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In two cases of parenteral transmission of human immunodeficiency virus type 1 (HIV-1) syncitium-inducing
(SI) variants, we previously observed selection for macrophagetropic variants. Although infection of macro-
phages is generally mediated via CCR5, we found no selection for SI variants that could use CCR5 as
coreceptor in addition to CXCR4, suggesting that features other than coreceptor usage account for the
macrophagetropism of these transmitted SI HIV-1 variants.

Human immunodeficiency virus type 1 (HIV-1) isolates can
display differences in biological properties, such as replication
rate, syncytium-inducing (SI) capacity, and cytotropism (2, 6,
27, 29). In newly infected individuals, generally only non-syn-
cytium-inducing (NSI) HIV-1 variants are present (27). These
NSI variants persist during all stages of infection, while T-cell-
line-tropic SI variants appear in the course of infection in
about 50% of infected individuals (16, 29). The predominance
of NSI HIV-1 variants in early stages of infection has been
attributed to their macrophagetropism (38). Since mainly mac-
rophagetropic HIV variants can be detected during primary
infection, macrophages have long been considered to be the
port of entry during virus transmission (30). Recently, how-
ever, in situ hybridization has identified CD41 T cells as the
only HIV-infected cells during primary infection (25, 37). How
this fits with the tropism of early isolates remains to be estab-
lished. The capacity to replicate in macrophages is generally
determined by the capacity to use b-chemokine receptor
CCR5 as coreceptor to infect CD4-positive cells (1, 10, 12, 19,
35). This CCR5 coreceptor usage is a characteristic of NSI
HIV-1 variants, whereas SI HIV variants alternatively or ad-
ditionally use the a-chemokine receptor CXCR4 as coreceptor
(11, 13).

As might be expected since CCR5-restricted NSI variants
generally initiate HIV-1 infection, individuals homozygous for
a 32-bp deletion in the CCR5 gene (CCR5 D32/D32) are highly
resistant to HIV-1 infection (7, 15, 20, 24). This is in concor-
dance with the observation that exposed but uninfected indi-
viduals with a CCR5 wild-type (WT/WT) genotype have a low
level of CCR5 expression and a high level of b-chemokine
production (23). However, SI, CXCR4-using HIV-1 variants
can be transmitted (32), as was also demonstrated by the rare
cases of HIV-1-infected individuals with a CCR5 D32/D32 ge-
notype (3, 4, 21).

Previously, we reported the transmission of SI HIV-1 vari-
ants in two parenteral transmission cases. In one case, a male
recipient (Ams127) had been accidentally injected with a
minute amount of blood from an HIV-1-infected male
(ACH704) suffering from wasting syndrome CDC IVa (18). In
the other case, a female recipient (ACH9012) was deliberately
injected with a few milliliters of blood from an AIDS patient
(Ams199) (31). The transmitted SI variants were highly mac-
rophagetropic, more so than SI variants isolated from the do-
nors (ACH704 and Ams199) at the time of transmission (30).

Since macrophagetropism is a feature generally attributed to
CCR5-using NSI HIV-1 variants, we hypothesized that this
selection for macrophagetropism of transmitted SI variants
might be associated with a selection for SI variants that use
CCR5 in addition to CXCR4. Therefore, we analyzed the
coreceptor usage of biological HIV-1 clones obtained from the
virus donors around the moment of transmission and from the
recipients at one or two time points after seroconversion (27).
These biological virus clones were previously obtained by co-
culture of cryopreserved patient peripheral blood mononu-
clear cells (PBMCs) with phytohemagglutinin (PHA)-stimu-
lated healthy-donor PBMCs as previously described (27).
Three clones from recipient Ams127 were isolated on mono-
cyte-derived macrophages (MDM) (27). The envelope variable
region 3 (V3) sequence of the biological virus clones was pre-
viously determined (30) (Table 1).

