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It has been hypothesized that human immunodeficiency virus type 1 (HIV-1) evolves toward increased
cytopathicity in conjunction with disease progression in infected patients. A viral property known to evolve in
some but not all patients is coreceptor utilization, and it has been shown that a switch in coreceptor utilization
is sufficient for the development of increased cytopathicity. To test the hypothesis that the evolution of other
viral properties also contributes to accelerating cytopathicity in vivo, we used human lymphoid tissue explants
to assay the cytopathicity of a panel of primary HIV-1 isolates derived from various stages of disease
characterized by the presence or absence of changes in coreceptor preference. We found no evidence of
coreceptor-independent increases in cytopathicity in isolates obtained either before coreceptor preference
changes or from patients who progressed to AIDS despite an absence of coreceptor evolution. Instead, the
cytopathicity of all HIV-1 isolates was determined solely by their coreceptor utilization. These results argue
that HIV-1 does not evolve toward increased cytopathicity independently of changes in coreceptor utilization.

Human immunodeficiency virus type 1 (HIV-1) is known to
evolve throughout the course of disease in infected individuals
(25, 28). To compare the cytopathicity and replication kinetics
of clinical isolates from early and late stages of disease, various
cell line-based assays have been used to show that late viruses
typically are more cytopathic and can replicate faster in vitro
(7, 23). The identification of HIV-1 coreceptors and of their
expression on various cell lines has shed new light on these
data. Virtually all HIV-1 isolates obtained from patients use
one or both of two chemokine receptors, CCR5 (9, 11) and
CXCR4 (12), as major coreceptors, along with CD4 (15), for
entry into target cells (reviewed in reference 2). Viruses iso-
lated early in the course of disease typically use CCR5 as a
coreceptor (R5 viruses), whereas viruses isolated late in the
course of disease commonly can use either CXCR4 alone (X4
viruses) or both CCR5 and CXCR4 (R5X4 viruses) (8). Typ-
ically, cell lines used for in vitro characterization express high
levels of CXCR4 and low levels of CCR5 (29), and these facts
explain why late X4 viruses characteristically replicate more
vigorously and have greater cytopathic effects in such experi-
ments. Likewise, using a novel experimental system based on

ex vivo human lymphoid histocultures, it has been established
that X4 viruses are more cytopathic than R5 viruses (13, 14, 18)
and specifically that late X4 viruses are more cytopathic than
early R5 viruses (22). An important remaining question is
whether primary isolates from different stages of disease differ
in their cytopathicity independently of coreceptor preference.

To determine whether HIV-1 cytopathicity corresponds to
the stage of HIV-1 disease, we tested a variety of primary
isolates and biological clones derived from HIV-1-infected pa-
tients using an ex vivo human lymphoid histoculture system
(13, 14, 18, 21, 22). These experiments were carried out with
either blocks (14, 18, 22) or dispersed cultures (D. A. Eckstein,
M. L. Penn, Y. D. Korin, D. D. Scripture-Adams, J. A. Zack,
J. F. Kreisberg, M. R. Roederer, M. P. Sherman, C. Klein, P. S.
Chin, and M. A. Goldsmith, submitted for publication) of
human tonsil specimens, and similar results were obtained in
both assays. HIV-1 isolates or clones were first expanded, and
then their titers were determined by end-point dilution on
phytohemagglutinin-activated peripheral blood mononuclear
cells pooled from two to four normal donors. The inoculum
size was either 20 50% tissue culture infective doses per tissue
block or 50 50% tissue culture infective doses per well of
dispersed tissue. Histoculture infections typically were carried
out for 2 weeks, with culture medium changes the day after
infection and every 3 days thereafter. At the end of the exper-
iment, the tissue was harvested and split into two equal sam-
ples for immunostaining and analysis by fluorescence-activated
cell sorting. One sample was stained with antibodies to CD3,
CD4, CD8, and CCR5 for analysis of depletion of both total
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CD41 CD31 lymphocytes (referred to hereafter as CD41 T
cells) and CCR51 and CCR52 subsets of CD41 T cells. The
other sample was stained with antibodies to CD3, CD4,
CD45RA, and CD62L for measurement of depletion of naive
and memory CD41 T cells (19, 20).

