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Abstract
Motivation: Target discovery is a crucial step in drug development, as it directly affects the success rate of clinical trials. Knowledge graphs 
(KGs) offer unique advantages in processing complex biological data and inferring new relationships. Existing biomedical KGs primarily focus on 
tasks such as drug repositioning and drug–target interactions, leaving a gap in the construction of KGs tailored for target discovery.
Results: We established a comprehensive biomedical KG focusing on target discovery, termed TarKG, by integrating seven existing biomedical 
KGs, nine public databases, and traditional Chinese medicine knowledge databases. TarKG consists of 1 143 313 entities and 32 806 467 rela
tions across 15 entity categories and 171 relation types, all centered around 3 core entity types: Disease, Gene, and Compound. TarKG provides 
specialized knowledges for the core entities including chemical structures, protein sequences, or text descriptions. By using different KG em
bedding algorithms, we assessed the knowledge completion capabilities of TarKG, particularly for disease–target link prediction. In case studies, 
we further examined TarKG’s ability to predict potential protein targets for Alzheimer’s disease (AD) and to identify diseases potentially associ
ated with the metallo-deubiquitinase CSN5, using literature analysis for validation. Furthermore, we provided a user-friendly web server (https:// 
tarkg.ddtmlab.org) that enables users to perform knowledge retrieval and relation inference using TarKG.
Availability and implementation: TarKG is accessible at https://tarkg.ddtmlab.org.

1 Introduction
Innovative drug discovery is an expensive and risky endeavor, 
requiring substantial investments of manpower, financial 
resources, and time. Typically, it takes approximately 12– 
15 years and $2.8 billion from target identification to the 
market approval of a new drug (DiMasi 2020, Singh et al. 
2023). Although around 1700 drugs were approved by FDA 
since 1906 (Bravo et al. 2022, Baedeker et al. 2024), a signifi
cant proportion of diseases remain inadequately treated, indi
cating substantial unmet clinical needs for innovative drug 
discovery. However, the failure rate of new drug clinical trials 
is currently very high. Insufficient clinical efficacy contrib
uted significantly to the high failure rates of Phase 2 and 3 tri
als (Sun et al. 2022), which is mainly stemmed from 
inappropriate target selection. Up to 2022, the total number 
of successfully validated drug targets was <500 (Zhou et al. 
2022), so target discovery remains a crucial and challenging 
task to innovative drug discovery. It requires more complex 
analyses from various perspectives, such as disease biology 
and chemical intervention, compared with subsequent lead 
discovery and optimization phases.

In recent years, the development of artificial intelligence 
(AI) technologies and the accumulation of vast biomedical 
data have provided important foundations for target discov
ery as well as other tasks. A prime example is the success of 
AlphaFold2 (Jumper et al. 2021), which provides actionable 
structural information for protein targets, facilitating re
search on target biology. For complex biomedical data, 
knowledge graphs (KGs) are an extremely attractive tool be
cause they offer unique advantages including structural data 
storage, data integration/association, and knowledge infer
ence. Google pioneered the introduction of the KG concept 
to enhance web search experiences (Singhal 2012). In 2017, 
Himmelstein et al. created the first comprehensive KG called 
Hetionet in the biomedical field for drug repurposing 
(Himmelstein et al. 2017). Afterward, various biomedical 
KGs emerged one after another, such as OpenBioLink (Breit 
et al. 2020), PharmKG (Zheng et al. 2020a,b), and PrimeKG 
(Chandak et al. 2023), each typically with different focuses 
and unique data characteristics. These KGs are being utilized 
in different scenarios, including drug repurposing, drug–tar
get interactions, among others. However, there is still a lack 
of KGs specifically focused on target discovery.
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Target discovery generally involves comprehensive analysis 
of data and information from multiple different aspects, with 
a particular focus on diseases, targets, and intervention mole
cules, as well as their intricate associations. In comparison, 
the reported KGs have not provided a sufficiently compre
hensive understanding of diseases; e.g. they exhibit individual 
biases or fail to consider hierarchical relationships among dis
eases. The existing KGs also do not fully capture and explore 
the information regarding targets and intervention molecules, 
especially their relationships with each other, and with dis
eases. Moreover, Traditional Chinese Medicine (TCM) infor
mation has hardly been considered in KGs, which emphasizes 
the holistic nature of diseases and the harmony of active com
ponents, making it a valuable resource for target discovery.

