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Abstract
Successful antimicrobial therapy depends on achieving optimal drug concentrations within individual patients. Inter-patient 
variability in pharmacokinetics (PK) and differences in pathogen susceptibility (reflected in the minimum inhibitory concen-
tration, [MIC]) necessitate personalised approaches. Dose individualisation strategies aim to address this challenge, improv-
ing treatment outcomes and minimising the risk of toxicity and antimicrobial resistance. Therapeutic drug monitoring (TDM), 
with the application of population pharmacokinetic (popPK) models, enables model-informed precision dosing (MIPD). 
PopPK models mathematically describe drug behaviour across populations and can be combined with patient-specific 
TDM data to optimise dosing regimens. The integration of machine learning (ML) techniques promises to further enhance 
dose individualisation by identifying complex patterns within extensive datasets. Implementing these approaches involves 
challenges, including rigorous model selection and validation to ensure suitability for target populations. Understanding 
the relationship between drug exposure and clinical outcomes is crucial, as is striking a balance between model complexity 
and clinical usability. Additionally, regulatory compliance, outcome measurement, and practical considerations for software 
implementation will be addressed. Emerging technologies, such as real-time biosensors, hold the potential for revolutionising 
TDM by enabling continuous monitoring, immediate and frequent dose adjustments, and near patient testing. The ongo-
ing integration of TDM, advanced modelling techniques, and ML within the evolving digital health care landscape offers 
a potential for enhancing antimicrobial therapy. Careful attention to model development, validation, and ethical considera-
tions of the applied techniques is paramount for successfully optimising antimicrobial treatment for the individual patient.

Key Points 

Personalised approaches are necessary for successful 
antimicrobial therapy due to interpatient variability 
in the pharmacokinetic parameters and differences in 
pathogen susceptibility.

Therapeutic drug monitoring (TDM), combined with 
population pharmacokinetic (popPK) models and 
machine learning (ML) techniques, offers a promising 
strategy for individualising antimicrobial drug dosing.

The implementation of TDM and advanced modelling 
techniques poses challenges, including rigorous model 
selection and validation, understanding the relation-
ship between drug exposure and clinical outcomes, and 
ensuring regulatory compliance.
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1 Introduction

For the treatment of infectious diseases, the application of 
antimicrobial drugs is of paramount importance [1]. Their 
efficacy depends on achieving optimal drug concentrations 
in the body, or rather, at the site of infection [2]. How-
ever, these concentrations can vary significantly among 
individuals due to differences such as age, body weight, 
renal function, co-morbidities, having an infection and co-
administered medication [3]. These differences may be the 
result of differences in the individual’s drug exposure [4], 
which are described by the individual pharmacokinetic 
(PK) parameters. Beyond patient-specific factors, the phar-
macodynamic (PD) parameters of the targeted microbe 
also play a significant role. A key PD parameter is the 
minimum inhibitory concentration (MIC), a quantitative 
measure of the antimicrobial potency. Understanding the 
MIC is essential for selecting an appropriate dosing regi-
men—microbes with an MIC above their breakpoint are 
considered resistant and may necessitate higher doses or 
an alternative antimicrobial agent [5]. By considering both 
the individual patient’s PK profile and the PD character-
istics of the microbe, clinicians can individualise dosing 
regimens for improved therapeutic outcomes.

Dose individualisation involves tailoring dosing regi-
mens based on a patient’s unique characteristics. This 
ensures achieving optimal drug exposure while minimis-
ing side effects, the emergence of resistance and toxic-
ity [6]. Traditional dosing approaches often rely on fixed 
dosing regimens, which may not account for inter-patient 
variability in drug exposure. This may result in sub-ther-
apeutic or supra-therapeutic drug exposure and, conse-
quently, treatment failure, or side effects and toxicity. To 
overcome these limitations, doses can be tailored based on 
the individual patient’s characteristics. In addition, thera-
peutic drug monitoring (TDM) can be applied by measur-
ing drug concentrations in blood, plasma, or urine, and 
subsequently guiding dose adjustments to achieve a pre-
determined target concentration or range [7].

Healthcare’s ongoing digital transformation, character-
ised by the digitisation of hospitals, the vast availability of 
patient data, and ever-increasing computing power, opened 
many new possibilities that were previously unfeasible. 
This has led to significant advancements in methodolo-
gies used to perform dose individualisation, including the 
application of population PK (popPK) models in model-
informed precision dosing and the utilisation of machine 
learning (ML) techniques. Therefore, this review aims 
to explore the current state and future potential of dose 
individualisation for antimicrobial drugs. The focus will 
be on the integration of TDM, popPK models, and the 

transformative potential of ML methods in optimising and 
individualising antibiotic treatment.

