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Abstract 

Deep Learning (DL) has the potential to enhance patient outcomes in healthcare by implementing proficient systems 
for disease detection and diagnosis. However, the complexity and lack of interpretability impede their widespread 
adoption in critical high-stakes predictions in healthcare. Incorporating uncertainty estimations in DL systems can 
increase trustworthiness, providing valuable insights into the model’s confidence and improving the explanation 
of predictions. Additionally, introducing explainability measures, recognized and embraced by healthcare experts, 
can help address this challenge. In this study, we investigate DL models’ ability to predict sex directly from electro‑
encephalography (EEG) data. While sex prediction have limited direct clinical application, its binary nature makes 
it a valuable benchmark for optimizing deep learning techniques in EEG data analysis. Furthermore, we explore 
the use of DL ensembles to improve performance over single models and as an approach to increase interpretability 
and performance through uncertainty estimation. Lastly, we use a data-driven approach to evaluate the relationship 
between frequency bands and sex prediction, offering insights into their relative importance. InceptionNetwork, a sin‑
gle DL model, achieved 90.7% accuracy and an AUC of 0.947, and the best-performing ensemble, combining varia‑
tions of InceptionNetwork and EEGNet, achieved 91.1% accuracy in predicting sex from EEG data using five-fold cross-
validation. Uncertainty estimation through deep ensembles led to increased prediction performance, and the models 
were able to classify sex in all frequency bands, indicating sex-specific features across all bands.
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1  Introduction
Recent methodological advancements in deep learning 
(DL) have made it particularly promising for applications 
in healthcare [1–3]. DL, a specialized sub-branch 
of artificial intelligence (AI) and machine learning 
(ML) [4], is designed to construct complex models 
with multilayered architectures that excel in feature 

extraction from high-dimensional, complex datasets 
[5]. Unlike traditional techniques that rely on manually 
crafted features, DL uses data-driven optimization to 
automatically extract key features, uncovering data 
relationships that might otherwise be missed. This 
has positioned DL as a powerful tool for tackling 
complex challenges, particularly in fields with rich, 
multidimensional data.

An emerging area within DL is uncertainty modeling, 
which is crucial for applications in safety-critical 
domains such as healthcare [6]. DL models inherently 
face challenges with variability and ambiguity in data, 
making it essential to quantify uncertainty to improve 
model interpretability and trustworthiness. Uncertainty 
in DL is typically categorized into aleatoric uncertainty, 
which arises from inherent data noise, and epistemic 
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uncertainty, which stems from the model’s lack of 
knowledge about the data [7]. Estimating uncertainty 
in DL models is generally achieved through Bayesian 
approaches or ensemble methods. Ensemble methods, 
which aggregate the predictions of multiple models, have 
shown strong performance across various domains by 
addressing the weaknesses of individual models [8]. The 
distribution of predictions within an ensemble provides 
a direct measure of the model’s uncertainty, offering a 
quantifiable assessment of confidence in its outputs. 
Analyzing the variability among these predictions can 
significantly enhance the model’s interpretability and 
reliability. Moreover, beyond uncertainty estimation, DL 
ensembles may offer significant performance advantages. 
Single DL models often encounter challenges such 
as local minima, plateaus, and saddle points in the 
optimization landscape, which can hinder training and 
reduce overall model accuracy [4, 9]. Ensemble methods 
mitigate these challenges by combining models that 
explore different regions of the optimization space. This 
diversity allows ensembles to generate more robust and 
accurate predictions, as they can effectively navigate 
the complex landscape that a single model might 
struggle with. Addressing the inherent uncertainties in 
healthcare-related DL models could aid in evaluating 
a prediction’s reliability. By addressing these inherent 
uncertainties, particularly in healthcare-related DL 
models, ensembles can help evaluate the reliability of 
predictions. This uncertainty identification is crucial 
for providing medical professionals with the insights 
needed for better-informed decision-making, fostering a 
collaborative process between AI systems and healthcare 
providers, ultimately leading to improved patient 
outcomes.

Electroencephalography (EEG) is a powerful and 
widely used tool in neuroscience and clinical practice due 
to its non-invasive nature, cost-effectiveness, and tem-
poral resolution. The clinical utility of EEG is significant, 
with its cost-efficiency stemming from expenses largely 
limited to the clinician’s time, making it far more afford-
able than other imaging techniques like MRI. Its non-
invasive nature reduces patient risk and discomfort, and 
its portability enables use in diverse settings, including 
resource-limited regions, highlighting its critical role in 
neurological diagnosis and monitoring. EEG measures 
the brain’s electrical activity using scalp electrodes that 
record a summation of neuronal activity, with the prox-
imity and orientation of the signal generators as impor-
tant mediators. While EEG provides high temporal 
resolution, capable of capturing potential fluctuations on 
a millisecond scale, it suffers from poor spatial resolution 
due to i) the smearing effect of the head as a volume con-
ductor and ii) relatively poor signal-to-noise ratio due to 

intrinsic and extrinsic artifacts [10]. EEG systems vary in 
the number of electrodes, from 19 in clinical applications 
to 256 and beyond in research [11]. The complexity and 
multidimensionality of EEG necessitates more sophis-
ticated analytical techniques to fully harness the rich 
information contained within these signals. Traditional 
ML approaches often rely on human-engineered features, 
which account for approximately 50% of EEG-based ML/
DL publications [12]. However, this method carries the 
risk of overlooking critical patterns embedded in the 
data. In contrast, DL models, particularly those designed 
for time-series data like EEGNet [13] and InceptionTime 
[14], offer the capability to automatically detect subtle 
and complex patterns, including the temporal dependen-
cies of EEG data, that may be missed by traditional fea-
ture engineering.