Biological virus clones were analyzed for coreceptor usage
by using U87 astroglioma cells stably transfected with CD4 and
coreceptor CCR3, CCR5, or CXCR4. Virus stocks were pre-
pared on PHA-stimulated PBMCs. The U87 cells were inocu-
lated with at least 100 50% tissue culture infective doses
(TCID50) of the different biological HIV-1 clones. The emer-
gence of HIV p24 antigen in the culture supernatant was in-
dicative of productive infection and reflected the capacity of
the biological HIV-1 clone to use the coreceptor that was
expressed by the inoculated cells. The expression of CD4 and
additional HIV-1 coreceptors by the cells used was routinely
confirmed by fluorescence-activated cell sorter (FACS) analy-
sis (data not shown). Furthermore, replication in PHA-stimu-
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lated PBMCs from a healthy donor homozygous for the 32-bp
deletion in CCR5 was determined to investigate if the different
biological virus clones were dependent on CCR5 expression
for replication in primary cells (Table 1).

A total of 11 biological virus clones were available from a
blood sample obtained from donor ACH704 8 months before
the moment of transmission. Six of these biological virus clones
had the NSI phenotype and five had the SI phenotype, as
determined with the MT-2 cell line (16) (Table 1). The major-
ity of the NSI clones was able to infect MDM, whereas only
one of the SI variants (no. 4) from donor ACH704 was mac-
rophagetropic (30) (Table 1). Interestingly, all biological virus
clones isolated from recipient Ams127 had the SI phenotype
and the same envelope V3 sequence as the macrophagetropic
SI variant (no. 4) from donor ACH704, possibly due to the low
inoculum concentration. The biological virus clones that were
obtained early after seroconversion (n 5 7) were all macro-
phagetropic, whereas the clones obtained 5.5 months after
seroconversion (n 5 4) lacked the capacity to replicate in
macrophages. As concluded previously (30), this implies that
sequence changes in the genomes of the different biological
HIV-1 clones outside the V3 loop region may account for the
difference in phenotypic properties of the clones.

Almost all biological virus clones from ACH704 and
Ams127 were able to use CCR5 as a coreceptor on the U87
cells (Table 1). The majority of SI clones additionally used
CCR3 and CXCR4 when expressed on U87 CD4-positive cells.
However, the two highly macrophagetropic SI clones from
recipient Ams127 isolated on MDM 1.5 months after exposure
were restricted to CXCR4 usage on the U87 cells.

Surprisingly, we found that three of the six NSI biological
virus clones from donor ACH704 replicated in the CXCR4-
expressing U87 cells and one even replicated in the CCR3-
expressing cells (Table 1). Sequence analysis following infec-
tion of the CXCR4-expressing U87 cells confirmed the NSI
type envelope V3 sequences (14) found previously (30) (data
not shown), excluding contamination with other HIV-1 clones.
However, the observation that these NSI virus clones did not
replicate in PHA-stimulated PBMCs from a healthy CCR5
D32/D32 donor indicated their dependence on CCR5 expres-
sion for replication in primary cells, irrespective of their core-
ceptor repertoire in U87 cells.

In the other transmission case, both NSI and SI HIV-1
variants of donor Ams199 were transmitted to the recipient
(ACH9012). We previously described a majority of highly mac-
rophagetropic HIV-1 clones in the recipient and selective ex-
pansion of NSI variants (30). All NSI clones from donor
Ams199 (n 5 10) and recipient ACH9012 (n 5 5) tested in this
study were CCR5 restricted in the U87 astroglioma cells. The
five donor-derived SI clones with V3 sequence no. 5 were
CXCR4 restricted, whereas one of the two SI clones (no. 5)
from the recipient could use both CXCR4 and CCR5. All SI
variants of both donors and recipients could replicate in PHA-
PBMCs with a CCR5 D32/D32 genotype (Table 1), indicating
that these clones can use coreceptors other than CCR5, also on
primary cells. None of the NSI variants could replicate in these
CCR5-lacking PBMCs (Table 1), indicating that the NSI vari-
ants are indeed dependent on CCR5 expression for replication
in primary cells.