2  Therapeutic Drug Monitoring/Model 
Informed Precision Dosing

Therapeutic drug monitoring allows for the adjustment of 
the dosing regimen based on the measured concentration 
of a drug [7]. However, optimal dose adjustments are dif-
ficult to assess. Therefore, TDM can be applied in conjunc-
tion with subsequent drug exposure predictions for different 
dosing regimen provided by a popPK model, referred to as 
model informed precision dosing (MIPD) [6]. These modali-
ties, applied to individualise antimicrobial drug dosing, are 
elaborated upon below.

2.1  Application of Therapeutic Drug Monitoring

Therapeutic drug monitoring, which measures drug concen-
trations in biological matrices (e.g., blood, plasma, urine), 
offers clinical utility when four key conditions are satis-
fied. First, the drug must exhibit significant interindividual 
variability (IIV) in its pharmacokinetics. Second, alterna-
tive non-invasive methods to assess drug efficacy must be 
lacking. Third, a validated assay for precise quantification 
of drug concentrations must be readily available. Finally, a 
well-defined exposure-response relationship, encompassing 
both therapeutic and toxic thresholds, must be established. 
The latter includes knowledge about the MIC of the patho-
gen and is, therefore, referred to as the PK/PD index.

For antimicrobial drugs, the relationship between drug 
concentration and its clinical efficacy and bacterial kill char-
acteristics is best described by three distinct PK/PD indices, 
depending on the drug’s activity pattern [8]. Antimicrobi-
als with concentration-dependent activity are described by 
either the ratio of the unbound (free) maximal concentration 
(fCmax) and the MIC (fCmax/MIC) or the ratio between the 
24-hour area under the free concentration-time curve and 
the MIC (fAUC 0h-24h/MIC) [9]. For time-dependent antimi-
crobials, effectiveness is determined by the percentage of 
time the free drug concentration exceeds the MIC (%fT>MIC) 
throughout the dosing interval [10]. Finally, antimicrobials 
exhibiting both concentration-dependent and time-depend-
ent effects are best described using the fAUC 0h–24h/MIC 
ratio. The magnitude of the PK/PD index correlating best 
with a specific antimicrobial effect is referred to as the PK/
PD target. The values used as the PK/PD targets are usually 
the median values, thereby ignoring the variability in the 
magnitude values.

To apply TDM effectively, it is important to obtain accu-
rate information regarding the times of dosing prior to and 



1169Dose Individualisation of Antimicrobials: Where Are We?

after the concentration measurement. Moreover, the time 
of sampling is also crucial. In the case of a trough sam-
ple, it may be required to sample during steady-state, which 
may differ widely between antimicrobial drugs and clini-
cal situations such as renal insufficiency. Multiple samples 
between subsequent doses may be required if an AUC has 
to be obtained. A peak concentration may also be required, 
in the case of application of an antimicrobial with a small 
volume of distribution, such as with aminoglycosides. When 
the volume of distribution alters, this may result in a large 
change in the antimicrobial concentration. Therefore, a peak 
measurement may be necessary in the latter case.

Depending on the use of PK models, TDM can be initi-
ated early to simulate steady-state concentrations and adjust 
the dose accordingly. If models are not utilised, a sample can 
be taken at steady state, and the dose can be adjusted after 
analysis. This approach is influenced by the drug’s charac-
teristics, the laboratory’s turnaround time, the use of dosing 
software, and whether efficacy and/or toxicity are specifi-
cally monitored. Ideally, dose optimisation should occur as 
soon as possible. The timing of TDM is expected to be of 
importance for clinical cure and it is expected that early 
TDM might improve clinical outcome. However, in clini-
cal patients many factors influence clinical outcome com-
plicating the analysis. In a retrospective study in critically 
ill patients, it has been shown that patients who obtained 
clinical cure and microbial eradication had beta-lactam 
drug concentrations measured earlier [11]. However, more 
research is required to assess the clinical outcome of early 
TDM measurements.

Studies have been performed on the superiority as it 
comes to clinical outcome of applying TDM. In a systemic 
review and meta-analysis of randomised controlled trials by 
Sanz-Codina et al, it was demonstrated that TDM and MIPD 
do have benefit with regard to reducing nephrotoxicity and 
treatment failure and improving target attainment [12]. Also, 
an improvement in mortality, clinical cure or microbiologi-
cal outcome was described, although not statistically signifi-
cant. This is probably because there exist so many factors 
influencing these outcomes. More research should go into 
defining realistic clinical outcomes and targeting specific 
target groups.

