray regions. This technique preserves the total volume
while enhancing the manufacturability of the optimized structure (Bendsøe and Sigmund 2003; Ferrari and Sigmund
2020). Future implementations of the proposed method could benefit from incorporating the Heaviside projection to
refine the design’s discreteness further and improve its practical applicability in manufacturing processes, especially
when employing filtering techniques.

In conclusion, this study presents a novel approach to topology optimization using the finite-volume theory and
significantly contributes to the field by addressing and overcoming inherent numerical challenges. The Top2DFVT
algorithm represents a pivotal advancement in optimizing elastic structures, promising more reliable and efficient design
solutions. The authors’ efforts in developing and sharing this tool underscore the collaborative spirit of the research
community, aiming to broaden the understanding and application of topology optimization in engineering.

This work sets a new benchmark for future research, encouraging further exploration and development of optimization
techniques. By providing a robust and efficient tool in Top2DFVT, the authors offer valuable resources for educators,
researchers, and practitioners alike, fostering innovation and excellence in engineering design.
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University of Sao Paulo, Sao Paulo, Brazil 

The paper consists of providing a MATLAB code based on Finite-Volume Theory (named 
Top2DFVT), which can perform 2D topology optimization of structures by using SIMP and RAMP 
algorithms. On one hand, the manuscript brings relevant results, mitigating some numerical 
instabilities, such as checkerboard and mesh dependence issues. By another hand, there are some 
important aspects related to the manuscript and to the implemented code, which need to be 
better clarified by the authors as follows: 
(*) 1. Introduction 
- The authors claim that “…this is the first time a platform for optimizing structures using the finite-
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volume theory…”. It is very hard to confirm that there is not any work in the World previously 
published in a journal or conference in this field. Thus, it is recommended that the authors modify 
the text by the inclusion of “Based on the authors’ knowledge, this is the first time a platform…”. 
- The authors mentioned about computational cost, comparing the previous version of the code 
approached in Araujo et al. (2020a) with the present one. However, it would be very important to 
compare and discuss advantages and disadvantages with other codes. For example, usually, 
FORTRAN codes run faster than MALTAB codes. In fact, in the final of Section 5, the authors 
presented some advantages, but it is not possible to find drawbacks.  
(*) 2. Finite-volume theory 
- In the Eq (4), K is a non-symmetric matrix, then the computational cost of topology optimization 
based on the FVT is higher than based on the FEM. The authors should comment quantitative 
values, expressing how slow is the process based on the FVT. 
(*) 6. Numerical results 
- The authors analyzed 3 Case Studies (cantilever deep beam; half MBB beam; L-bracket beam) to 
show the potentialities of the developed MATLAB code. But they are invited to analyze one of the 
case studies presented in the paper cited below: 
A concurrent fibre orientation and topology optimisation framework for 3D-printed fibre-
reinforced composites - 
(Almeida Jr. J, et al., 2023 [Ref 1]) 
In other words, they should compare the results obtained by the Top2DFVT with the results 
discussed in the paper. 
 
References 
1. Almeida Jr. J, Christoff B, Tita V, St-Pierre L: A concurrent fibre orientation and topology 
optimisation framework for 3D-printed fibre-reinforced composites. Composites Science and 
Technology. 2023; 232. Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
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Reviewer Expertise: Computational Analysis of Composite Structures

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 13 Oct 2024
Marcio Cavalcante 

The authors have many thanks to the reviewer for their valuable comments. The manuscript 
has been revised in accordance with the comments, and detailed revisions are listed below 
point by point. 
 
Comments to the Authors: 
The paper consists of providing a MATLAB code based on Finite-Volume Theory (named 
Top2DFVT), which can perform 2D topology optimization of structures by using SIMP and 
RAMP algorithms. On one hand, the manuscript brings relevant results, mitigating some 
numerical instabilities, such as checkerboard and mesh dependence issues. By another 
hand, there are some important aspects related to the manuscript and to the implemented 
code, which need to be better clarified by the authors as follows: 
1) Introduction 
- The authors claim that “…this is the first time a platform for optimizing structures using 
the finite-volume theory…”. It is very hard to confirm that there is not any work in the World 
previously published in a journal or conference in this field. Thus, it is recommended that 
the authors modify the text by the inclusion of “Based on the authors’ knowledge, this is the 
first time a platform…”. 
Response: The authors agreed with the reviewer, and the following modification was made 
to the manuscript: 
In addition, based on the authors’ knowledge, this is the first time a platform for 
optimizing structures using the finite-volume theory can be applied to medium and large-
scale problems, besides obtaining checkerboard-free and mesh-independent designs. 
 