Herein, we describe TarKG (Supplementary Fig. S1), a uni
fied, comprehensive, and large-scale biomedical KG tailored 
for target discovery. We defined three core entity types 
closely related to target discovery, including Disease, Gene, 
and Compound, alongside 12 other associated entity types. 
We amalgamated and aligned data revolving around these 
three entity types from seven mainstream biomedical KGs. 
We further augmented and refreshed information on the core 
entity types and their associations by leveraging data mining 
techniques on public resources. In addition, we incorporated 
four TCM-focused entity types, including Prescription, 
Chinese materia medica (CMM), Syndrome, and Symptom, 
along with their associations. TarKG comprises 1 143 313 
entities and 32 806 467 triplets cross 15 entity types and 171 
relationship pairs. We next assessed the ability of TarKG in 
knowledge completion, including disease–target link predic
tion, by using Deep Graph Library Knowledge Embedding 
(DGL-KE) tools. By using the trained KGE models, we pre
dicted the potential protein targets for Alzheimer’s disease 
(AD), and explored the unknown diseases potentially associ
ated with the metallo-deubiquitinase CSN5. Furthermore, we 
offered a user-friendly web server (https://tarkg.ddtmlab.org) 
to facilitate researchers’ use of TarKG.

2 Materials and methods
2.1 Data collection, processing, and alignment
TarKG contains three core entity types (Disease, Gene, and 
Compound), eight associated common entity types (Pathway, 
Anatomy, Side Effect, Symptom, Phenotype, Biological 
Process, Molecular Function, and Cellular Component), four 
TCM entity types (TCM Prescription, TCM CMM, TCM 
Syndrome, and TCM Symptom), and their relationships rep
resented by triplets. We first integrated and cleaned the data 
in the existing seven biological KGs, including Hetionet 
(Himmelstein et al. 2017), OpenBioLink (Breit et al. 2020), 
PrimeKG (Chandak et al. 2023), PharmKG (Zheng et al. 
2020a,b), DRKG (Ioannidis et al. 2020), MSI (Ruiz et al. 
2021), and BioKG (Walsh et al. 2020). To further enrich the 
knowledge base and ensure ongoing updates, we incorpo
rated nine mainstream public databases focusing on three 
core entities, including Disease Ontology (Baron et al. 2024), 
MONDO Ontology (Vasilevsky et al. 2022), MESH 
(Lipscomb 2000), Gene Ontology (Ashburner et al. 2000), 
DrugBank (Knox et al. 2024), ChEMBL (Zdrazil et al. 2024), 
INTEDE (Yin et al. 2021), E3Atlas (Liu et al. 2023a,b), and 
PubTator3 (Wei et al. 2024). We also mined the knowledge 
related to TCM entities based on eleven important TCM 
databases, including SoFDA (Zhang et al. 2022), TCMIO 

(Liu et al. 2020), ITCM (Tian et al. 2023), SymMap (Wu 
et al. 2019), and HERB (Fang et al. 2021), among others 
(Mangal et al. 2013, Yan et al. 2022, Kong et al. 2024, Liu 
et al. 2023a,b, Song et al. 2023, Yang et al. 2023), and then 
established relationships with other entities to enhance the 
comprehensiveness of TarKG. The data sources for these en
tity types are shown in Supplementary Tables S1 and S2.

2.1.1 Data collection and alignment of entity
We used different methods to align entities for different entity 
types. In addition, we also enrich node information including 
text description and structure sequence for three types of core 
entities: Disease, Gene, and Compound (see details in 
Supplementary Methods). Finally, we established unified 
TarKG IDs for all entity types, while retaining their original 
IDs and sources in a customized mapping table.