2.2  Application of Pharmacokinetic Models

Pharmacokinetic modelling has a long and established his-
tory in drug research. Pharmacokinetic models offer a pow-
erful way to describe the behaviour of a drug within a popu-
lation, mathematically capturing the relationship between 
drug concentrations and individual patient characteristics 
[13, 14]. These models have diverse applications, ranging 
from early pre-clinical drug development to post-market-
ing studies. Their insights aid in understanding disease 

processes, simulating drug dosing scenarios, and ultimately 
guiding treatment decisions. It is important to notice that 
each model has its own unique strengths and limitations. 
Models inherently simplify real-world complexity, relying 
on assumptions to provide valuable approximations under 
specific conditions.

Compartmental analysis is mostly used for models 
applied in TDM, which comprises the construction of both 
popPK and physiologically-based pharmacokinetic (PBPK) 
models [15]. PopPK analyses follows a 'top-down' approach, 
beginning with observed PK data and fitting increasingly 
complex models; these models don’t always directly repre-
sent physiological compartments. Conversely, PBPK utilises 
a ‘bottom-up’ approach, combining models of physiologi-
cal and chemical processes until they accurately simulate 
observed PK data [16]. The key advantage of PBPK models 
lies in their ability to extrapolate beyond initial populations 
and conditions and allow for prediction of drug concentra-
tions within specific organs or tissues [17]. However, to our 
knowledge no PKPB models have yet been applied for TDM 
purposes in clinical practice [18].

In MIPD, dose tailoring using a popPK model can be 
applied with and without the drug concentrations obtained 
from an individual patient. When drug concentrations 
are unavailable, a priori dosing utilises a popPK model’s 
median parameter estimates and covariate relationships to 
personalise dosing [19–21]. If drug concentrations have been 
obtained for a patient, maximum a posteriori (MAP) Bayes-
ian analysis provides even greater precision by blending 
prior knowledge (PK parameter distributions) with observed 
patient data (drug concentrations and individual characteris-
tics) to estimate the patient’s individual PK parameters [22]. 
These individual PK parameters enable optimised dosing 
regimens that target a specific concentration range, ulti-
mately enhancing therapeutic outcomes and minimising side 
effects, toxicity and resistance [3]. However, it is important 
to remember that the accuracy of MAP Bayesian analysis 
hinges on the validity of the underlying popPK model.

2.3  Application of Machine Learning Techniques

In recent years, ML techniques have gained significant 
attention in various fields, including health care [23, 24]. 
Machine learning algorithms can analyse large amounts of 
data and uncover complex patterns and relationships that 
might be overlooked by traditional popPK analyses [25]. 
This opens doors for enhanced precision in dose individ-
ualisation. Within the field of pharmacometrics, ML and 
artificial intelligence (AI) applications span from data han-
dling (e.g., imputing missing values) to model selection. 
Researchers are exploring hybrid models that merge PK, ML 
and AI, as well as pure ML/AI-based prediction models for 
tasks like determining antimicrobial target attainment [26].
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Classical popPK analyses and newer ML approaches are 
both valuable tools in drug development, but their perfor-
mance and outcomes differ. Classical PK analyses, based 
on nonlinear mixed-effects modelling, provide a well-
established framework for characterising drug behaviour in 
populations and have been successfully used in dose opti-
misation studies. Machine learning approaches, on the other 
hand, offer potential advantages in terms of handling large 
datasets, identifying complex relationships and automating 
model building processes. While promising results have 
been reported with ML in PK modelling, direct comparisons 
are limited and often context-specific. A study by Destere 
et al found that an ML model in combination with a popula-
tion PK model, referred to as hybrid approach, outperformed 
the application of a popPK model in predicting drug concen-
trations in a specific patient population, but the generalis-
ability of this finding remains uncertain [27]. Moreover, a 
study conducted by Li et al showed that this hybrid approach 
improved individual prediction of vancomycin clearance. 
However, the latter was obtained in simulated patients and 
not using real-world patient data [28].

The limitations of ML in popPK analyses include the 
need for large and high-quality datasets, potential overfitting 
of models, and the “black box” nature of some algorithms, 
which can make interpretation and regulatory acceptance 
challenging. Additionally, while ML can identify complex 
relationships, it may not always provide the mechanistic 
insights offered by classical PK models.

3  Challenges

Applying MIPD involves numerous challenges, particularly 
when aiming for innovative methods. The challenges cur-
rently faced in the dose individualisation of antimicrobials 
will be discussed in the following sections.