1) Introduction 
- The authors mentioned about computational cost, comparing the previous version of the 
code approached in Araujo et al. (2020a) with the present one. However, it would be very 
important to compare and discuss advantages and disadvantages with other codes. For 
example, usually, FORTRAN codes run faster than MALTAB codes. In fact, in the final of 
Section 5, the authors presented some advantages, but it is not possible to find drawbacks. 
Response: The authors agreed with the reviewer, and the following texts and figures were 
added to the manuscript with results obtained by the top99neo algorithm, discussing the 
advantages and disadvantages of the Top2DFVT code: 
The algorithm known as top99neo, proposed by Ferrari and Sigmund in 2020, is used as a 
benchmark source for the traditional finite-element method for bilinear elements. The 
algorithm uses the continued penalization scheme, gradually increasing the penalty factor (
∆p=0.25) from 1 to 4, similar to the finite-volume theory approach. Each penalty factor is 
subjected to 25 iterations. The Heaviside projection parameters are updated throughout the 
optimization process. The parameter β starts at 2 and increases to 16 by an increment of 
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∆β=2 every 25 iterations. Figure 12 shows the optimized topologies obtained using the 
density filter. The filter radius changes to reflect the exact size of the filter radius employed 
in the finite-volume theory approaches for each mesh size (1.5, 3, and 6, respectively). The 
optimized topologies obtained using the finite-element approach are more mesh-
dependent, even when filtering strategies are employed, as compared to the optimized 
topologies obtained using the finite-volume theory approach, especially in the case of the 
results with the sensitivity filter. The computational cost for the finest mesh is 2 minutes 
and 30 seconds, with a maximum of 350 iterations. The total number of degrees of freedom 
for the finite-element approach is 132132, while the finite-volume theory approach has a 
total of 260280 degrees of freedom, which partially explains the difference in computational 
costs. As the top99neo algorithm employs finite elements with unitary dimensions, it is not 
feasible to compare the obtained values for the objective function of the optimized 
topologies. 
 
See Figure 12. Optimized topologies for the cantilever deep beam employing the top99neo 
algorithm.(URL) 
 
Figure 16 shows the optimized topologies obtained employing the top99neo algorithm, 
where the penalty factor increases gradually (∆p=0.25) from 1 to 4 after every 25 iterations 
until a maximum of 350 iterations, and the beta parameter increases gradually from 2 to 16 
(∆β=2), after every 25 iterations, similarly to the cantilever deep beam example. The 
optimized topologies shown in Figure 16 are mesh dependents even when filtering 
strategies are employed. The filter radius is assumed to be 1.5 for the 90x30 mesh, 3 for the 
180x60 mesh, and 6 for the 360x120 mesh. When a similar filter radius is employed in the 
context of the finite-volume theory, this technique demonstrates a less mesh sensitivity 
behavior when compared to finite element-based strategies. Regarding computational 
efficiency, the top99neo code has presented a processing time of 86 seconds for the finest 
mesh. Generally, the Top2DFVT algorithm presents a higher computational cost when 
compared to the Q4 finite element-based algorithm. The number of degrees of freedom 
partially explains this higher computational cost once the total number of degrees of 
freedom for the finest mesh considering the top99neo algorithm is 87362, while in the 
Top2DFVT algorithm, the total number of degrees of freedom for the same analysis is 
173760. Furthermore, the number of iterations for this example is relatively high for the 
finite-volume theory approaches once the top99neo algorithm adopts a maximum of 350 
iterations. 
 