2.1.2 Relationship enrichment and triple merging
Triplets are the basic units of a KG, typically represented as 
<head entity, relation, tail entity>, and they play a central 
role in shaping the KG. All the triplets between the 11 entity 
types that exist in reported biomedical KGs were initially in
cluded. The relationships (triplets) between the three core en
tity types were then mined and expanded. To gain a more 
comprehensive understanding of the hierarchical relationship 
(i.e. is-a) between Disease entities, we analyzed and compiled 
data from Disease Ontology, MONDO Ontology, and 
MESH. We incorporated relationships involving Disease, 
Gene, and Compound entities from Pubtator3 released in 
2023 (Wei et al. 2024), a resource leveraging AI to extract 
over a billion entities and relationships from millions of bio
medical publications. Given metalloenzymes, drug metabolic 
enzymes, and E3 ligases are gradually becoming important 
fields for drug discovery, we expanded their relationships 
with Disease, Gene, and Compound entities into TarKG by 
mining MeDBA (Yu et al. 2023), INTEDE (Yin et al. 2021), 
and E3Atlas (Liu et al. 2023a,b), respectively.

TCM entities were initially linked to other entities within 
TarKG through the relationships “TCM CMM-Compound” 
and “TCM Symptom-Symptom.” By combining these with 
existing relationships, we expanded the connections of TCM 
entities to other core entities: “TCM CMM-Gene,” “TCM 
CMM-Disease,” “TCM Prescription-Disease,” “TCM 
Symptom-Disease,” and “TCM Syndrome-Disease.”

Given the differences in relationship descriptions across var
ious KGs or databases, standardizing relations becomes cru
cial for deduplicating triples. For the relationships found in 
existing KGs, we manually standardized them based on their 
semantics. For instance, relationships such as “CbG” (from 
Hetionet), “DRUG_BINDING_GENE” (from OpenBioLink), 
“B” (from PharmKG), and “GNBR::B::Compound: Gene” 
(from DRKG), were all unified under the term “binds” for 
Gene and Compound entities. The relationships mined from 
other resources were uniformly added to TarKG one by one. 
Notably, we sorted out the directionality of relationships in 
TarKG. Unreasonable triplets and redundant bidirectional 
relationships were removed through manual inspection. 
Triplet deduplication was finalized by substituting entities and 
relationships where necessary.

2.1.3 Data source tracing and storage
TarKG contained three kinds of data sources, namely 
mergeKG (from the existing KGs), addKG (from public 
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databases), and tcmKG (from TCM data). Through multiple 
rounds of entity alignment and relationship integration, each 
triple and entity in TarKG was tagged with its original data 
source and index. Duplicate triplets and entities were 
grouped, and a new index was established using Python, cre
ating a “one-to-many” data traceability mechanism between 
the current and original data. This enables users to recon
struct the KG based on specific needs (Supplementary Fig. 
S2). Entity and relation information were separately stored in 
CSV files in a unified and standardized format. This stan
dardized format and complete traceability ensure ease of 
updating and utilization for TarKG.

2.2 KG embedding (KGE) learning
KGE learning aims to represent entities and relations in a KG 
as low-dimensional vectors in a continuous vector space, 
facilitating subsequent tasks such as disease target identifica
tion, drug repurposing, and drug–target interaction predic
tion. Here, we used deep graph library-knowledge 
embedding (DGL-KE, version 0.1.2) (Zheng et al. 2020a,b) 
for KGE learning, which is an open-source python package 
containing different KGE algorithms including TransE 
(Bordes et al. 2013), TransR (Lin et al. 2015), RESCAL 
(Nickel et al. 2011), DistMult (Yang et al. 2014), ComplEx 
(Trouillon et al. 2016), and RotatE (Sun et al. 2018) (see 
Supplementary Table S3). The entire triplets in TarKG were 
divided into training, validation, and test sets with a 90:5:5 
ratio. We used grid search to find the optimal hyperpara
meters for KGE models (see Supplementary Table S4). Model 
performance was evaluated using standard ranking metrics: 
Hits@k (for k 2 f1, 3, 10g) to assess retrieval success at dif
ferent ranks, Mean Rank (MR), and Mean Reciprocal Rank 
(MRR). To evaluate target discovery performance on TarKG, 
we created a sub-test set focusing on gene–disease triplets 
from the original test set. Each optimal KGE model under
went individual evaluation.