3.1  Choosing the Correct Model

The use of a proper model is of utmost importance. Imple-
menting a model into clinical practice that is not suitable 
for the target population can lead to patient harm due to 
unpredictable and unwanted concentration-dose relations. 
Hence, it is important that the model is validated on the 
target population prior to its use [29]. Models developed 
using seemingly similar populations can even result in a poor 
fit [21, 30]. Therefore, careful model selection and exter-
nal validation of model performance using an independent 
dataset is key [31].

To ensure the reliability and predictability of models used 
for TDM and MIPD, pharmacometric model validation is 
a critical step. It involves assessing the model’s ability to 

accurately describe observed data and its performance in 
predicting drug PK in new scenarios. Common validation 
approaches include internal validation (e.g., cross-valida-
tion, bootstrapping) and external validation using independ-
ent datasets. Model validation guidelines, such as those pub-
lished by the European Medicines Agency (EMA), provide a 
framework for best practices in this area. Moreover, Taylor 
et al have provided a step-by-step guide for clinical imple-
mentation of models into MIPD software [32].

Additionally, choosing multiple models over a single 
model might be beneficial. Different techniques are avail-
able for choosing the most suitable model for clinical use, 
such as model averaging or model ensembling [33–35]. With 
these methods, the models are weighted based on their abil-
ity to describe the data, demographics of the population used 
to construct the model, or other features to select the most 
optimal model or (weighted) combination of models for 
obtaining individual PK parameters used for dose individu-
alisation. Pharmacometric model averaging and ensembling 
are techniques used to combine predictions from multiple 
models, aiming to improve overall accuracy and robustness. 
Model averaging typically involves taking a weighted aver-
age of predictions from different models, with weights deter-
mined based on factors such as model performance, com-
plexity or prior knowledge [34]. Model ensembling, on the 
other hand, is a more sophisticated approach that combines 
predictions from diverse models to leverage their strengths 
while mitigating their weaknesses. This can be implemented 
using various methods, such as stacking, boosting or bag-
ging. The benefits of these techniques in pharmacometrics 
include improved predictive accuracy, reduced overfit-
ting, and increased robustness. However, challenges such 
as model selection, weighting schemes and interpretability 
need to be carefully considered. Recent advancements like 
Synthetic Model Combination (SMC) have shown promise 
in incorporating demographic information for improved pre-
dictions in PK and PD settings [33].

3.2  PK/PD Targets

The PK/PD target is, classically, studied using neutropenic 
murine thigh and lung infection models [36]. Three differ-
ent values for the antibacterial effect are usually described: 
stasis, 1-log10 kill and 2-log10 kill. In general, the 1-log10 
kill and 2-log10 kill values are preferred over a static effect. 
Especially in infections where a high bacterial load is pre-
sumed to be present at the site of the infection, such as with 
pneumonia, the 1-log10 kill target is preferred [37]. How-
ever, the 1-log10 kill or 2-log10 kill cannot be achieved for 
all antimicrobials. For the beta-lactam antimicrobials, the 
correlation between animal-derived PK/PD targets and the 
outcome of treatment in human infections has been reviewed 
[38]. It was concluded that most clinical studies in human 
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suggests a PK/PD target that is congruent with the target 
from pre-clinical murine studies. Importantly, infection-site 
specific PK/PD targets might differ from the classical PK/PD 
targets often based on blood taken from systemic circulation 
[39]. Therefore, concentrations taken at the site of infection 
cannot be automatically interpreted using classical PK/PD 
targets.

In clinical studies, other PK/PD targets such as the 
100%fT>MIC or fT>4xMIC are also used for guiding antimicro-
bial dosing [40]. The 100%fT>MIC is commonly used in criti-
cally ill patients because of the severity of their condition 
[41]. These patients often have altered PK parameters, which 
poses a risk for target non-attainment [42]. For many anti-
microbials, the bacterial killing does not increase above a 
threshold value. Consequently, a PK/PD target of 80%fT>MIC 
might be equally effective to 100%fT>MIC. In pre-clinical 
studies a near-maximal killing can be reached at lower val-
ues than 100%fT>MIC, indicating that the additional effect 
of increasing the %fT>MIC above a certain value to 100% 
might be limited. As can be seen for example for Klebsiella 
pneumoniae and cefotaxime, in which at 65%fT>MIC near 
maximal killing is achieved [43]. In addition, a systematic 
literature review demonstrated that there is no compelling 
clinical evidence showing superior efficiency of bactericidal 
as compared with bacteriostatic agents in treatment of severe 
infections [44]. Therefore, it is questionable whether high 
PK/PD targets are required in cases where alterations in the 
PK parameters are accounted for by TDM-guided dosing. 
The latter may also result in supra-therapeutic or toxic doses. 
However, it is unclear what concentration is needed at the 
target site. It can be argued that for difficult-to-reach infec-
tions, a higher systemic concentration may be necessary to 
achieve the correct concentration at the target site. Depend-
ent on the characteristics of the drug (chance of toxicity), a 
dosing advise should be given balancing between sufficient 
efficacy and risk of toxicity.