See Figure 16. Optimized topologies for the MBB beam employing the top99neo algorithm.(
URL) 
 
The top99neo algorithm is also performed considering the L-bracket beam problem, and 
the obtained optimized topologies can be observed in Figure 20. As in the previous 
examples, the same numerical parameters are employed for the physical model, such as 
the gradual increase in the penalty factor, from 1 to 4 with ∆p=0.25, and in the Heaviside 
Projection β parameter, from 2 to 16 with ∆β=2. In terms of computational cost, the 
top99neo code has presented a processing time of 1 minute and 1 second for the finest 
mesh, considering a total of 350 iterations, while the Top2DFVT algorithm has presented a 
processing time of 39 seconds with a total of 155 iterations for of the SIMP method and the 
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sensitivity filter. This difference in processing time can be partially explained by the 
difference in the total number of iterations observed during the topology optimization 
analyses. For this example, the Top2DFVT algorithm, considering the sensitivity filter 
approach, presents a reduced number of iterations for convergence. 
 
See Figure 20. Optimized topologies for the L-bracket beam employing the top99neo 
algorithm.(URL) 
 
2. Finite-volume theory 
- In the Eq (4), K is a non-symmetric matrix, then the computational cost of topology 
optimization based on the FVT is higher than based on the FEM. The authors should 
comment quantitative values, expressing how slow is the process based on the FVT. 
Response: The local stiffness matrix in Eq. (4) is non-symmetric, which can lead to higher 
computational costs compared to FEM-based approaches. To address this, we adopted a 
modified symmetric stiffness matrix, as shown in Eq. (5), motivated by physical 
considerations. Specifically, the modified local stiffness matrix allows the adoption of 
energetically conjugated quantities, i.e., the surface-averaged displacements and the 
resultant forces acting on the subvolume faces. To clarify this, the following text was 
added to the manuscript: 
The modified global stiffness matrix allows the adoption of energetically conjugated 
quantities, i.e., the surface-averaged displacements and the resultant forces acting on the 
subvolume faces. This adjustment not only guarantees better physical consistency but also 
improves computational efficiency by enabling the use of solvers optimized for symmetric 
systems. As a result, the time required to solve the modified global system of equations is 
significantly reduced, bringing the computational cost closer to the finite element method-
based approaches while retaining the benefits of the finite-volume theory in terms of 
numerical stability and checkerboard-free solutions. 
 
6. Numerical results 
- The authors analyzed 3 Case Studies (cantilever deep beam; half MBB beam; L-bracket 
beam) to show the potentialities of the developed MATLAB code. But they are invited to 
analyze one of the case studies presented in the paper cited below: 
A concurrent fibre orientation and topology optimisation framework for 3D-printed fibre-
reinforced composites - (Almeida Jr. J, et al., 2023 [Ref 1]) 
In other words, they should compare the results obtained by the Top2DFVT with the results 
discussed in the paper. 
Response: The authors appreciate the reviewer's suggestion to include an additional case 
study based on the work of Almeida et al. (2023). While their paper presents noteworthy 
results, particularly in the concurrent optimization of fibre orientation and topology for 
3D-printed composites, the authors have opted not to expand the scope of the current 
manuscript with further case studies. The focus of this article is to present the capabilities 
of the Top2DFVT code within the context of traditional isotropic materials, and the authors 
believe the selected case studies effectively demonstrate the tool's potential. 
However, the authors recognize the value of comparing results with those presented in 
Almeida et al. (2023) and intend to explore these comparisons in future publications. For 
now, the authors have chosen to include the following text in the introduction of the 
manuscript, highlighting recent advancements in topology optimization for anisotropic 
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composites: 
Recent advances in topology optimization have expanded to include anisotropic 
composites, optimizing both material distribution and fibre orientation. Almeida et al. (2023) 
introduced a framework for concurrent optimization of topology and fibre orientation in 3D-
printed fibre-reinforced composites, effectively minimizing compliance. This approach, 
particularly for materials like onyx, enhances stiffness and strength, offering significant 
benefits for additive manufacturing of high-performance and lightweight structures. 
Added reference: 
Almeida JHS Jr, Christoff BG, Tita V, St-Pierre L. A concurrent fibre orientation and topology 
optimisation framework for 3D-printed fibre-reinforced composites. Composites Science 
and Technology. 2023;232:109872. doi:10.1016/j.compscitech.2022.109872.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 26 August 2024

https://doi.org/10.5256/f1000research.165561.r313232

© 2024 Ngoc Nguyen M. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.