In this study, we focus on the prediction of sex from 
EEG data. Although, the clinical utility of predicting sex 
is limited, this task was selected because sex is a binary 
and definitive label, which contrasts with the inherent 
variability and uncertainty associated with other clini-
cal diagnoses. The binary nature of sex as a label offers a 
clear and unambiguous target, making it an ideal bench-
mark for evaluating the performance of DL models on 
EEG data. Given that DL models require large datasets 
to achieve robust generalization, and many EEG datasets 
already include sex as a label, this prediction task is both 
practical and accessible for testing and validating model 
performance. The findings from this study will serve as a 
foundation for future research, where these models will 
be applied to more complex prediction tasks in EEG.

While sex prediction provides a clear and binary label, 
EEG prediction tasks are inherently complex and face 
multiple challenges. EEG signals are affected by noise, 
leading to a low signal-to-noise ratio, and despite clean-
ing efforts, some noise typically remains, making it chal-
lenging to extract reliable neural activity patterns. The 
high dimensionality of the data adds complexity, and the 
variability among subjects, combined with the non-sta-
tionary nature of EEG, complicates generalization across 
individuals [12]. Lastly, EEG signals rarely provide clear 
patterns for accurate prediction-for instance, it’s not pos-
sible to visually determine whether an EEG belongs to a 
male or female. This contrasts with prediction tasks using 
X-rays or MRI, where relevant features are often visible 
to medical professionals, and AI is used to speed up eval-
uation. In the case of EEG, the challenge is not merely 
accelerating analysis but whether models can reveal new 
insights.

This study makes several key contributions. First, while 
sex prediction itself may have limited clinical significance, 
we propose a baseline for prediction accuracy using a 
large EEG dataset, which serves as a valuable reference 
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for future research. Second, we challenge the prevailing 
assumption that the beta band is the optimal predictor of 
sex in EEG data by demonstrating that strong predictive 
performance can be achieved across all frequency bands. 
This finding offers a new perspective on EEG-based sex 
prediction. Finally, our exploration of uncertainty in deep 
learning ensembles provides insights into how uncer-
tainty can be used to improve model performance. This 
study is part of the European AI-Mind [15] Research & 
Innovation action (No 964220), dedicated to developing 
AI-based decision tools for early dementia risk detection.

2 � Methods
2.1 � Data and preprocessing
2.1.1 � Dataset
The Child Mind Institute [16] offers an open-source 
dataset featuring various medical imaging data modali-
ties. The population consists of children aged between 
5 and 21 years, with varying pathologies, not individu-
ally detailed in the dataset. This work focuses on resting 
state EEG data only. The dataset was balanced for sex 
by removing overrepresented subjects. After discarding 
subjects with insufficient data, the balanced dataset con-
tained 1780 subjects. This dataset was selected due to its 
large size, which is crucial for deep learning, as it allows 
for more effective training and validation, reducing the 
risk of overfitting and enhancing the generalization of 
the models. Additionally, the chosen age range covers 
critical developmental stages, including childhood and 
adolescence, which are characterized by significant phys-
iological and cognitive changes. These changes introduce 
variability in EEG signals, providing a robust test for our 
models’ adaptability and performance.

2.1.2 � EEG preprocessing and data preparation
Raw EEG signals were preprocessed using an automated 
MATLAB cleaning pipeline, using EEGLAB toolbox [17]. 
Channels with low-quality data were eliminated through 
an iterative process, where signals with an amplitude 
standard deviation (SD) greater than 75 µ V or no ampli-
tude variation were excluded. EEG files were rejected if 
more than 30% of channels were excluded. The line arti-
facts were removed using Zapline software [18], and a 
band-pass filter from 1 to 45 Hz was applied to the sig-
nals. To maintain data dimension consistency, excluded 
channels were substituted with interpolated signals. The 
pipeline is available here.

The cleaned EEG data consisted of 129 channels with 
a 500 Hz sampling rate and approximately six minutes 
of EEG per subject. The initial 30  s of each subject’s 
EEG were discarded. Depending on the algorithm 
development’s training, validation, or testing split, 
1–2  min of the EEG was extracted and divided into 

epochs of 2  s. Given the high correlation between 
successive EEG epochs, every other epoch was removed 
from the 120-second training set, enhancing the diversity. 
The 60-second validation and 80-second test set was 
segmented into successive epochs and analyzed.