Although MIC values used to determine PK/PD tar-
gets are obtained by repeated measurement using a gold 
standard method, measuring MICs multiple times in clini-
cal practice is not feasible. Due to the inherent variability 
of the MIC measurement, the use of the epidemiological 
cut-off (ECOFF) value is recommended for TDM instead 
[45]. However, the %fT>ECOFF value might be close to the 
%fT>4xMIC value depending on the wild-type distribution for 
several antimicrobial-pathogen combinations.

Another challenge for determining an accurate PK/PD 
index is the target that needs to be adhered to when com-
bination therapy (multiple antimicrobials) is applied [46]. 
Future research should focus on integrating the population 
PK and PD of multiple drugs, mechanisms of synergy and 
resistance and computational models to optimise combina-
tion therapies.

3.3  Antimicrobial Resistance

With the increasing resistance to antimicrobials, assess-
ment of adequate dosing regimen is required. For differ-
ent pathogens and antimicrobials, there is considerable 
variation between the antimicrobial exposure needed 
to suppress the emergence of resistance. Notwithstand-
ing, the antimicrobial exposure required to suppress the 
emergence of resistance generally exceeds that of clini-
cal efficacy [47]. This highlights a complex and evolving 
challenge for clinicians and researchers. Furthermore, the 
optimal exposure to prevent resistance can vary signifi-
cantly across different pathogens and antimicrobial agents. 
This is further complicated by the imprecise measurement 
of bacterial susceptibility, showing high variability [48]. 
Understanding the relationship between antimicrobial con-
centration and the development of resistance is crucial. 
Currently, these relationships only consider the emergence 
of resistance in the targeted pathogen and not in commen-
sal microorganisms. The latter poses a major limitation.

If a more accurate method for MIC testing is developed, 
all PD analyses have to be reassessed. This also goes for 
current MIC testing, included in the determination of PK/
PD targets. When treatment with a specific antibiotic is 
needed for isolates with MIC values above the clinical 
breakpoint, it has been suggested to perform TDM based 
on the MIC measured with additional 2-fold dilutions 
added to the measurement. For isolates with a wide wild-
type distribution it might be necessary to add more than a 
2-fold dilution to the measured MIC [45].

3.4  Practical Implementation

3.4.1  Regulatory Guidelines

To apply models clinically, compliance with medical 
device regulations (MDR) is essential, as models and the 
software where they are implemented in are considered to 
be medical devices. Validation of this software is required, 
and certification confirming data storage outside the user’s 
jurisdiction is important. Additionally, data transfer must 
adhere to the General Data Protection Regulation (GDPR) 
[49]. In addition, as proposed doses by the MIPD soft-
ware may exceed the approved dose ranges for a specific 
antimicrobial, an approval by a Medical Research Ethics 
Committee (MREC) may also be required.

3.4.2  Model Complexity and User Experience

To facilitate seamless adoption and application of PK/PD 
models in real-world clinical settings, user-friendly inter-
faces and training programmes for health care professionals 
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are essential [50]. Increasing model complexity may hamper 
its application in clinical practice as it is less clear how the 
model results have been obtained. As for ML models, one is 
generally unaware of the underlying processes driving the 
model results. Therefore, clinicians may be hesitant to adopt 
the use of these models in clinical practice. Unlike many AI/
ML techniques, popPK and PBPK models offer transparency 
in their underlying calculations. Additionally, high model 
complexity may lead to other issues such as unavailabil-
ity of required data to apply the model (discussed below). 
Moreover, as the calculations performed by such models 
are complex and computationally demanding, specialised 
computer software and hardware and IT support are also 
required, especially for integration and implementation in 
the current hospital infrastructure.