2.3 Prospective analyses of gene–disease link 
predictions
To further evaluate the predictive capability of TarKG, we used 
the optimal KGE models (except TransR due to DGL-KE limi
tations) to predict the potentially unknown-relation between 
Disease and Gene entities. We used “Gene: Disease::drug 
targets” as the target relation, and performed two sets of predic
tions by masking the head entity and tail entity: (i) prediction of 
potential targets related with Alzheimer’s disease (AD): accord
ing to the directionality, Alzheimer’s disease entered as the tail 
entity (Primary ID: DOID:10652), and the head entity used hu
man Gene entities that are not linked to AD in TarKG; (ii) pre
diction of COP9 signalosome complex subunit 5 (CSN5)- 
associated diseases: CSN5 (UniProt ID: Q92905) input as the 
head entity, and the tail entity used Disease entities that are not 
linked CSN5 in TarKG. DGL-KE was used to score and rank 
the entities for prediction within the Gene/Disease Library. The 
resulting top-ranked entities from the optimal RESCAL model 
were analyzed through literature analysis.

2.4 Web server implementation
To facilitate researchers to use TarKG data, we developed the 
user-friendly TarKG web server (https://tarkg.ddtmlab.org) that 
offers entity/path querying, relationship prediction, and graph 
visualization. We used Neo4j database (version 5.16.0) to store 
and operate TarKG data, leveraging its superior capabilities to 

capture the internal relationships among biomedical entities. 
The web backend uses the Flask web framework (version 3.0.2) 
to connect to Neo4j Community 5.16 and MySQL Community 
8.0, which store TarKG’s current data and original records re
spectively. The path query request from user on the web page is 
converted into a Cypher statement supported by Neo4j on the 
back end. Similarly, DGL-KE is used on the backend to process 
the link prediction request initiated by the user. The web front- 
end is built based on the Vue.js (version 3.4.21) framework, 
and data exchange between the front end and back end is facili
tated through API services. Apache ECharts (version 5.5.0) is 
used to implement graph visualization.

3 Results
3.1 The profile of TarKG
We constructed a holistic KG tailored for target discovery, 
termed TarKG. Revolving around the three core entity types 
(Diseases, Gene, and Compound), we integrated data from 
seven reported biomedical KGs and subsequently expanded 
and enriched the core entity and relation data from nine pub
lic databases (Supplementary Table S2). Further, we uniquely 
incorporated manually curated Traditional Chinese Medicine 
(TCM) data, which contain a wealth of valuable information 
for drug target discovery. Through iterative data integration, 
alignment, and manual inspection, we obtained a version of 
TarKG containing 15 entity types and 43 entity pairs (Fig. 1).

Given the diverse data sources used to construct TarKG, 
particularly the integration of seven existing KGs with vary
ing biological application focuses, establishing a robust data 
source tracing mechanism is crucial. Each entity and relation
ship within TarKG retain the original source information, 
which allows users to not only verify the correctness of 
knowledge by tracing data back to its origin but also freely 
reconstruct data from different sources tailored to the specific 
needs (as illustrated in Supplementary Fig. S2). Notably, in 
addition to KG sources, users can also rebuild the KG based 
on the database to which the data belongs.

TarKG currently comprises 1 143 313 entities and 
32 806 467 triplets, outnumbering almost all reported bio
medical KGs (Supplementary Table S6). The million entities 
are categorized into 15 distinct types, including 31 724 
(2.77%) Disease entities, 143 156 (12.52%) Gene entities, 
and 851 314 (74.46%) Compound entities (Supplementary 
Table S1). Among the 32 806 467 relationships containing 
43 entity pairs, the top 3 pairs constituting nearly half of all 
triples are: TCM CMM-Gene (17.72%), Gene–Gene 
(17.35%), and Compound–Gene (12.92%) pairs (Fig. 2a and 
Supplementary Table S7). Analysis of the number of relation
ships each entity participates in revealed that Gene (45.06%), 
Compound (21.06%), TCM CMM (11.58%), and Disease 
(10.80%) are the most interconnected entities (Fig. 2b and 
Supplementary Table S8). In addition, the Compound–Gene, 
Gene–Gene, and Gene–Disease pairs exhibit the greatest di
versity in relationship types, with 45, 34, and 11, respec
tively. These features reflect that TarKG is a comprehensive 
biomedical KG centered around Compound, Disease, and 
Gene, and meanwhile, enriched with distinctive features of 
Traditional Chinese Medicine.