2.1.3 � Data split
The model’s performance was evaluated using a five-fold 
cross-validation scheme to ensure robustness across 
multiple iterations. The splits were generated once by 
randomly assigning the male and female subjects to the 
five folds, resulting in 356 subjects per fold, with equal 
distribution of males and females within each fold. This 
guaranteed consistent subject use across all experiments, 
maintaining evaluation process uniformity. The cross-
validation scheme was iterative. It involved training the 
model on three out of five folds, validation on one, and 
testing on the remaining fold. This process is repeated 
iteratively to ensure a comprehensive evaluation of the 
model’s performance across different subsets of the data. 
The cross-validation scheme robustly assessed the mod-
el’s generalization capabilities by rotating the folds and 
systematically training, validating, and testing on differ-
ent subsets. This methodology is equal to a dataset split 
of 60% (1070 subjects) for training, 20% (356 subjects) for 
validation, and 20% (356 subjects) for testing. Folds were 
independent; no subject appeared in more than one test 
set across the five runs.

2.2 � Hyperparameters and evaluation
2.2.1 � Hyperparameters
The model was trained for 50 iterations, with the valida-
tion set used for continuous performance monitoring. 
Metrics derived from the validation set guided the deci-
sion to stop training, employing techniques such as early 
stopping and learning-rate scheduler. Early stopping was 
implemented to prevent overfitting while decreasing the 
learning rate during training ensures more efficient con-
vergence towards an optimal solution. The best-perform-
ing model, determined by the validation set’s loss, was 
saved to avoid overfitting and evaluated against the final 
model obtained after training. Only the best-performing 
model was retained for further use. In this study, early 
stopping was set with patience of 15 iterations, halting 
training if the validation set’s loss did not decrease. The 
adaptive learning rate used a patience of 5 iterations, 
starting with an initial value of 0.005. The Glorot uniform 
initialization method [19] was primarily used to initialize 
weights, except in cases where a random normal or ran-
dom uniform distribution was employed for an ensemble 
of models. The training was conducted on a computer 
with an NVIDIA GeForce RTX 3060 12GB GPU.

https://github.com/hatlestad-hall/prep-childmind-eeg
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2.2.2 � Test set evaluation
The performance on the test set was evaluated using 
three primary metrics: per-subject accuracy, per-epoch 
accuracy, and AUC. Per-subject accuracy was derived 
through a majority voting scheme applied to the test 
set. Here, each of the 40 2-second EEG epochs was indi-
vidually predicted as male or female. The majority of 
the prediction determines the per-subject sex predic-
tion. The per-epoch accuracy evaluated each 2-second 
epoch as an individual data point without consolidat-
ing predictions per subject. This approach provided a 
detailed performance view of the model. AUC measures 
a binary classification model’s performance. It quantifies 
the classifier’s ability to differentiate between positive and 
negative classes. An AUC value of 1 signifies perfect dis-
tinction, while 0.5 indicates no better performance than 
guessing.

A majority voting strategy was used and applied in 
two distinct methodologies for the ensemble evaluation. 
The first is the “Ensemble Subject” method. Each model 
in the ensemble independently performed a majority 
voting procedure on a subject, and the most frequently 
predicted sex across all ensembles was then identified as 
the final prediction for that subject. The second method 
is the “Ensemble Epoch”. Each model predicted each 
epoch, and the average prediction per epoch was calcu-
lated across all ensemble models. The majority predic-
tion within a subject was derived from these averaged 
predictions.

2.3 � Models
The DL model was developed using Keras [20] and 
designed to receive EEG time series as input. Data pro-
cessing was managed by numpy [21] and mne-python 
[22].

2.3.1 � Single models
Two deep learning models, InceptionNetwork [14] and 
EEGNet [13], were selected for sex prediction based on 
their proven effectiveness in relevant domains, with 
their suitability for this task also confirmed through 
experimentation. InceptionNetwork, a robust model for 
time-series classification, was chosen due to its strong 
performance across a wide range of time-series tasks. 
InceptionNetwork, utilizes inception modules which 
combines different length kernels with pooling opera-
tions followed by merging them. The architecture con-
sists of a series of these modules, enhanced by skip 
connections that facilitate information flow across the 
layers. A depth of 4 was identified through experimenta-
tion as the most effective setting, underlining the impor-
tance of fine-tuning models for specific tasks. EEGNet, 
a convolutional neural network originally developed for 

EEG-based brain-computer interface tasks, was cho-
sen for this study due to its prior success in handling 
EEG data. Its proven ability to extract relevant features 
from EEG signals made it a strong candidate, and it was 
adapted to address the specific challenge of sex predic-
tion in this context. Unique in its use of depth-wise con-
volutions and separable convolutional layers, EEGNet 
allows for efficient and expressive feature extraction. 
Both InceptionNetwork and EEGNet architecture under-
went modifications to create various ensemble mod-
els (these changes can be found in the supplied code). 
These alterations, facilitated ensemble techniques such 
as Adapted Dropout Strategy and depth-ensembles. Most 
changes were related to depth in cases that were not spe-
cific ensemble types.