3.5  Outcome Measures

Although clinical trials evaluating the impact of MIPD on 
antimicrobial outcomes are increasing, the existing evidence 
base remains limited. A meta-analysis of randomised con-
trolled trials (RCTs) noted that MIPD potentially reduces 
mortality. Although statistically significant reductions in 
treatment failure and nephrotoxicity were obtained, the 
reductions obtained in mortality were not statistically sig-
nificant [12]. Direct comparison of dose optimisation strat-
egies across clinical trials is challenging due to complexi-
ties in non-inferiority trial designs and large sample size 
requirements [51]. The Desirability of Outcome Ranking 
(DOOR) and Response Adjusted for Duration of Antibiotic 
Risk (RADAR) methodologies are transforming clinical 
trial practices, particularly in antimicrobial optimisation. 
These approaches establish a two-tiered evaluation system. 
The DOOR innovates by ranking trial participants based 
on their overall outcomes, considering benefits, harms, and 
potentially quality of life. This patient-centric approach 
contrasts with traditional methods that focus on analysing 
outcomes rather than patients. The RADAR, a specialised 
DOOR application for antimicrobial trials, integrates clinical 
outcomes with drug use, prioritising reduced antimicrobial 
exposure without compromising patient results.

Multiple studies demonstrate the value of DOOR and 
RADAR across diverse medical settings. Examples include 
the CASA RELAX study comparing appendectomy anti-
biotic strategies [52], procalcitonin-guided algorithms in 
burn patients [53], urinary tract infections [54], and intra-
abdominal infections [55]. Studies in paediatric pneumonia 
and the DigiSep-Trial for sepsis patients, further illustrate 
the potential of DOOR and RADAR to improve clinical 
responses and optimise cost-effective diagnostic strategies 
[56, 57]. These studies highlight the significant utility of 
DOOR and RADAR for enhancing antimicrobial use and 
evaluating comprehensive clinical outcomes.

3.6  Model‑Informed Precision Dosing Software

While MIPD software offers the potential to streamline anti-
microbial dose optimisation, their widespread clinical adop-
tion faces several challenges [49]. Factors hindering imple-
mentation include limited robust evidence demonstrating 
the utility, impact, and cost effectiveness of MIPD, as well 
as concerns around user-friendliness, high costs, privacy 
regulations, and the technical expertise required [49, 58]. 
Additionally, ensuring the availability of validated popPK 
models within the software is crucial for accurate dosing 
recommendations. To assist clinicians, a comparative evalu-
ation of ten available MIPD software tools has been con-
ducted, analysing features like user-interface design, popPK 
models, user-support, and costs [49]. Careful consideration 
of factors such as model validation, covariate availability, 
appropriate patient selection and clinician training is essen-
tial for successful MIPD software implementation in clinical 
practice [59]. Ideally, seamless integration with electronic 
patient record (EPR) systems would increase transferability 
of patient data and, thus, optimise workflow.

To accurately measure drug concentrations for MIPD, the 
choice of analytical method is crucial. For certain antimicro-
bials (like aminoglycosides and vancomycin), immunoassays 
offer a convenient option. However, many other antimicro-
bials require more sensitive techniques like liquid chro-
matography–mass spectrometry/MS or high-performance 
liquid chromatography. When interpreting MIPD results, 
it is essential to consider both the analytical method and 
the biological matrix where the sample was taken, as these 
factors can significantly influence measured drug concen-
trations [60]. Additionally, precise documentation of dose 
administration and sample collection times is important for 
obtaining accurate MIPD results. Uncertainties in timing can 
result in biased and imprecise prediction when using popPK 
models, potentially leading to suboptimal supra-therapeutic 
dose recommendations [61].

3.7  Target‑Site Concentrations Versus Plasma 
Concentrations

Therapeutic drug monitoring is standardly performed in 
blood and the reference values for TDM in most cases are 
based on plasma concentrations. This is in line with the pre-
clinical studies on the PD-target in which the PK exposure 
is determined in murine blood while the effect is measured 
in murine tissues. However, the latter is often not performed 
at the site of infection. It would be of added value to also 
perform TDM directly in tissues. However, in order to inter-
pretate the results obtained from TDM we also need the 
PD-target based on concentrations in the corresponding tis-
sues. In our research group, we have performed TDM for 
antibiotics in cerebrospinal fluid (CSF) in clinical practice. 



1173Dose Individualisation of Antimicrobials: Where Are We?

Nevertheless, TDM performed at other target sites is still 
only performed in research [62].

In bone and joint infections, for example, the literature is 
sparse for most antibiotics. In addition, many variable and 
total antibiotic concentrations are published. More extensive 
research on the PK/PD of antibiotics in bone and joint infec-
tions is required [63].