3.2 The characteristics of TarKG for target discovery
Compared with reported biomedical KGs, TarKG possesses 
the following characteristics specifically tailored for target 
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discovery. The first major advantage of TarKG lies in its multi- 
dimensional consideration of the three core entity types and 
their diverse relations closely related to target discovery, along 
with specialized data integration and mining. Given the abun
dance, diversity, and lack of uniformity in Disease entities, we 
built a detailed Disease ID mapping pool covering Disease en
tity terms from multiple disease databases such as Disease 
Ontology, MONDO Ontology, MESH, OMIM, CTD, and 
UMLS. This addresses the issue encountered in previous KGs, 
where only one type of Disease ID identifier was included. 
TarKG features twice the number of diseases (31 724 entities) 
compared to PrimeKG, a previously reported KG known for 
its extensive collection of Disease entities. There are 7 087 274 
relationships involving Disease entity type, reflecting a wealth 
of disease information within TarKG.

For Gene entities, we mainly consider human proteins or 
other protein targets related to human diseases. We have 

specifically expanded the information for G protein-coupled 
receptors (GPCRs), kinases, metalloenzymes, E3 ligases, and 
drug-metabolizing enzymes (DMEs), as they are main groups 
of potential drug targets. While the number of entities for 
these target groups, except for DMEs, in TarKG is compara
ble to other KGs (Fig. 3a), TarKG has a remarkable increase 
(2- to 10-fold) in the number of relationships associated with 
these targets (Fig. 3b), reflecting more enriched relational in
formation, which facilitates inference of new relationships.

Compounds are the largest number of entities in TarKG, 
accounting for as much as 74.46% of the total. To better 
meet the needs for pharmaceutical researchers and others, we 
labeled “drugs” that are either on the market or being evalu
ated in clinical trials within the Compound entities, which is 
uncommon in reported KGs.

Another major superiority of TarKG is the inclusion of 
TCM data, which is rarely considered but highly valuable. 

Figure 1. The schema of TarKG. The circles denote entity types, and the links denote relations between entity type pairs. The primary relations revolving 
around the three core entity types: disease, gene, and compound, can be observed. Detailed relation pairs are given in Supplementary Table S5.
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Given their diverse active chemical components and multi- 
target synergistic effects, TCM data are a valuable source for 
innovative drug discovery. TarKG integrated TCM data into 
existing biomedical KGs, aiming to bridge the gap between 
isolated TCM entities and the modern biomedical relation
ship network. Despite constituting a mere 0.74% of all enti
ties in TarKG, TCM entities are remarkably involved in 13% 
of all recorded relationships. Notably, TCM CMM entities 
account for 11.58% of all relationships, ranking third in 
terms of relationship richness. Its prominence extends to its 
interactions with the three core entities: Genes, Diseases, and 
Compounds. The inclusion of such data in TarKG allows for 
a deeper exploration of disease-gene relationships, potentially 
unearthing novel insights and providing new perspectives in 
drug discovery and therapeutic target identification.

We provided additional node information for Diseases, 
Genes, and Compounds. Specifically, disease features are rep
resented using textual descriptions (e.g. names, definitions, 
and synonyms), while compound and gene features incorpo
rate both structural/sequential data and textual descriptions. 
In short, given these distinctive features, TarKG has a great 
potential in target discovery and other tasks.

3.3 TarKG-based KG completion
We next examined the ability of TarKG in KG completion. 
Six KGE algorithms, including TransE, TransR, RESCAL, 
DistMult, ComplEx, and RotatE, are used for graph learning 
by computing machine-readable embedding vectors of enti
ties and relationships in TarKG. Table 1 presents the perfor
mance of each model on the independent test set. All six KGE 
models showed good performance in relation prediction, 
with Hits@3 scores exceeding 0.9, except for DistMult. 
Particularly, TransR and RESCAL exhibited exceptional per
formance, with both achieving Hits@1 scores of 0.87. 
Compared with previous KGs such as PharmKG and 
Hetionet, all these KGE models perform better on TarKG 
(Zheng et al. 2020a,b). This improved performance is at least 
partially attributed to TarKG’s greater number of many-to- 
many relationships; in TarKG, a given head entity and 

Figure 2. Distribution of entities and relations in TarKG. (a) The heatmap 
of the number of relations between entity pairs. (b) The number of 
relations involving the corresponding entity type.