2.3.2 � Deep learning ensembles
DL ensembles can be created using several strategies, 
each with benefits and limitations. The adopted method 
in this study entails the combination of different mod-
els which differ in their architecture, weight initializa-
tion, or depths. The objective is to leverage an ensemble 
of models that, despite sharing a common task, examine 
the data from different perspectives due to their unique 
characteristics. The general benefit is the merged predic-
tions from various models, leading to a more balanced 
and robust final prediction. A depth ensemble is one such 
example. Changing the depths of the models allows for a 
more diverse set of learned features. As a model’s depth 
increases, so does the abstraction level of the features it 
captures. As a result, a depth ensemble becomes more 
robust and provides a more thorough understanding of 
the underlying data structures. The major limitation of 
deep ensembles is that training multiple models is com-
putationally expensive, except in the case of Monte Carlo 
Dropout.

2.3.2.1  Adapted dropout strategy  Monte Carlo Dropout 
(MCD) [23] introduces randomness in the activation 
of artificial neurons in the neural network during the 
model’s testing phase. By deactivating a percentage of 
artificial neurons with a probability P, an ensemble of 
models with slightly different architectures is generated 
based on which neurons are activated or deactivated. 
The number of forward passes was set to 50, drawing 
on insights from previous studies [6, 23–25], to obtain a 
reliable estimate of both the predictive accuracy and the 
uncertainty associated with the ensemble’s output. The 
ensemble’s output was then determined by calculating the 
mean of these forward passes. The varied artificial neuron 
settings yield an ensemble of models, each giving a slightly 
different data interpretation.



Page 5 of 12Tveter et al. Brain Informatics           (2024) 11:27 	

To approximate a Bayesian probabilistic deep Gaussian 
process the incorporation of a dropout layer before each 
weight layer is recommended [23]. In our methodology, 
we deviated from this recommendation by introducing 
a modification: the addition of a dense layer with 32 
neurons, followed by a dropout layer, to the base models, 
InceptionNetwork and EEGNet. This Adapted Dropout 
Strategy (ADS) simplifies the ensemble generation 
process, enabling the exploration of performance 
enhancements and straightforward uncertainty 
estimations, without fully committing to a Bayesian 
network approach. The rationale behind this choice stems 
from the original models’ strong performance, suggesting 
that an ensemble with minor variations could offer 
additional benefits. The selected dropout rate was set 
at 0.5, consistent with the classification task in [23] MC 
Dropout study. A significant advantage of this technique 
is that it necessitates training only a single model, making 
it less computationally intensive than other ensemble 
strategies.

2.3.2.2  Weight randomization  In this ensemble, the 
starting weights utilized a random uniform or random 
normal distribution as the kernel initializer. This strategy 
ensures that each model in the ensemble begins its training 
with a unique set of initial weights. Consequently, even 
though all models are trained on the same dataset and 
share the same architectures, the disparity in the starting 
position leads to slightly different learning paths during 
the training process. The finalized trained models exhibit 
minor variations in their internal representation and, by 
training the model 5 times, resulting in an ensemble of 
different models for InceptionNetwork and EEGNet.

2.3.2.3  Depth ensemble  In the original 
InceptionNetwork model, depth is a hyperparameter 
that can be manipulated to adjust the model’s complexity. 
This study created a range of models with varying depths, 
specifically (2, 4, 6, 8, 10), to form a depth ensemble.

2.3.2.4  Model ensemble  This ensemble was constructed 
using previously trained models, consisting of the original 
InceptionNetwork and EEGNet, combined with models 
with depth variations and ADS versions.

2.3.2.5  Frequency ensemble  The frequency-focused 
ensemble was constructed by training instances of the 
same model on distinct EEG signal frequency bands 
in the time domain, specifically delta (0.5–4Hz), theta 
(4–8Hz), alpha (8–12Hz), low-beta (12–20Hz), high-
beta (20–30Hz), and gamma (30–45Hz). This method 
differs from traditional ensemble bagging, which 
typically partitions data at the dataset level, not based 

on signal attributes like frequency bands. The strategy 
enables each model to gain and apply insights from its 
assigned frequency band, specializing in those unique 
characteristics. The three most effective models, 
determined by validation set performance, were selected 
to compose the final ensemble. First, this approach 
created an ensemble of models, each specializing in 
a distinct EEG frequency range, evaluated with the 
unfiltered EEG signal. Second, it laid the groundwork 
for investigating the role of various frequency bands in 
distinguishing biological sex, based on the predictive 
performance of models trained and tested on these 
bands using EEG data.

2.4 � Uncertainty ‑ choosing the most certain parts 
of an EEG

Each subject’s data was divided into multiple epochs, 
with each epoch being predicted multiple times-specifi-
cally, n times, where n represents the number of models 
in the ensemble. To assess the uncertainty of the model, a 
simple uncertainty measure was calculated based on the 
predictions of the ensemble for each epoch. This measure 
aimed to evaluate the degree of consensus or disagree-
ment among the models in the ensemble regarding the 
prediction of a given epoch.