3.8  Cost Effectiveness and Logistics

Cost-effectiveness evaluations of individualisation strate-
gies in pharmacometrics are crucial to assess their economic 
viability and sustainability within health care systems. These 
evaluations should consider both the direct costs associated 
with model development, validation, and implementation, 
as well as the indirect costs and benefits related to improved 
patient outcomes and resource utilisation. Additionally, the 
logistic requirements for successful individualisation, such 
as data collection, infrastructure, and personnel training, 
need to be thoroughly examined. For instance, the imple-
mentation of MIPD may require investment in software and 
hardware infrastructure, as well as training healthcare pro-
fessionals on model interpretation and application [64].

4  Future

4.1  Data Required for Machine Learning Techniques

Providing data for ML in TDM involves several challenges, 
which are outlined in the following sections.

4.1.1  Data Quality and Completeness

TDM data can be collected using various approaches, 
including sparse, opportunistic, or scavenged sampling. 
However, limited data availability poses a significant chal-
lenge for training and deploying effective ML models, as 
these techniques thrive on vast datasets. When essential 
data are scarce, it becomes difficult to build reliable mod-
els, and missing data points can further compromise accu-
racy. Imputing missing values requires careful strategies to 
minimise bias [65–67]. Fortunately, the landscape is chang-
ing with the rise of automated PK data recording modali-
ties, such as infusion systems connected to EPRs and the 
increasing use of methods like dried blood spots (DBS) for 
sample collection. These advancements have the potential 
to offer new ways of collecting data needed to power dose 
optimisation.

4.1.2  Heterogeneity of Data

Patient populations vary in demographics, genetics, and 
comorbidities. Incorporating this heterogeneity into ML 
models is challenging but essential for generalisability 
across different patient groups. Integrating heterogeneous 
data from multiple sources requires clear guidelines that 
adhere to high ethical and legal standards [68].

4.1.3  Temporal Dynamics

Drug concentrations in the body change over time, influ-
enced by factors such as metabolism, renal function, and 
adherence to medication. Rapid fluctuations in physiologi-
cal functions, such as augmented renal clearance (ARC), 
impaired kidney or liver function, and altered drug distri-
bution volume are experienced especially by critically ill 
patients [10]. These dynamic changes can significantly 
impact antimicrobial exposure. Although adding complex-
ity to the modelling process, accurately capturing these 
temporal dynamics is crucial for applying TDM effectively. 
Moreover, an ample number of data points is required to 
predict such dynamic processes [69]. In clinical practice, 
this may be hampered by the turn-around time of the applied 
analytical assay. Accounting for rapidly changing temporal 
dynamics is important for optimising dosing regimens in 
critically ill patients.

Temporal dynamics can also occur in the inoculum. Cur-
rently, in all in vitro methods (such as MIC testing) and the 
in vivo preclinical studies, the used inocula are standard-
ised. This makes it easier to compare results. On the other 
hand, it has been shown that in a mouse model higher drug 
exposures are required to achieve stasis or 1-log10 killing 
against a higher  (107 CFU/mL) than a lower  (105 CFU/
mL) inoculum of multiple Staphylococcus aureus strains 
for four classes of antibiotics [70, 71]. Although the clini-
cal relevance of experimental inoculum effects is not fully 
understood, it is noted that in infections in which a high 
inoculum can be expected, such as in ventilator-associated 
pneumonia, it may be more desirable to achieve the more 
stringent PD-targets [70].

4.1.4  Validation and Generalisation

Validating models, especially ML models, for TDM is chal-
lenging due to the limited availability of independent data-
sets. Rigorous validation is crucial to ensure the reliable 
model performance in different real-world clinical scenarios 
[29, 72]. Furthermore, models trained on specific patient 
populations or data sources may not adequately predict other 
populations. Generalising model results across diverse clini-
cal contexts is a common challenge, and careful extrapola-
tion of parameter estimates is warranted, if at all possible.
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4.1.5  Regulatory Compliance

Population PK models, obtained using non-linear mixed 
effect modelling or ML, may be subject to regulatory scru-
tiny. Ensuring that data and models comply with regulatory 
standards is essential for their acceptance in clinical practice 
[73, 74].

4.2  Clinical Integration

Implementation of models into health information systems 
(HIS) comprising EPRs has multiple advantages. It reduces 
the human factor of manually typing information from one 
system into the other. Moreover, the models may be able 
to autonomically tailor the dose of an antimicrobial to the 
needs of the individual patient. Furthermore, models inte-
grated in a HIS may continuously learn from new incoming 
real-world data (RWD) as well as on feedback of their own 
performance. Therefore, autonomic updating of the model 
may continuously improve the model performance and pro-
vide more accurate adjustments of a dosing regimen.

