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An integrative network-based approach to
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chronic obstructive pulmonary disease
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Chronic obstructive pulmonary disease (COPD) is an etiologically complex disease characterized by
acute exacerbations and stable phases. We aimed to identify biological functions modulated in
specific COPD conditions, using whole blood samples collected in the AERIS clinical study
(NCT01360398). Considered conditions were exacerbation onset, severity of airway obstruction, and
presence of respiratory pathogens in sputum samples. With an integrative multi-network gene
community detection (MNGCD) approach, we analyzed expression profiles to identify communities of
correlated genes. The approach combined different layers of gene interactions for each explored
condition/subset of samples: gene expression similarity, protein-protein interactions, transcription
factors, and microRNAs validated regulons. Heme metabolism, interferon-alpha, and interferon-
gammapathwaysweremodulated in patients at both exacerbation and stable-state visits, butwith the
involvement of distinct sets of genes. An important gene community was enriched with G2M
checkpoint, E2F targets, andmitotic spindle pathways during exacerbation. Targets of TAL1 regulator
and hsa−let−7b− 5p microRNA were modulated with increasing severity of airway obstruction.
Bacterial infections with Moraxella catarrhalis and, particularly, Haemophilus influenzae triggered a
specific cellular and inflammatory response in acute exacerbations, indicating an active reaction of the
host to infections. In conclusion, COPD is a complex multifactorial disease that requires in-depth
investigations of its causes and features during its evolution and whole blood transcriptome profiling
can contribute to capturing some relevant regulatorymechanisms associatedwith this disease. In this
work, we explored multi-network modeling that integrated diverse layers of regulatory gene networks
and enhanced our comprehension of the biological functions implicated in the COPD pathogenesis.

Chronic obstructive pulmonary disease (COPD) is a complex disease
characterized by inflammation of the airways and pulmonary parenchymal
disruption, with progressive and irreversible airflow obstruction over time1.
The most common respiratory symptoms are dyspnea, cough, and sputum
production, and patients generally experience periods of stable chronic
inflammation alternatingwith acute exacerbations of COPD (AECOPD) or
transient periods of aggravated symptoms requiring additional medical
treatment. The disease and, particularly, exacerbations can be triggered by
different agents, including bacterial and viral infections or inhaled

particles2,3. Current treatment relies on bronchodilators, corticosteroids,
and, when necessary, oxygen and antibiotics1. Moreover, influenza and
pneumococcal vaccinations reduce the risk of exacerbations4, supporting
the development of new vaccines against other respiratory pathogens that
may trigger AECOPD.

While the primary site of illness is the lung, with different levels of
airway obstruction determining COPD severity1, additional systemic
inflammation, metabolic alterations, and skeletal muscle dysfunction make
COPD a systemic disease5–7. Consequently, various studies have used blood
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transcriptome profiling to retrieve information about host response and
disease evolution, such as the attempt to identify systemic biomarkers for
AECOPDvia the evaluation of specific genes, pathways, and genemodules8,
or genes and pathways linked to inflammation, the immune system, and
ceramide metabolism9, but no single biomarker has gained wide
acceptance10. A meta-analysis of lung tissue gene expression data from
different studies, which usedGene Set EnrichmentAnalysis (GSEA) to rank
genes according to their differential expression11, showed the same biolo-
gical functions linked to COPD despite largely non-overlapping lists of
differentially-expressed genes (DEGs)12. Subsequently, Morrow et al.
showed that the expression of individual genes in whole blood was not
significantly associated with the frequency of exacerbations but, with net-
work modeling methods, a statistically significant community of co-
expressedgeneswas identifiedrelated to exacerbation frequency13. Similarly,
in a meta-analysis of two observational studies of patients with COPD,
COPDGene14, and ECLIPSE15, Reinhold et al. identified communities of co-
expressed genes in blood associated with airflow obstruction, emphysema,
immune response, and with genes specific for natural killer cells, dendritic
cells, and neutrophils16.