The uncertainty was quantified using a basic variance 
metric on the predicted probabilities across all models 
in the ensemble for each epoch. This variance indicated 
the quality and reliability of the predictions, with a 
higher variance suggesting greater disagreement among 
the models. Following this, the percentage p of epochs 
with the highest uncertainty of variance was identified 
(see Fig.  1 for a visual representation of the method). 
To evaluate the impact of uncertain predictions on 
overall model performance, we systematically removed 
the most uncertain epochs, starting with the top 10% of 
epochs with the highest variance. The remaining epochs 
were then re-evaluated to observe any changes in model 
performance. This process was repeated by progressively 
removing 25%, 50%, 75%, and finally 90% of the most 
uncertain epochs. The performance across the test set 
was averaged to determine whether excluding uncertain 
epochs led to a general improvement in model accuracy.

3 � Results
3.1 � Single model sex prediction

InceptionNetwork and EEGNet demonstrated superior 
capabilities in predicting sex directly from EEG, 
achieving mean performance exceeding 90% across a 
5-fold cross-validation, as seen in Table  1. Both models 
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performed well with respect to both per epoch and per 
subject, as well as the AUC. These observations suggest 
that both models are robust in generalization and 
discriminate ability for the given problem. Notably, the 
differences in results were not statistically significant, 
which contributed to our decision to include variants of 
both models in the ensembles.

3.2 � Deep ensembles

The performance of various ensemble methods is sum-
marized in Table 2, with all types achieving an accuracy 
rate of approximately 90%. No significant differences 
were observed among the ensemble types or between 
the epoch-level and subject-level approaches. Notably, 
wider confidence intervals for both EEGNet ADS and the 
frequency ensemble suggested greater variability across 
runs and folds. This variability was especially pronounced 
in the frequency ensemble, where model performance 
varied significantly across folds. The performances of all 
ensembles were comparable to those of the single mod-
els. The confidence interval provides insight into the sta-
tistical disparity between the performance of ensembles 2 

and the performance of the single models 1. The results 
reveal no statistically significant improvement, with no 
ensemble achieving performance so superior that their 
confidence intervals do not overlap with those of the sin-
gle models.

3.3 � Frequency‑based explainability
Figure 2 presents performance metrics for various EEG 
frequency bands. The blue bars, indicating the peak 
performance within a single fold from all k-folds over 
three runs, show minimal variation among the bands, 
with each hovering around a 90% performance level. A 
more pronounced difference in performance emerges 

Fig. 1  N deep ensembles predict each epoch, with the variance calculated across each epoch over the ensemble predictions. Epochs 
exhibiting the greatest variance are discarded. The percentage p value increases, and the epochs are evaluated with a continuously decreasing 
number of epochs. The figure includes four example epochs, each predicted by the ensemble models and variance is computed. The epoch 
with the highest uncertainty (Epoch 3) is subsequently eliminated from the pool. This process demonstrates our method for handling and reducing 
prediction uncertainty in EEG analysis

Table 1  Single Model Performance: Comparing performance 
between InceptionNetwork and EEGNet in sex prediction from 
EEG data

Mean accuracy accompanied by a 95% confidence interval.  It also provides 
a detailed analysis of per-subject and per-epoch accuracy, as well as the area 
under the curve (AUC) to assess the overall performance of each model

Model name Per epoch Per subject AUC​

EEGNet 88.3 ± 1.5 90.5 ± 1.6 0.938 ± 0.01

InceptionN. 88.0 ± 1.6 90.7 ± 2.4 0.947 ± 0.01

Table 2  Ensemble Model Performance: Performance of the DL 
ensembles in predicting sex from EEG data: Each ensemble was 
run using five-fold cross-validation, with five models in each 
ensemble, except for ADS (50) and the model ensemble, which 
utilized already trained models

The table displays the mean accuracy paired with a 95% confidence interval, 
providing a comprehensive view of each ensemble’s performance in sex 
prediction tasks

Model name Ensemble epoch Ensemble subject

Inception ADS 90.4 ± 1.0 90.4 ± 1.0

EEGNet ADS 86.2 ± 3.4 86.2 ± 3.4

Inception depth ensemble 90.6 ± 1.7 90.9 ± 1.8

Inception weights (normal) 90.8 ± 1.1 91.0 ± 1.1

Inception weights (uniform) 90.3 ± 1.3 90.6 ± 1.4

EEGNet weights (normal) 90.6 ± 1.2 90.7 ± 1.3

EEGNet weights (uniform) 90.2 ± 1.5 90.6 ± 1.5

Model ensemble 91.1 ± 1.3 91.1 ± 1.2

Freq. ensemble (3 bands) 86.6 ± 6.5 86.7 ± 7.3
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Fig. 2  Performance of the InceptionNetwork model when individual frequency bands are used as input. Performance is categorized into three 
sections: (1) Best performance across all individual folds, (2) Best average performance across a run of 5-folds, and (3) Average performance 
across three separate runs. The performance results are derived from the test set, utilizing majority voting for final predictions. This illustration 
provides insight into the model’s adaptability and efficiency across varying frequency bands