We first sought to determine whether X4 viruses present
early after infection in some individuals differ in their cyto-
pathicity from X4 viruses isolated late in disease. We com-
pared the CD41 T-cell depletion potential of an R5X4 isolate
obtained from a patient within 90 days of infection (patient X)
(Table 1 and Fig. 1) to that of an R5X4 isolate derived from a
patient 6.5 years after seroconversion (patient W) (Fig. 1). As
a positive control, we also assayed depletion by a highly cyto-
pathic X4 molecular clone, NL4-3 (1, 13, 14, 18, 22). We found
that the early R5X4 isolate depleted CD41 T cells as potently
as did both the late R5X4 isolate and the control virus, NL4-3
(Fig. 1A); each virus led to 85 to 90% depletion of all CD41 T
cells relative to the results obtained for uninfected samples.
Furthermore, the CCR51 and CCR52 subsets of CD41 T cells
were thoroughly depleted by all viruses tested here (Fig. 1A).
In addition, depletion analysis of naive and memory subsets of
CD41 T cells was performed. As was observed previously with
other X4 viruses, severe depletion of both CD41 T-cell subsets
was observed with all X4 and R5X4 viruses tested here (Fig.
1B). Finally, robust viral replication kinetics were observed for
these viruses, based on measurements of HIV-1 p24 in the
culture supernatants (Fig. 1C). These results, which are con-
sistent with the fact that nearly all CD41 T cells in human
tonsils express CXCR4 (13, 14) and are thus potential targets
for HIV-1, demonstrate that cytopathicity correlates well with
the coreceptor preference of X4 isolates. Indeed, we have
detected very little variability in the depletion behavior of a
wide range of X4 and R5X4 isolates (data not shown).

We next sought to determine if the behavior of R5 viruses
was similarly independent of patient status. We compared the
cytopathicity of an early R5 biological clone to that of a late R5
biological clone derived from the same patient (patient Z)
(Fig. 1). In addition, we tested whether these clones differed
from two other R5 isolates: one isolate was derived from a
patient within 90 days of infection (patient Y) (Fig. 1), and the
other was isolated 5 years after seroconversion from a patient

who was asymptomatic at the time (patient W) (Fig. 1). As a
positive control, we also tested a previously characterized R5
molecular clone, 81.A (26). All five R5 viruses were found to
deplete CD41 T cells equally. Each depleted approximately
15% of total CD41 T cells (Fig. 1A) but nearly all CCR51

CD41 T cells (Fig. 1A). As demonstrated previously, the ap-
parent decreased cytopathicity of R5 viruses compared with X4
viruses is due to a decreased target pool size resulting from the
limited expression of CCR5 compared with that of CXCR4
(13, 14). Moreover, R5 viruses depleted a portion of memory
CD41 T cells, presumably the CCR5-expressing fraction, but
did not deplete naive CD41 T cells (Fig. 1B), due to a very low
level of CCR5 expression (5, 27, 29). To establish that there
was nothing unusual about the patient from whom these bio-
logical clones originated, we also tested an R5X4 biological
clone that was isolated late in disease from patient Z at the
same time as the previously tested late R5 biological clone.
Indeed, the depletion profile of this R5X4 biological clone was
similar to that of all other X4 and R5X4 viruses tested here
(Fig. 1A and B). Substantial replication was evident for all R5
viruses and the control R5X4 clone (Fig. 1C). In summary, the
results thus far revealed no evidence that any viral trait other
than coreceptor preference regulates the cytopathicity of pri-
mary isolates in ex vivo cultures of human tonsils.

It is possible that the late R5 biological clone tested above
was not especially cytopathic because it had experienced no
selective pressure to acquire greater cytopathic properties in
the context of highly cytopathic R5X4 viruses that were already
systemic in the individual. To address this issue, we tested a
panel of biological clones isolated longitudinally from four
patients who exhibited significant disease progression but
never developed detectable X4 viremia or who were treated
with antiretroviral agents. Two patients were homozygous for
the wild-type allele of CCR5 (patients A and B) (Table 1 and
Fig. 2) and progressed to AIDS within ;4 years of serocon-
version, whereas the other two patients were heterozygous for
the D32 allele of CCR5 (patients C and D) (Fig. 2) and pro-
gressed to AIDS in ;8 to 10 years. The depletion patterns of
these eight viruses were analyzed with particular interest in
differences between early and late viruses within a given pa-
tient or between viruses from patients with different genotypic
patterns. However, the results obtained for these eight viruses
showed no such differences. Each infection yielded moderate
depletion of CD41 T cells, with profound depletion of the
CCR51 subset of CD41 T cells and sparing of the CCR52

subset (Fig. 2A). Moreover, memory CD41 T cells were de-
pleted moderately by each of these isolates, while naive CD41

T cells were not (Fig. 2B). Again, substantial viral replication
kinetics were seen throughout the course of the experiment for
these isolates (Fig. 2C). These results demonstrate that R5
viruses isolated in either the absence or the presence of sys-
temic X4 viremia are equally cytopathic, even R5 viruses caus-
ing severe disease progression in the absence of evolution to
the X4 phenotype. These data argue against a model of HIV-1
evolution that posits selective pressure during the course of
disease on HIV-1 to acquire cytopathic traits other than ex-
panded target cell range via coreceptor evolution.