Minh Ngoc Nguyen   
Duy Tan Research Institute for Computational Engineering, Duy Tan University, Ho Chi Minh city, 
Vietnam 

Comments for 
Top2DFVT: An efficient Matlab Implementation for topology optimization based on Finite-
Volume theory 
  
The manuscript presents a Matlab implementation for topology optimization based on Finite 
Volume theory for 2D compliance problems. 
In general, the manuscript is interesting and is very useful for beginners of topology optimization. 
The Matlab code is fast, due to vectorization and memory pre-allocation, in a manner similar to 
the code top88 (Andreassen E, et al., 2011 [Ref 1]). Compared to the previous works by the same 
group of authors, computational time is reduced significantly. However, there are many unclear 
information that needs thorough revision by the authors 
1. Although the approach may not require filter to avoid checkerboard pattern, it is clearly 
observed in the results that when no filter is applied, many thin components appear in the 
optimized design. Such thin components may be suffered from high stress values. In fact, as in the 
literature, filter also contributes to length-scale control. The authors should discuss this aspect. 
2. When there is no filter, it seems that clear “black and white” results could be obtained. 
Nevertheless, the authors should compute the non-discreteness values to quantitatively 
demonstrate this aspect. 
On the other hand, when filter (either sensitivity filter or density filter) is applied, gray elements 
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appear. In order to reduce the gray elements and increase the discreteness of the solution, 
volume-preserving Heaviside projection is commonly employed. The authors should also mention 
this. 
 
References 
1. Andreassen E, Clausen A, Schevenels M, Lazarov B, et al.: Efficient topology optimization in 
MATLAB using 88 lines of code. Structural and Multidisciplinary Optimization. 2011; 43 (1): 1-16 
Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Not applicable

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Topology optimization

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 13 Oct 2024
Marcio Cavalcante 

The authors have many thanks to the reviewer for their valuable comments. The manuscript 
has been revised in accordance with the comments, and detailed revisions are listed below 
point by point. 
 
Comments to the Authors: 
Reviewer comment: The manuscript presents a Matlab implementation for topology 
optimization based on Finite Volume theory for 2D compliance problems. 
In general, the manuscript is interesting and is very useful for beginners of topology 
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optimization. The Matlab code is fast, due to vectorization and memory pre-allocation, in a 
manner similar to the code top88 (Andreassen E, et al., 2011 [Ref 1]). Compared to the 
previous works by the same group of authors, computational time is reduced significantly. 
However, there are many unclear information that needs thorough revision by the authors. 
1) Although the approach may not require filter to avoid checkerboard pattern, it is clearly 
observed in the results that when no filter is applied, many thin components appear in the 
optimized design. Such thin components may be suffered from high stress values. In fact, 
as in the literature, filter also contributes to length-scale control. The authors should discuss 
this aspect. 
Author response: The authors agreed with the reviewer, and the following texts were added to 
the manuscript: 
Although the finite-volume theory employed in the TOP2DFVT algorithm effectively 
mitigates checkerboard patterns, filtering techniques remain essential for producing 
manufacturable designs. Filters such as sensitivity and density filters play a crucial role in 
controlling the characteristic length scale, thereby reducing the formation of thin structural 
elements that could cause fabrication and structural stability challenges. Additionally, 
applying these filters contributes to a smoother distribution of material, resulting in a more 
uniform stress distribution across the structure. 
However, results obtained without filters can also be explored effectively within the finite-
volume theory framework. When working with coarser meshes, the larger subvolumes 
naturally limit the appearance of thin elements, which helps to define a more favorable 
topology from a manufacturing perspective. These larger subvolumes act as a resolution 
control mechanism, preventing the appearance of fine bars that could lead to structural 
issues such as localized buckling or stress concentration. Thus, the finite-volume theory 
provides a flexible approach for generating optimized topologies that balance 
manufacturability and structural robustness by carefully selecting the mesh size and 
employing or omitting filters as appropriate. 
 