Fig. 3  Test set performance as influenced by the exclusion of uncertain epochs. The figure shows the greatest performance improvements 
achieved across all ensembles and iterations
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when examining the orange bars (the best 5-fold run 
from three attempts) versus the green bars (the average 
performance over three 5-fold runs). Specifically, the 
delta, theta, and low-beta bands outperform the others, 
evidenced by their superior scores in both the orange 
and green metrics.

3.4 � Uncertainty ‑ epoch rejecting performance
Figure  3 presents the best-achieved improvement 
across all ensembles, leading to an overall maximum 
of 32.0% decrease in prediction error. Table  3 presents 
the overall performance of the method with an average, 
average maximum, and maximum error decrease across 
all ensembles. Considering the average error decrease, 
we observed that the ensembles consistently improved, 
on average, as uncertain epochs were removed, up to a 
threshold of 50%. Uncertain epochs are based on variance 
metrics from the ensemble model predictions. These 
findings suggest that a reduction of uncertain epochs 
had a positive impact on the ensemble’s performance. 
However, beyond the 50% threshold, the performance of 
the ensembles began to decline (see Table 3).

4 � Discussion
In this study, we successfully repurposed two time-
series models to predict sex directly from automatically 
cleaned EEG data, achieving high accuracy on a large test 
set. We examined deep ensemble configurations on the 
same problem to explore their robustness and potential 
performance enhancement. Our findings revealed high 
performance across all ensembles, with no significant dif-
ferences observed compared to the already high accuracy 
of individual models. A data-driven exploration revealed 
that the decisive features for sex prediction were present 
across all frequency bands. However, we found that the 
models’ capability to identify these features was more 
consistent in lower frequencies. Finally, we employed an 

uncertainty approach to discard uncertain epochs based 
on a straightforward variance metric. This strategy led to 
an average error reduction across all ensembles and folds.

4.1 � Single model performance
The results obtained from our study affirm the capability 
of DL models to discover complex sex-specific patterns 
with a high degree of accuracy in EEG data. Notably, 
the high accuracy provides a compelling basis to believe 
these models can be further fine-tuned and applied to 
detect and understand more complex neurological and 
cognitive states. While the direct clinical utility of sex 
prediction may be limited, understanding sex-specific 
differences in EEG patterns has broader implications. 
Sex is a significant factor in many neurological diseases, 
and accounting for these differences can enhance the 
accuracy of diagnoses and contribute to the development 
of personalized treatments. Incorporating sex as a critical 
variable in disease research could help improve model 
generalization and diagnostic performance.

4.2 � Sex prediction using deep learning
In the present study, InceptionNetwork and EEGNet 
outperformed earlier research in sex prediction directly 
from EEG data. On a larger test set of 356 subjects, these 
models achieved a mean accuracy of 90.7% (± 2.4) and 
90.5% (± 1.6) on per-subject prediction, respectively. In 
per-epoch prediction InceptionNetwork achieved a mean 
accuracy of 88.0 (± 1.6) and AUC of 0.947, and EEGNet 
a mean accuracy of 88.3 (± 1.5) and AUC of 0.938. Com-
parison of performance showed non-overlapping 95% 
confidence intervals, typically implying statistical signifi-
cance. This suggests a significant improvement, although 
variations in dataset size may account for the perfor-
mance increase.

Van Putten et  al. [26] first introduced the concept of 
predicting sex directly from EEG using DL, applying 
it on a sizable test set of 308 subjects (1000 for training 
and validation), attaining an 81% accuracy for per-subject 
classification. They highlighted the role of sex predictions 
in the beta band of EEG. Subsequently, Bučková et al. [27] 
confirmed van Putton’s et al. [26] approach on a separate 
dataset of 144 subjects, achieving 83.45% (leave-one-sub-
ject-out scheme). Truong et al. [28] later demonstrated a 
high mean accuracy of 87% (± 0.4) per-subject and per-
epoch 83.1% (± 0.3) on the same Child Mind Institute 
dataset as used in our study, but with a smaller test set of 
197 subjects. Their cleaning pipeline was possibly more 
liberal as they only had a final perfectly balanced data-
set of 1574 vs. our 1780, or they used an earlier version 
containing fewer subjects. In addition, they employed a 
larger 30% validation set at the cost of a smaller test set of 
10%. We prioritized a larger test set of 20% at the cost of a 

Table 3  Uncertainty - error decrease: Performance of various 
ensemble models using the proposed uncertainty approach