Since some highly macrophagetropic SI variants from both

recipients were found to be CXCR4 restricted on the U87
cells, we wanted to test whether these transmitted SI variants
were also CXCR4 restricted on primary cells. Therefore,
we cultured the biological virus clones on PHA-stimulated
PBMCs in the presence of the CXCR4 antagonist AMD3100
(26) or CXCR4 ligand SDF-1a (5). In addition, RANTES was
used to investigate if replication of the macrophagetropic SI
variants would be inhibited by blocking CCR5. A mixture of
PBMCs from seven healthy donors with a homozygous CCR5
WT genotype was prepared, cryopreserved, and used for all
inhibition studies. PHA-PBMCs (106 cells/ml) were incubated
for 3 h in the presence or absence of inhibitory concentrations
of RANTES (1.25 mg/ml; National Institutes of Health AIDS
reagents program), AMD3100 (1 mg/ml; synthesized by G.
Bridger, AnorMed, Langley, Canada), or SDF-1a (2.5 mg/ml;
Stratmann Biotech, Hannover, Germany). Then, 105 cells were
inoculated with at least 50 TCID50 of the different biological
HIV-1 clones. After overnight inoculation, the cells were
washed once and fresh medium with or without RANTES,
AMD3100, or SDF-1a was added. The emergence of HIV p24
antigen in the culture supernatant, harvested 7, 11, and 14 days
after inoculation, was indicative of productive infection. In the
absence of any blocking agent, all biological virus clones pro-
duced high levels of p24 antigen on PHA-PBMCs. The absence
of p24 production was taken to be indicative of complete in-
hibition of replication. All measurements were performed in
triplicate.

All NSI variants tested (n 5 4) were completely inhibited by
RANTES irrespective of coreceptor usage on the U87 cells,
whereas addition of AMD3100 and SDF-1a had no effect on in
vitro replication of these variants (Table 1). This indicated that
these NSI variants are indeed dependent on CCR5 usage for
replication in PBMCs, which is in agreement with their inabil-
ity to replicate in CCR5 D32/D32 PBMCs.

The replication of all SI variants tested (n 5 28) was blocked
by AMD3100, except for the SI variant isolated from recipient
ACH9012 that could use both CXCR4 and CCR5 on U87 cells.
Some residual p24 production was observed when cells were
inoculated with this variant in the presence of AMD3100,
suggesting that it indeed has the ability to use CCR5 or an-
other coreceptor apart from CXCR4 on PBMCs. Nevertheless,
RANTES inhibited the p24 production of none of the SI
HIV-1 variants (Table 1).

SDF-1a was not as efficient as AMD3100 in the blocking of
CXCR4 usage. Replication of most of the SI variants was
inhibited by SDF-1a, but residual p24 production could always
be observed (Table 1).

These results indicate that, except for the dualtropic SI vari-
ant isolated from recipient ACH9012, all SI variants are de-
pendent on CXCR4 usage on PBMCs irrespective of their
coreceptor usage repertoire on the U87 cell line, since their
replication is totally inhibited by addition of AMD3100.

Taken together, all our results indicate that the observed
selection for macrophagetropism after transmission cannot be
explained by selection for CCR5 coreceptor usage.

CCR5 expression may influence inter- and intrapatient se-
lection of coreceptor usage of HIV-1 variants. The homozy-
gous genotype of Ams127, the 32-bp deletion of CCR5, could
have explained the absence of NSI variants in this recipient.
Therefore, the CCR5 genes of all four individuals were ana-
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lyzed for the 32-bp deletion by PCR analysis, as described
previously (9). Donor ACH704 was found to be heterozygous
for the 32-bp deletion in the CCR5 gene (D32/WT), and the
other three were homozygous for the wild-type gene (WT/WT)
(Table 1).