Figure 3. Comparison of main target groups in different KGs. (a) The 
number of target entities within GPCRs, kinases, metalloenzymes, E3 
ligases, and DMEs; (b) the number of target relations within the five 
target groups.

Table 1. Performance of KGE models in relation prediction on the 
test set.

Metrica TransE (L2) TransR RESCAL DistMult ComplEx RotatE

MRR 0.83 0.91 0.91 0.83 0.84 0.85
MR 7.09 8.01 7.56 8.44 7.31 11.22
Hits@1 0.75 0.87 0.87 0.75 0.77 0.77
Hits@3 0.90 0.94 0.95 0.89 0.90 0.90
Hits@10 0.97 0.97 0.97 0.96 0.96 0.96

a MR: Mean Rank; MRR: Mean Reciprocal Ranking; Hits@k (k¼ 1, 3, 
or 10): average proportion of triples with rank <k in link prediction. The 
lower the MR value, the higher the MRR and Hits@k values, indicating 
that the model prediction performance is better.
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relationship are associated with more potential tail entities, 
increasing the likelihood of correct predictions.

To specifically evaluate gene–disease relationship predic
tion, we constructed a sub-test set containing 118 083 gene– 
disease links (accounting for 7% of the total relationships in 
the test set), which features diverse non-one-to-one relation
ships. We observed that TransR and RESCAL manifested su
perior performance on the gene–disease subset compared to 
whole test set, with MRR and Hits@1 scores excelling 0.9 and 
0.87, respectively, while other models showed relatively lower 
performance on the subset (Table 2). TransR improves flexi
bility and expressiveness through mapping of relationship- 
specific spaces, and RESCAL captures high-order interactions 
through high-dimensional representation and tensor decompo
sition. These features make them more advantageous in deal
ing with gene–disease subset with fewer but more complex 
relationships. In contrast, other models like TransE and 
DistMult, with simpler representations, may struggle with 
such complex relationships, potentially leading to decreased 
prediction accuracy. The results partly reflected the challenge 
of inferring gene–disease relationships given their complex in
ternal relationships, and more importantly, highlighted the ne
cessity of developing KGE models specifically suited for gene– 
disease relationship prediction.

3.4 Case studies
DGL-KE supports link prediction using various KG embed
ding (KGE) models, including TransE, RESCAL, DistMult, 
ComplEx, and RotatE. We used these KGE models to predict 
the potential protein targets for AD and to identify poten
tially related diseases for the metallo-deubiquitinase CSN5 
in TarKG.

Potential targets for AD. Using different KGE models, we 
observed distinctly different prediction results. Only a few 
targets were consistently ranked within the top 10 by multi
ple KGE models, such as KCHN2 (UniProt ID: Q12809) and 
BAD (UniProt ID: Q92934) (Supplementary Table S9). Given 
RESCAL’s superior performance on the gene–disease sub-test 
set (Table 2), we conducted a detailed literature analysis for 
the top 10 predictions. We found that nine of the 10 pre
dicted targets (90% success rate) are supported by existing 
literature (Supplementary Table S10). For example, the top1- 
ranked predicted target for AD is Bcl2-associated agonist of 
cell death (BAD), a member of the Bcl-2 family. BAD is asso
ciated with cellular apoptosis, a process implicated in AD 
and other neurodegenerative diseases (Obulesu and Lakshmi 
2014), and the observed upregulation of BAD protein expres
sion in AD brains (Kitamura et al. 1998) suggest its potential 
as a therapeutic target. We also utilized the Neo4j graph 
database to explore the existing paths between BAD and AD 
within TarKG (Supplementary Fig. S3). Likewise, xanthine 
dehydrogenase (XDH) ranked second is a hydroxylase in
volved in purine oxidation metabolism. This metabolic 

pathway is known to contribute to the generation of reactive 
oxygen species (ROS), another hallmark of AD (Pathak et al. 
2019). Furthermore, lipid dysregulation was identified re
cently as a potential contributing factor to AD (Yin 2023). 
Diacylglycerol O-acyltransferase 1 (DGAT1), the third- 
ranked predicted target, plays a critical role in regulating the 
biosynthesis of lipid droplets (LDs), which are intimately in
volved in lipid metabolism (Yang et al. 2022).