The error decrease is calculated from the improvement in accuracy and is 
presented as the “percentage of error decrease”. The “Avg. Error Decrease” 
signifies the average error reduction across all ensemble models and iterations 
(folds). “Average Maximum” denotes the mean value of the largest error 
reductions observed across all ensembles. The “Maximum Error Decrease” 
refers to the highest error reduction observed across all ensemble models. 
This visualization allows for the quantification of the impact of the uncertainty 
method on performance

Metric % kept epochs

90 75 50 25 10

Avg. Err. Decrease 3.5 5.4 6.6 5.5 2.9

Avg. Max Err. Decrease 5.5 9.5 13.6 16.5 16.3

Max Err. Decrease 9.9 21.4 32.0 31.9 24.0



Page 9 of 12Tveter et al. Brain Informatics           (2024) 11:27 	

smaller validation set of 20%. Consequently, our training 
set included more subjects than Truong et al. [28], while 
our validation set was comparatively smaller. Truong 
et al. [28] manually selected 24 channels that overlapped 
with those used by van Putten et  al. [26]. However, we 
used all channels as it yielded good performance. Simi-
larly to van Putten et al. [26] and Truong et al. [28], our 
work demonstrated that EEG time series may success-
fully be used as input to DL.

4.3 � Deep learning ensemble performance
The results, which were not statistically significant, did 
not meet our initial expectations of ensembles outper-
forming single models. Importantly, every single model 
in our study demonstrated high performance, which 
could account for the observed outcomes. The perfor-
mance of the individual models may represent the prac-
tical limit for distinguishing between male and female 
EEG activity, as traditional brain research has reported 
overlapping EEG patterns between the sexes [29, 30]. 
However, factors such as the specific ensemble strategies 
employed might explain this performance convergence. 
Despite these results, the findings contribute valuable 
insights for future research and development efforts.

Our ADS ensembles encountered overfitting issues 
when we incorporated additional dense layers. Reduc-
ing these layers enhanced generalizability but limited the 
diversity of achievable architectures through dropout. 
Furthermore, adding additional layers led to an increased 
instability between runs relative to other ensemble types. 
Ensembles employing random weights (both uniform 
and normal distributions) showed strong performances, 
mirroring the results seen in depth and model ensembles. 
The lack of notable performance enhancement across 
these groups may be due to the substantial similarity 
among the models within each ensemble. To enhance 
ensemble performance, fostering greater dissimilarity 
among models could prove beneficial. Models with high 
similarity often converge to similar regions in the optimi-
zation landscape, potentially undermining the ensemble 
approach’s benefits. Prior research, such as Fawaz et  al. 
[31], has shown superior results with ensembles compris-
ing distinct model architectures for time series analysis. 
Although the performance of the ensemble models in 
this study did not significantly exceed that of single mod-
els and involved in some cases greater computational 
expense and complexity, the advantages of uncertainty 
modeling offered by ensembles should not be overlooked. 
The ability of ensembles to generate uncertainty esti-
mates can enhance model performance, as shown in this 
work, and increase the reliability, trustworthiness, and 
applicability of future systems.

4.4 � Frequency explanation
Prior research by van Putten et  al. [26] indicated that, 
among all frequency bands, the beta band (12–25Hz) was 
most important for sex prediction in a sample aged 18–98 
years. Bučková [27] confirmed these findings in a sepa-
rate dataset involving participants aged 18–65 with major 
depressive disorder. Jochmann et al. [29] reports that the 
EEG topograhy were critical in detecting the sex in their 
study, and that none of the frequencies in particular were 
important. In contrast, our results reveal that the ability 
to detect sex with high predictive value is evident across 
all frequency bands. Among the frequency bands inves-
tigated, delta, theta, and low-beta demonstrated higher 
consistency in our research. It is noteworthy that other 
studies solely identified this pattern in the low-beta (12–
20Hz) band [26]. Our model demonstrated improved 
optimization across all iterations and subsets. However, 
it encountered challenges in the gamma, high-beta, and 
alpha bands. These deviations from prior findings may 
be attributable to our relatively young study sample (ages 
5–21 years). Traditional EEG studies have reported sex 
differences in frequency bands, but research in this field 
is limited and results are conflicting [32]. Cave et al. [32] 
attempted to confirm and clarify these findings, report-
ing that “females had greater overall amplitudes in delta, 
alpha, and beta, enhanced midline activity in theta, and 
parietal and midline activity in the alpha and beta bands.” 
These conclusions both support and contradict multiple 
previous studies, highlighting inconsistencies across dif-
ferent frequency bands; see [32] for more information.