Reviewer comment: 2) When there is no filter, it seems that clear “black and white” results 
could be obtained. Nevertheless, the authors should compute the non-discreteness values 
to quantitatively demonstrate this aspect. 
On the other hand, when filter (either sensitivity filter or density filter) is applied, gray 
elements appear. In order to reduce the gray elements and increase the discreteness of the 
solution, volume-preserving Heaviside projection is commonly employed. The authors 
should also mention this. 
Author response: The authors agreed with the reviewer, and the following texts were added to 
the manuscript: 
In topology optimization without filters, distinct "black and white" designs can typically be 
achieved, representing clear material and void regions. When filters such as sensitivity or 
density filters are applied, gray regions often emerge in the design. These gray elements 
represent intermediate density values that compromise the binary nature of the solution. 
To mitigate this issue and increase the discreteness of the topology, volume-preserving 
Heaviside projection is a commonly used strategy. The Heaviside projection function 
sharpens the transition between material and void by pushing intermediate densities 
towards 0 or 1, thereby reducing the gray regions. This technique preserves the total 
volume while enhancing the manufacturability of the optimized structure (Bendsøe and 
Sigmund 2003; Ferrari and Sigmund 2020). Future implementations of the proposed 
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method could benefit from incorporating the Heaviside projection to refine the design’s 
discreteness further and improve its practical applicability in manufacturing processes, 
especially when employing filtering techniques.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 12 August 2024

https://doi.org/10.5256/f1000research.165561.r306477

© 2024 Wang Y. This is an open access peer review report distributed under the terms of the Creative Commons 
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited.

Yingjun Wang   
South China University of Technology, Guangzhou, Guangdong, China 

This paper presents a Matlab implementation for 2D topology optimization based on finite-volume 
method.  The Matlab code Top2DFVT uses the loop vectorization and memory preallocation of 
top88, which is much more efficient than the authors' previous work. Three examples are tested to 
demonstrate the validity and efficiency of Top2DFVT. However, there are still some comments for 
the authors. 
 
1. How to calculate the local stiffness matrix for a subvolume q  should be given. 
 
2. What is the meaning of the subscripts "pu", "pp", "uu", "up" in Eq.(13). 
 
3. In Section 3.1, there are two cases for the objective function gradient. Is only one of the cases in 
a subvolume, or the two cases can exist together in a subvolume?   
 
4. In Section 4, an algorithm flowchart of Top2DFVT should be added.  
 
5. In Top2DFVT, the memory preallocation accelerates the computational efficiency, but increases 
the memory usage. The authors should state this in the paper. 
 
6. For the illustrative example in Figure 5, why are the number of subvolumes in the horizontal 
and vertical directions set to 202 and 101, not 200 and 100?   
 
7. In Tables 2-4, it can be found that the number of iterations of No filter cases is larger than the 
Sensitivity filter cases for the same mesh size, why? In addition, the number of iterations is more 
than 1000 when the number of elements increases, which is too many for the compliance 
minimization problem. The convergence history should be given for at least one example. 
 
8. The proposed method should be compared with finite-element-based topology optimization 
methods such as top88 or top99neo in detail to demonstrate its validity and efficiency.
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Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Partly

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: topology optimization

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 13 Oct 2024
Marcio Cavalcante 

The authors have many thanks to the reviewer for their valuable comments. The manuscript 
has been revised in accordance with the comments, and detailed revisions are listed below 
point by point. 
 
Comments to the Authors: 
This paper presents a Matlab implementation for 2D topology optimization based on finite-
volume method. The Matlab code Top2DFVT uses the loop vectorization and memory 
preallocation of top88, which is much more efficient than the authors' previous work. Three 
examples are tested to demonstrate the validity and efficiency of Top2DFVT. However, there 
are still some comments for the authors. 
1) How to calculate the local stiffness matrix for a subvolume q should be given. 
Response: As mentioned in the manuscript, the local stiffness matrix calculation can be 
found in Araujo et al. (2020a).2) 
 
2) What is the meaning of the subscripts "pu", "pp", "uu", "up" in Eq.(13). 
Response: The following description of the submatrices in Eq. (13) was incorporated into 
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the text:  
The subscripts in Eq. (13) reflect the relationship between prescribed and unknown 
quantities, where the first index refers to forces and the second to displacements. The letter 
"u" denotes unknown quantities, while "p" represents prescribed ones. Therefore, the 
submatrix Kpu expresses the coupling between prescribed forces and unknown 
displacements, while Kpp defines the relationship between prescribed forces and 
prescribed displacements. Similarly, Kup describes the interaction between unknown forces 
and prescribed displacements, and Kuu corresponds to the relationship between unknown 
forces and unknown displacements. This indexing scheme distinguishes between the 
interactions of prescribed and unknown quantities within the stiffness matrix. 
 