Potentially related diseases of CSN5. Similarly, the five 
KGE models yielded varying results in predicting CSN5- 
associated diseases. Only myelogenous leukemia (Primary ID: 
MESH:D007951) consistently appeared in the top 10 disease 
list predicted by different models (Supplementary Table S11). 
We conducted further literature analysis on the top 10 diseases 
predicted by RESCAL (Supplementary Table S12). Out of the 
ten predicted diseases, seven diseases have documented associ
ations supported by literatures. For example, the top-3 pre
dicted disease was progressive transformation of germinal 
centers (Primary ID: MONDO:0043346), which aligns with 
prior findings that Jun activation domain-binding protein 1 
(Jab1, another name of CSN5) is crucial for the expression of 
Bcl6, a transcription repressor required for germinal center 
formation (Sitte et al. 2012). Likewise, Haemophilus 
Infectious Disease (Primary ID: MONDO:0006926) and 
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma 
(Primary ID: MESH:D054218), ranked fourth and fifth re
spectively, have both been shown to be associated with the 
ubiquitination pathway (Li and Zhong 2018, Fhu and Ali 
2021). Given the crucial role of CSN5, a metallo- 
deubiquitinase, in the ubiquitination system by regulating ac
tivity of cullin-RING E3 ubiquitin ligases, it is likely that these 
two diseases are associated with CSN5. Furthermore, previous 
studies suggested that the Jab1/CSN5 signaling pathway has a 
close association with the 5-HT6 receptor (5-HT6R) 
(Chaumont-Dubel et al. 2020) that may play a crucial role in 
epileptogenesis and cognitive impairment (Liu et al. 2019, 
Chaumont-Dubel et al. 2020), which partly support the top 6, 
9, and 10 prediction results (Supplementary Table S12). These 
results reveal the potential of TarKG in identifying new possi
ble Disease-Gene relations.

3.5 The web server of TarKG
To facilitate user access and download of TarKG data, we 
established a user-friendly web server (https://tarkg.ddtmlab. 
org). This server enables users to construct custom queries 
through intuitive clicking operations. It contains two functional 
modules: knowledge retrieval and relation inference. Figure 4a 
shows knowledge retrieval using a path query example, i.e. the 
identification of Parkinson’s disease (PD) associated genes and 
their inhibitors through a two-hop path: Disease (PD) 
&cenveo_unknown_entity_wingdings_F0DF; associated with 
! Gene &cenveo_unknown_entity_wingdings_F0DF; inhibits– 
Compound. For this purpose, we can firstly query for all Gene 
entities associated with PD, and then identify all Compound en
tities that exhibit an inhibitory effect on these Genes. By limit
ing the returned/visualized results per page to the top 100, we 
can obtain the results shown in Fig. 4a. For example, pioglita
zone has been shown to inhibit the PD-associated gene 
COL6A3 (Jin et al. 2021), indicating its potential relevance to 
PD. This prediction is supported by a previous meta- analysis 
indicating that administering pioglitazone is associated with re
duce risk of PD in diabetes patients (Chen et al. 2022).

Table 2. Performance of KGE models in relation predictions on gene– 
disease subset.