As coreceptor expression may be influenced by other poly-
morphisms, we additionally performed four-color flow cytom-
etry on cryopreserved, unstimulated PBMCs from the recipi-
ents that had been collected around the time of transmission as
well as from two HIV-negative, healthy donors. Staining was
performed for 20 min at 4°C. For the analysis of coreceptor
expression on lymphocytes, we used a combination of CD4
(-PerCP; Becton Dickinson [BD], San Jose, Calif.), CD45RO
(-allophycocyanin; BD), CCR5 (2D7-fluorescein isothiocya-
nate; PharMingen, San Diego, Calif.), and CXCR4 (12G5-
phycoerythrin; PharMingen). For the analysis of coreceptor
expression on monocytes, we used a combination of CD4
(-PerCP; BD), CD14 (-allophycocyanin; Caltag Laboratories,
Burlingame, Calif.), CCR5 (2D7-fluorescein isothiocyanate;
PharMingen), and CXCR4 (12G5-phycoerythrin; PharMin-
gen). Analysis was performed on a FACScalibur (BD).

We observed high expression levels of CCR5 on CD4-posi-
tive lymphocytes isolated 1 day (Ams127) and 4 months
(ACH9012) after the moment of transmission compared to the
CCR5 expression level on cryopreserved PBMCs from an un-
infected, healthy donor (Fig. 1a). CCR5 was mostly expressed
on CD45RO1 (“memory”) lymphocytes. This high level of
expression most likely reflects the activation of the immune

system as a consequence of HIV-1 infection (8, 22). No differ-
ence was observed for the expression levels of CXCR4 in
comparison to those in cells from healthy donors (data not
shown). The level of coreceptor expression on the recipient’s
monocytes/macrophages might be particularly relevant with
respect to transmission. We observed high expression levels of
CCR5 on unstimulated, CD141 monocytes isolated 1 day
(Ams127) and four and a half months (ACH9012) after trans-
mission (Fig. 1b). No difference was observed for the expres-
sion levels of CXCR4 on the monocytes in comparison to that
of cells from healthy donors (data not shown). Therefore, the
transmission of CXCR4 using SI HIV-1 variants cannot be
explained by a low level of expression of CCR5 or a high level
of expression of CXCR4 in the recipients.

In conclusion, in contradiction with our hypothesis, our re-
sults imply that the selection for macrophagetropic SI HIV-1
variants during transmission is not associated with a selection
for CCR5 usage in addition to the CXCR4 usage of these SI
variants on primary cells. On the contrary, in both recipients
we found CXCR4-restricted SI clones that were able to effi-
ciently infect macrophages, which confirms the finding that
infection of macrophages can be mediated via coreceptors
other than CCR5 (28, 34). These results suggest that features
other than coreceptor usage must account for the macroph-
agetropism of the transmitted SI variants investigated in this
study.

As both recipients had a wild-type CCR5 genotype and high
expression levels of this b-chemokine receptor on CD4-posi-

FIG. 1. (A) FACS analysis of CD45RO and CCR5 expression on unstimulated, cryopreserved CD4-positive lymphocytes from a healthy donor
(HD1) and two HIV-1 recipients, Ams127 and ACH9012. PBMC samples were obtained 1 day (Ams127) and 4 months (ACH9012) after the
moment of transmission. In three quadrants of each plot, the percentage of total CD4-positive lymphocytes is depicted. (B) FACS analysis of CD14
and CCR5 expression on unstimulated, cryopreserved monocytes from a healthy donor (HD1) and HIV-1 recipients Ams127 and ACH9012.
PBMC samples were obtained 1 day (Ams127) and four and a half months (ACH9012) after transmission. In three quadrants of each plot, the
percentage of total monocytes is depicted. The quadrants are set according to the immunoglobulin G isotype control for each blood donor in each
experiment.
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tive lymphocytes and monocytes, a lack of CCR5 expression
could not explain the transmission and persistence of CXCR4-
restricted SI variants in these two cases.

The efficiency of transmission of different HIV-1 variants
may depend on the route of transmission. This has also been
indicated by the controversial results on possible protection of
the CCR5 D32/D32 genotype against parenteral transmission
of HIV-1 (17, 33, 36). Whether or not vertical or sexual trans-
mission is established only by CCR5 using viruses remains to
be established.
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