4.3  Real‑Time Monitoring

When performing TDM, biological samples (typically 
plasma) are transported to an analysis laboratory, with a 
turn-around time ranging from approximately 30 minutes 
to 48 hours. This timeframe varies depending on the spe-
cific drug and the availability of the assay. Recognising the 
importance of promptly initiating effective antimicrobial 
therapy, reducing the turnaround time becomes crucial for 
timely adjustments of antimicrobial dosing regimen [75].

Another limitation of current TDM practices revolves 
around the minimal number of available antimicrobial assays 
in most laboratories [76]. Considering these challenges, 
there is a necessity to create innovative technologies that 
address the limitations of traditional TDM processes. In this 
context, the exploration of real-time TDM sensor monitor-
ing emerges as a promising solution [77, 78]. Prerequisites 
for this technology encompass: transduction, involving the 
identification of targets in human matrices [79]; ongoing 
sample collection via, for instance, interstitial fluid sampling 
using microneedle biosensors [80]; and instantaneous signal 
processing of assay outcomes [81]. Therefore, biosensors 
could facilitate target site concentration measurement.

Fig. 1  Differences between current practice of MIPD and future 
practice. The left panel delineates the conventional methodology for 
optimising antibiotic dosing in current clinical practice, whereas the 
right panel outlines the proposed advancements for future practice. AI 
artificial intelligence, AUC/MIC the ratio of the area under the con-
centration-time curve to MIC, Cmax/MIC the ratio of maximum drug 

concentration to MIC, MAP maximum a posteriori, MIC minimum 
inhibitory concentration, MIPD model-informed precision dosing, 
ML machine learning, PK/PD pharmacokinetic/pharmacodynamic, 
TDM therapeutic drug monitoring, T>MIC the duration of time that 
the drug concentration remains above the MIC during a dosing inter-
val
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Numerous biosensor techniques are currently undergoing 
testing, including aptamer-based electrochemical and elec-
tronic sensors [82]. Among these technologies is one that 
originates from particle mobility, utilising a 'competition 
assay' [83]. The assay identifies a binding event through a 
sudden reduction in particle mobility, attributed to inter-
actions between a particle and a sensor surface. As these 
interactions are facilitated by weak biological forces, they 
are reversible, allowing continuous monitoring. Bright field 
optical microscopy records the transitions between unbound 
and bound states over time for numerous particles concur-
rently, facilitating precise concentration determination. 
Critical factors for enhancing the robustness of biosensors 
encompass selectivity, sensitivity, reproducibility, reusabil-
ity, and long-term stability. Additionally, there is a necessity 
to validate the new technology against the gold standard of 
mass-spectrometry (MS). Given the extensive data captured, 
processed, and managed during clinical use, it is imperative 
to prioritise data confidentiality.

Alongside novel techniques, biosensors could also be 
measuring novel blood or target site markers. For example, 
Gastine et al investigated the use of the galactomannan index 
(GMI) for determining the dynamic endpoint of antifungal 
response of invasive pulmonary aspergillosis (IPA) in neu-
tropenic patients [84]. It was demonstrated that a PK/PD 
index could be adequately established using the GMI (30 
mg*h/L). The latter shows that other PK/PD parameters such 
as the MIC can also be applied for providing optimised anti-
biotic treatment.

Looking ahead, the integration of AI may prove instru-
mental in facilitating data analysis and exposure prediction, 
potentially playing a substantial role in the future imple-
mentation of real-time biosensors, ultimately leading to con-
tinuous dose optimisation [85]. Applying real-time meas-
urements may only be beneficial for a particular group of 
patients, such as critically ill patients. It should be further 
investigated what type of patients could benefit from this 
modality. Moreover, clinical trials need to be performed to 
obtain evidence for cost effectiveness as well as improved 
antimicrobial efficiency (Fig. 1).

5  Conclusion

Dose individualisation of antimicrobial drugs is crucial to 
optimise therapeutic outcomes and minimise the risk of 
adverse effects. Population PK models, combined with MAP 
Bayesian analysis, have been valuable tools in this context, 
allowing for the estimation of individual PK parameters and 
the prediction of drug concentrations. Machine learning and 
AI techniques show promise in enhancing the accuracy of 
dose individualisation by capturing complex relationships 

that may not be captured by traditional popPK models. How-
ever, further research is needed to fully explore the potential 
of ML and AI in this field. Careful model selection, valida-
tion, and consideration of ethical and regulatory aspects are 
essential to ensure the reliability and applicability of the 
results obtained using these methodologies.
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