Overall, these studies suggest that the complexity of COPD is reflected
on mRNA transcripts modulated in whole blood of patients in a non-trivial
way, and not described by simple single-gene signatures. Pathways and gene
modules appear to better capture the disease features, playing amore relevant
role in the description of COPD evolution. Due to these observations and
similarities with other complex diseases and systemic biology networks17–21,
we explored whole blood transcriptomic data from COPD patients, using
multi-omic integrativemethods based on networkmodeling to identify gene
communities that interact in a complex and articulated way, while removing
apparent noisy signals22. Specifically, we followed the rationale used by
Cantini and colleagues for the identification of the driver gene in different
cancer types21 andusedmultilayer networkmodeling of the gene interactions
to describe the signaling and regulatory network of the immune system at a
whole blood level during the evolution ofCOPD.As shownbyCantini et al. 21

andother comprehensive studies23,24, the approachhas the advantage tomore
realistically represent the interactions exhibited in complex regulatory pro-
cesses, for example in the evolution of cancer or other systemic diseases,
compared to the simple observation of gene expression similarities and the
consequent identification of clusters of co-expressed genes. In fact, these
regulatorypathways are controlled at transcriptional andpost-transcriptional
levels and their alteration often involves modified expression levels of genes
that are at the same time partners in a protein-protein interaction25 and
targeted by the same set of transcription factors26 and microRNAs27. These
interactionsweremodeled inourmultilayernetwork-basedanalysis, inwhich
genes are considered interactors in a network subdivided in multiple layers,
with each layer representing a specific kind of gene-gene interaction, such as
protein-protein interactions, transcription factor co-targeting networks, and
microRNA co-targeting networks (Fig. 1). These layers are defined a priori
since they model biological processes and interactions collected from public
reference databases. To this stack of layers, two further layers are added,
representing the actual co-expression network derived from whole blood
transcriptomic data ofCOPDpatients in each specific explored ‘condition’or
subset of samples, thus modeling different multi-layer networks for each
explored condition (Fig. 1a). This enables the consideration of two aspects of
gene expression, gene expression profiles correlation (co-expression) and
gene expression level similarity (radial basis function (RBF) expression
similarity), with results that are relatively simple to interpret. Because of this,
and because multilayer integrative techniques have recently showed very
informative results, particularly in cancer research21,22,28–30, multilayer clus-
tering was selected over other forms of data integration.

Finally, we aimed to analyze these multi-layer networks using multi-
network gene community detection (MNGCD) method21, based on the
partition of maps of information algorithm31, to identify subnetworks of
strongly interacting genes (‘gene communities’), which were then char-
acterized for enrichment with annotated biological functions or sets of reg-
ulons (Fig. 1b).

The blood sample and clinical data considered in this work were col-
lected in the Acute Exacerbation and Respiratory InfectionS in COPD
(AERIS) observational cohort study of 127 patientswithCOPD32,33. Patients
were followed for up to 2 years via monthly study visits, when patients had
stable COPD symptoms, and additional visits when patients experienced
exacerbation events. A complete description of the COPD evolution,
togetherwith exacerbation frequency and severity, have been reported32; the
mean exacerbation rate was 3.04 per patient-year and most exacerbations
(85.6%) were moderate in severity. Results from the AERIS cohort revealed
the most common bacterial species associated with AECOPD were Hae-
mophilus influenzae (Hi) and Moraxella catarrhalis (Mcat), and the most
common virus was rhinovirus, with a higher rate of bacterial and viral
coinfection at exacerbation than stable state, and a dependence with
seasonality32. Analysis of lung microbiome diversity in the same patients
also revealed that stability over time was more likely to decrease at exacer-
bation and in individuals with higher exacerbation frequencies3. These
observations led us to conduct further assessments to better understand the
association of bacterial and viral infections and worsening of COPD
symptoms at a systemic level, in particular, in relation to the whole blood
transcriptome of patients with COPD.