3) In Section 3.1, there are two cases for the objective function gradient. Is only one of 
the cases in a subvolume, or the two cases can exist together in a subvolume? 
Response: The two cases mentioned in section 3.1 refer to the global system of equations 
that relates the global force vector with the global displacement vector. The following text 
was added to the manuscript to clarify the case used in the analyzed examples:  
The examples analyzed in the following sections are associated with the second case, where 
a prescribed force is applied, and all the prescribed displacements are zero. 
 
4) In Section 4, an algorithm flowchart of Top2DFVT should be added. 
Response: The authors agreed with the reviewer, and the following flowchart was added to 
the manuscript. 
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Figure 4. Flowchart of the Top2DFVT for the topology optimization of linear elastic 
continuum structures. 
 
5) In Top2DFVT, the memory preallocation accelerates the computational efficiency, 
but increases the memory usage. The authors should state this in the paper. 
Response: The authors agreed with the reviewer, and the following text was added to the 
manuscript:  
In the Top2DFVT implementation, memory preallocation is crucial in enhancing 
computational efficiency by reducing the time required for matrix assembly and solving 
linear systems. However, this performance gain comes at the expense of increased memory 
usage, as large data structures must be allocated in advance. This trade-off between 
computational speed and memory consumption is a common consideration in the design of 
topology optimization algorithms. While the memory overhead is manageable for medium-
sized problems, it can become significant for large-scale applications. Therefore, careful 
management of memory resources is essential to balance efficiency and scalability. 
 
6) For the illustrative example in Figure 5, why are the number of subvolumes in the 
horizontal and vertical directions set to 202 and 101, not 200 and 100? 
Response: The following text was added to the manuscript:  
In this example, the dimensions of the cantilever deep beam are L=100 and H=50, and the 
concentrated load is applied at the center of the free edge. To ensure the load is applied to 
the face of a single subvolume, the number of subvolumes in the vertical direction must be 
odd. Furthermore, to generate an analysis domain with square subvolumes, the number of 
subvolumes in the horizontal direction must be twice the number of those in the vertical 
direction. 
 
7) In Tables 2-4, it can be found that the number of iterations of No filter cases is 
larger than the Sensitivity filter cases for the same mesh size, why? In addition, the 
number of iterations is more than 1000 when the number of elements increases, 
which is too many for the compliance minimization problem. The convergence history 
should be given for at least one example. 
Response: The following text and figure were added to the manuscript:  
Adopting the continued penalization scheme, combined with a highly restrictive local 
convergence criterion, increases the number of iterations in the investigated examples, 
especially for the most refined meshes, where achieving local convergence is more 
challenging. The smooth local response produced by the sensitivity filter accelerates 
convergence compared to the optimization process without filtering techniques, a result not 
observed with the density filter. Figure 9 displays the objective function histories 
throughout the optimization process of the cantilever deep beam for the SIMP and RAMP 
methods, highlighting that the density filter demands more iterations for convergence. In 
contrast, the optimization process with the sensitivity filter achieves the fastest 
convergence. The RAMP method provides closer values for the objective function 
throughout the optimization process for the three approaches adopted: results without 
filters, with the sensitivity filter, and with the density filter. Furthermore, the RAMP method 
demonstrates a more stable convergence process than the SIMP method for these 
approaches. Notably, the jumps in the continued penalization scheme are significantly 
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smaller for the RAMP method than those between different penalty factors in the SIMP 
method. 

 
Figure 9. Objective function histories for the SIMP and RAMP methods. 
 