Metric TransE (L2) TransR RESCAL DistMult ComplEx RotatE

MRR 0.75 0.93 0.92 0.71 0.71 0.75
MR 3.64 1.44 1.46 6.82 4.45 4.26
Hits@1 0.63 0.88 0.87 0.58 0.58 0.64
Hits@3 0.83 0.97 0.97 0.80 0.81 0.83
Hits@10 0.95 1.00 1.00 0.93 0.94 0.95
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Figure 4. User interface of the TarKG web server. (a) Showing a usage process for knowledge retrieval: identification of inhibitors for PD-associated 
genes through a two-hop path query. (b) Showing a usage process for relation inference: prediction of potential targets for lung cancer.
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Figure 4b illustrates the workflow of relation inference, 
taking the prediction of potential targets for lung cancer as 
an example. User can initiate the query by selecting the dis
ease “lung cancer” as the tail entity, and set the relationship 
as “Gene: Disease::drug target.” By default, the head entity 
pool is populated with all gene entities present within 
TarKG. By selecting the RESCAL model for KGE analysis 
and limiting the results to the top 10, user can see the top 10 
predicted targets for lung cancer on the page. For instance, 
epidermal growth factor receptor (EGFR), ranked as the top 
1 in the prediction results, has been found to be associated 
with certain lung cancers (Bethune et al. 2010). Notably, for 
each predicted result, user can obtain the existing paths 
within TarKG (up to six steps in length) by clicking the “Sub- 
Graph” button. The web server also offers statistical data of 
TarKG and allows users to access detailed entity and relation 
information stored in .csv files for both TarKG and origi
nal data.

4 Discussions
TarKG was created by integrating biomedical KGs, public 
data resources and TCM data. It forms a large-scale and 
high-quality biomedical KG with a focus on the three core en
tity types and their relations. The currently largest number of 
Disease entities and relations in TarKG holds tremendous po
tential for addressing disease target discovery and clarifying 
disease mechanisms. Expanded data for the important target 
groups, such as metalloenzymes, E3 ligases, and drug- 
metabolizing enzymes, have been incorporated into TarKG, 
thereby enhancing the coverage of these target datasets. 
Compounds, as crucial bridges between targets and diseases, 
have also been subjected to focused data mining and labeled 
at different stages, which will facilitate drug target discovery 
and other purposes. In addition, TarKG uniquely incorpo
rates TCM data, which are rich and valuable sources for drug 
synergistic effects and drug-diseases associations.

Target discovery often demands a comprehensive under
standing of disease mechanisms, which involves exploring 
various biomedical entities and their complex relationships. 
This requires rich biological network information as well as 
specialized knowledge of the relevant core entities. TarKG, 
with its extensive data coverage and focus on disease-related 
entities/relationships, serves as a unique and valuable re
source for meeting these requirements. Moreover, the large- 
scale entity and relation data in TarKG can be utilized for 
various other purposes, such as drug repurposing, protein–li
gand interactions, and TCM efficacy understanding.

The preliminary results of KGE training on TarKG 
revealed its strong capability for KG completion and target 
prediction (either from disease to targets or from target to 
diseases), reflecting the effective construction and data qual
ity of TarKG. In addition to data quality and comprehensive
ness, KG reasoning methods are also crucial factors affecting 
their accuracy in link prediction. Among the six KGE models, 
TransR and RESCAL manifested superior performance on 
disease-gene link prediction, possibly attributed to their capa
bility in handling relationship-specific spaces. Recently, 
researchers have started developing more advanced KG rea
soning models by incorporating domain-specific knowledge 
of biological entities into foundation models. For example, 
DREAMwalk (Bang et al. 2023) used a semantic 
information-guided random walk to generate node 

embeddings for drugs and diseases, facilitating drug reposi
tioning. KGCNH (Du et al. 2024) utilized a graph convolu
tional network based on heuristic search to tackle drug 
repurposing. Since most of these models are primarily fo
cused on tasks such as drug repositioning and drug–target in
teraction prediction, there remains considerable potential for 
developing reasoning models specifically designed for tar
get discovery.

During the construction of TarKG, we observed that entity 
and relationship alignment methods are still not perfect, lead
ing to the loss of valuable data in some cases, which is a key 
issue that needs to be addressed in the future. Furthermore, 
the challenge of fully deduplicating entities persists due to in
complete cross-mapping of entity IDs across different data
bases. For example, TarKG still contains a small number of 
disease entities that share the same name but have different 
IDs. To address this issue and enhance data reliability, we 
have established a comprehensive data traceability mecha
nism that allows users to verify the accuracy of the knowl
edge by accessing the source information of each data entry. 
In addition, this mechanism enables users to reconstruct the 
KG with a focus on different data sources, facilitating the cre
ation of benchmark datasets for specific tasks and supporting 
the advancement of KG reasoning methods. We believe that 
these rigorous data, combined with stronger KG reasoning 
methods, will be a powerful resource for target discovery and 
other applications.
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