Several factors, including initial starting weights [14, 
31], can be attributed to the unstable performance 
across the frequency bands. Interestingly, instability 
tended to occur in the higher frequency bands in our 
experiments. Higher frequency bands often capture fine-
grained details and short-term variations in the data, 
suggesting that the initially selected weights significantly 
impact the model’s ability to effectively capture and uti-
lize these details. The consistent filter size used across 
all experiments with various frequency bands could pro-
vide another explanation for our model’s performance 
instability. Larger filters favor slower frequencies due to 
their extended time window, which is more compatible 
with less frequent changes. However, these larger filters 
might struggle with higher frequencies, which change 
more rapidly, which may have affected the results, as 
InceptionNetwork’s filters might have favored slower fre-
quencies. Nevertheless, the model’s performance in the 
low-beta range suggests that this explanation might not 
fully account for the observed behavior.
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4.5 � Uncertainty
Our study underlines the potential to employ variance as 
a metric to discard uncertain samples in sex prediction 
using multiple different ensemble approaches. In the best 
scenario, this straightforward strategy achieved a 32% 
reduction in prediction error, particularly notable in the 
lowest performing ensemble type using frequency bands. 
This method demonstrated its effectiveness for boosting 
performance in underperforming ensembles, making it 
a highly beneficial strategy for significant performance 
improvements. Despite some runs showing performance 
degradation, the majority consistently exhibited perfor-
mance improvement across all ensemble approaches. 
Previously, Fiorillo et  al. [33] used a methodology simi-
lar to ours, employing variance (and, in their case, mean) 
to select certain epochs within the domain of sleep stage 
prediction using a single ensemble approach, MCD. Their 
observations of improved predictions through epoch 
selection is consistent with our findings. Additionally, 
another study has suggested enhancing EEG predictions 
by incorporating uncertainty by utilizing MCD and the 
Bhattacharyya distance metric [25].

Our results demonstrated a positive trend in 
performance up to a certain threshold (50%), beyond 
which a decline occurred. This phenomenon may 
have multiple causes. Our methodology’s absence of 
a certainty threshold might have inadvertently led to 
discarding epochs where the model had a relatively high 
degree of certainty. Furthermore, diversifying our metrics 
to capture model uncertainty more effectively could be 
advantageous. For instance, incorporating measures 
like predictive entropy or mutual information could 
enhance prediction reliability. Additionally, considering 
aleatoric uncertainty, which Bayesian DL techniques can 
model, might prove advantageous to model uncertainty 
from various sources, such as noise in the measurement 
process, electrode placement variability, and inherent 
biological variations. Increased noise may have caused 
models to concur on certain predictions, indicating low 
variance, even when those predictions were incorrect. 
While this study did not compare the uncertainty 
of different models, the implemented uncertainty 
framework reduced errors. This simple approach exhibits 
significant potential for performance improvement. It 
could be instrumental in enhancing proficient models, 
specifically bolstering the robustness of systems using 
ensemble-based predictions. Suppose certain models in 
the ensemble struggle or show uncertainty over multiple 
samples/epochs from a subject or similar data structures. 
This strategy effectively identifies and excludes these 
uncertain elements, boosting the system’s robustness 
and overall performance. In an added layer of utility, the 
variance metric can be paired with prediction outputs 

which could provide users, particularly in a clinical 
context, with an indication of the model’s reliability. 
Pairing predictions with measures of certainty can 
aid clinicians in making crucial decisions. Identifying 
uncertain samples as potentially risky predictions 
underscores the importance of involving medical experts 
in collaborative decision-making with DL systems. Our 
findings not only improve prediction accuracy but also 
underscore the practical applicability of these models in 
real-world settings.

4.6 � Limitations
In this study, we focused exclusively on a single data-
driven explainability technique applied to one model, 
specifically the InceptionNetwork. Future work should 
also include model-specific explainability methods to 
confirm the consistency of the features used by the intro-
duced model with subjects within the same class. Simi-
larly, we only used one metric for uncertainty, whereas 
including several metrics that capture both the aleato-
ric and epistemic uncertainty will be relevant for future 
work. We did not set a threshold for removing uncertain 
samples/epochs, possibly leading to excessive, blind data 
reduction. Physiological factors associated with the EEG 
could introduce classification bias. For instance, females 
tend to have thinner skulls than males [34], potentially 
leading to higher average EEG amplitudes in females.

Furthermore, the dataset includes children and adoles-
cents representing a broad spectrum of developmental 
clinical characteristics. Without linking subjects’ diag-
nostic information to their labels, potential confounding 
factors from neurological and psychiatric pathologies 
could impact male and female differentiation. Despite 
these challenges, our models robustly and accurately pre-
dicted sex from pure EEG signals.

Lastly, our methods have been validated on a single 
dataset, and future studies would benefit from extend-
ing this validation, particularly regarding the frequency 
aspects, across datasets that include different age groups 
and demographics.

5 � Conclusion
In this study, we achieved notable performance in 
predicting sex from raw EEG time series using well-
established EEG and time-series models. Our data-driven 
approach revealed determinative sex-related features 
across all frequency bands. While DL-based ensemble 
methods did not yield a significant improvement over 
single models, the approach facilitated the integration 
of uncertainty modeling, contributing to improved 
prediction performance. The results hold promising 
potential for various EEG applications and offer exciting 



Page 11 of 12Tveter et al. Brain Informatics           (2024) 11:27 	

prospects for levering similar approaches in other data-
rich domains. Future work involves to further explore the 
quantification of uncertainty, in particular new metrics 
and Bayesian DL.
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