In summary, we have shown that the cytopathicity for tissue
lymphocytes of a diverse set of primary isolates from various
stages of disease is entirely restricted by coreceptor utilization

TABLE 1. Summary of primary HIV-1 isolates tested

Patient Virus Reference(s)
Patient

designation in
reference(s)

W Early R5 isolate 7, 8, 22 Patient C (1/85)
Late R5X4 isolate 7, 8, 22 Patient C (7/86)

X Early R5X4 isolate None None
Y Early R5 isolate 16 MJM
Z Early R5 biological clone 25 Patient 8

Late R5 biological clone 25 Patient 8
Late R5X4 biological clone 25 Patient 8

A Early R5 biological clone 3, 4, 10, 24, 28 ACH 424
Late R5 biological clone 3, 4, 10, 24, 28 ACH 424

B Early R5 biological clone 4 ACH 537
Late R5 biological clone 4 ACH 537

C Early R5 biological clone 4, 10 ACH 38
Late R5 biological clone 4, 10 ACH 38

D Early R5 biological clone 4, 10 ACH 617
Late R5 biological clone 4, 10 ACH 617
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FIG. 1. Cytopathic potential of primary HIV-1 isolates correlates with coreceptor utilization but not stage of disease. (A) Dispersed human
tonsil tissue in replicate microtiter wells (three for experimental viruses and two for NL4-3) was inoculated with the indicated viruses (Table 1).
Biol. Clone, biological clone. Tissue was harvested, immunostained, and analyzed by fluorescence-activated cell sorting 13 days after infection as
described previously (14, 22). The total height of the column in the graph represents the ratio of CD41 T cells to CD81 T cells. The standard error
of the mean is represented by the error bars. (B) The samples shown in panel A were analyzed for depletion of memory and naive cells. Naive
CD41 T cells were defined as CD41 T cells that were CD45RA1 CD62L1, and all other CD41 T cells were defined as memory CD41 T cells (19,
20). (C) Culture supernatant was assayed for HIV-1 p24 by an enzyme-linked immunosorbent assay to monitor viral replication. Experiments with
different donor specimens were conducted twice with dispersed cultures and once with tissue blocks; data from a representative experiment are
presented.
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and does not typically display coreceptor-independent evolu-
tion during the progression of disease. This finding likely has
implications for disease pathogenesis, but the possibility that
there may be subtle, coreceptor-independent evolution of

pathogenicity in vivo that is not reflected in this ex vivo culture
system cannot be excluded. Likewise, we cannot exclude the
possibility that the propagation of virus isolates may have di-
minished virulence differences, a potential problem with any

FIG. 2. Primary R5 HIV-1 isolates from advanced disease in the absence of X4 viremia retain selective cytopathicity for CCR51 T cells.
Experiments were performed with the indicated viruses (Table 1) as described in the legend to Fig. 1. (A) Depletion of CD41 T cells, including
total CD41 T cells, and CCR51 and CCR52 subsets. (B) Depletion of memory and naive subsets of CD41 T cells. (C) HIV-1 replication kinetics.
Experiments with different donor specimens were conducted twice with dispersed cultures and once with tissue blocks; data from a representative
experiment are presented.
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functional survey of primary isolates. Given the range of
sources of viruses and the uniformity of our results, this report
nonetheless establishes the general principle that the ability of
HIV-1 to deplete CD41 T cells in histocultures is a predictable
event based on coreceptor usage of the virus and coreceptor
expression of the target tissue.

Our results indicating equal degrees of cytopathicity of early
and late R5 viruses from patients who progressed to AIDS but
lacked X4 viremia are in agreement with one but not another
study of similar isolates tested in the SCID-hu Thy-Liv xeno-
transplant model (3, 24). Berkowitz et al. (3) analyzed two
late-stage R5 biological clones, including one from patient A,
and did not find increased cytopathicity relative to that of
control viruses. In contrast, Scoggins et al. (24) tested the
cytopathicity of early-, middle-, and late-stage disease biolog-
ical clones derived from some of the same patient isolates as
those tested here and found significant depletion of CD41

CD81 thymocytes in some implants with a single late-stage
clone but not with clones from earlier in disease. It is important
to note the differences between the SCID-hu model and his-
tocultures with regard to interpretation of the above results.
The human tissue in SCID-hu xenografts originates from thy-
mic tissue and thus represents a system to test the effects of
HIV-1 on immature and developing thymocytes (6, 17). In fact,
the bulk of this tissue is CD41 CD81 thymocytes, of which
more than 90% would be eliminated by thymic selection nor-
mally. In contrast, the experimental explants used in the
present study are derived from mature lymphoid tissue that is
populated by T cells that have survived thymic selection. Thus,
the depletion properties observed here are indicative of the
cytopathic capabilities of HIV-1 for mature CD41 T cells.

In the context of disease progression, the data regarding the
cytopathicity of early and late R5 viruses indicate that HIV-1
need not experience an increase in cytopathicity over time to
cause severe disease in infected people. An R5 virus that suc-
cessfully infects and eliminates the entire CCR5-expressing
pool of CD41 T cells is apparently cytopathic enough to de-
plete the immune system sufficiently to cause AIDS, presum-
ably through attrition of cells that dynamically express CCR5
at various stages of the cellular life cycle (5). We hypothesize
that as the immune system seeks to replenish the CCR5-ex-
pressing fraction of CD41 T cells to restore homeostasis in the
context of peripheral destruction of such cells, an R5 virus will
continually find new target cells until too few CD41 cells re-
main to maintain a functional immune system.
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