8) The proposed method should be compared with finite-element-based topology 
optimization methods such as top88 or top99neo in detail to demonstrate its validity 
and efficiency. 
Response: The authors agreed with the reviewer, and the following texts and figures were 
added to the manuscript: 
The algorithm known as top99neo, proposed by Ferrari and Sigmund in 2020, is used as a 
benchmark source for the traditional finite-element method for bilinear elements. The 
algorithm uses the continued penalization scheme, gradually increasing the penalty factor (
∆p=0.25) from 1 to 4, similar to the finite-volume theory approach. Each penalty factor is 
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subjected to 25 iterations. The Heaviside projection parameters are updated throughout the 
optimization process. The parameter β starts at 2 and increases to 16 by an increment of 
∆β=2 every 25 iterations. Figure 12 shows the optimized topologies obtained using the 
density filter. The filter radius changes to reflect the exact size of the filter radius employed 
in the finite-volume theory approaches for each mesh size (1.5, 3, and 6, respectively). The 
optimized topologies obtained using the finite-element approach are more mesh-
dependent, even when filtering strategies are employed, as compared to the optimized 
topologies obtained using the finite-volume theory approach, especially in the case of the 
results with the sensitivity filter. The computational cost for the finest mesh is 2 minutes 
and 30 seconds, with a maximum of 350 iterations. The total number of degrees of freedom 
for the finite-element approach is 132132, while the finite-volume theory approach has a 
total of 260280 degrees of freedom, which partially explains the difference in computational 
costs. As the top99neo algorithm employs finite elements with unitary dimensions, it is not 
feasible to compare the obtained values for the objective function of the optimized 
topologies. 

 
Figure 12. Optimized topologies for the cantilever deep beam employing the top99neo 
algorithm. 
 
Figure 16 shows the optimized topologies obtained employing the top99neo algorithm, 
where the penalty factor increases gradually (∆p=0.25) from 1 to 4 after every 25 iterations 
until a maximum of 350 iterations, and the beta parameter increases gradually from 2 to 16 
(∆β=2), after every 25 iterations, similarly to the cantilever deep beam example. The 
optimized topologies shown in Figure 16 are mesh dependents even when filtering 
strategies are employed. The filter radius is assumed to be 1.5 for the 90x30 mesh, 3 for the 
180x60 mesh, and 6 for the 360x120 mesh. When a similar filter radius is employed in the 
context of the finite-volume theory, this technique demonstrates a less mesh sensitivity 
behavior when compared to finite element-based strategies. Regarding computational 
efficiency, the top99neo code has presented a processing time of 86 seconds for the finest 
mesh. Generally, the Top2DFVT algorithm presents a higher computational cost when 
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compared to the Q4 finite element-based algorithm. The number of degrees of freedom 
partially explains this higher computational cost once the total number of degrees of 
freedom for the finest mesh considering the top99neo algorithm is 87362, while in the 
Top2DFVT algorithm, the total number of degrees of freedom for the same analysis is 
173760. Furthermore, the number of iterations for this example is relatively high for the 
finite-volume theory approaches once the top99neo algorithm adopts a maximum of 350 
iterations. 

 
Figure 16. Optimized topologies for the MBB beam employing the top99neo algorithm. 
 
The top99neo algorithm is also performed considering the L-bracket beam problem, and 
the obtained optimized topologies can be observed in Figure 20. As in the previous 
examples, the same numerical parameters are employed for the physical model, such as 
the gradual increase in the penalty factor, from 1 to 4 with ∆p=0.25, and in the Heaviside 
Projection β parameter, from 2 to 16 with ∆β=2. In terms of computational cost, the 
top99neo code has presented a processing time of 1 minute and 1 second for the finest 
mesh, considering a total of 350 iterations, while the Top2DFVT algorithm has presented a 
processing time of 39 seconds with a total of 155 iterations for of the SIMP method and the 
sensitivity filter. This difference in processing time can be partially explained by the 
difference in the total number of iterations observed during the topology optimization 
analyses. For this example, the Top2DFVT algorithm, considering the sensitivity filter 
approach, presents a reduced number of iterations for convergence. 
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Figure 20. Optimized topologies for the L-bracket beam employing the top99neo algorithm. 
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