Results
Differentially-expressed genes across different conditions
Gene expression data were analyzed using blood samples collected during
the AERIS study every six months from stable-state visits and at each
exacerbation visit. Quality check rejection of microarrays and interquartile
range (IQR) probes filtering across the samples returned an overall dataset
of 585 arrays (corresponding to 112 patients with COPD) and 7016 probes
(corresponding to 4420 genes).

Differential expression analysis was performed across numerous
contrasts to identify DEGs between stable and AECOPD conditions in
samples overall and also considering specific subsets of samples according to
type of infection (bacterial, viral, or eosinophilic) or to the bacterial species
present in sputum (see Supplementary Information Section 4 for a detailed
list of the contrasts considered). None of the analyses identifiedDEGs, with
the exception of the following contrasts:
1. Comparison of exacerbation samples withHi present andMcat absent

versus Hi-negative and Mcat-positive exacerbation samples;
2. Comparison of patients with Hi and Mcat co-infections with patients

without Hi or Mcat infections.

Both comparisonswere done by defining three different sets of samples
on the basis of the absence of other bacterial and viral infections, i.e., sets
with: (1) any other pathogen, any virus; (2) no other pathogen, any virus; (3)
no other pathogen, no virus. The DEGs identified are listed in Supple-
mentary Information Section 4; these lists were input in a specific GSEA for
Hallmarkmolecular signatures database (MSigDB) functional annotations,
as reported in Supplementary information section 5. These analyses high-
lighted themodulation of hememetabolism andmitotic spindle for the first
set (samples with any other pathogen, any virus), where there were con-
currentHi andMcat infections at the gene-wise level.Hememetabolismwas
also modulated when samples with alternate occurrences of Hi and Mcat
were compared.These cross signals suggestedan important linkbetween the
presence of Hi and Mcat and the modulation of genes involved in the
metabolism of heme iron-porphyrin complex and erythroblast differ-
entiation. The roles of the two infections were then dissected by the mul-
tinetwork analysis that considered Hi- and Mcat-positive samples
independently.

Communities of interacting genes identified in stable-state
COPD and at exacerbation
Functions modulated during stable COPD state and exacerbation events
were examined using GSEA and integrative MNGCD, considering the
dataset of 4420 gene transcripts passing IQR filtering across the whole
dataset.
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Fig. 1 | Overview of the analysis pipeline. aThe analysis pipeline of the microarray
measurements from blood samples obtained from 127 patients enrolled in the
AERIS study. After quality control filtering, the final dataset was composed of 585
microarray experiments corresponding to 112 patients. bA detail of the integrative
multi-network approach to identify driving COPD genes and their associated
biological functions. (§) The 14 defined multi-networks are: stable state and
exacerbation (2 multi-networks); severity of airway obstruction at stable state (3
multi-networks) and at exacerbation (3multi-networks); presence or absence of any

bacteria at stable state (2 multi-networks) and at exacerbation (2 multi-networks);
alternate occurrence of H. influenzae andM. catarrhalis infections at exacerbation
(2 multi-networks). The 14 multi-networks used to perform the six comparisons of
interest are described in detail in the Methods. COPD chronic obstructive pul-
monary disease, DEG differentially-expressed genes, GSEA gene set enrichment
analysis, IQR interquartile range, MNGCD multi-network gene community
detection, RBF radial basis function.
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The enriched gene communities identified by MNGCD and the
enriched gene sets identified by GSEA from the Hallmark MSigDB
functional annotations are summarized in Table 1. MNGCD identi-
fied gene communities associated to eight biological processes speci-
fically modulated at exacerbation and four modulated at stable state.
Three relevant processes, heme metabolism, interferon-alpha, and
interferon gamma responses, were commonly identified by GSEA
and MNGCD.

Genes identified by MNGCD in the 17 communities for exacer-
bation and stable conditions, together with enriched biological functions
from the Hallmark collection, are shown as an alluvial plot in Fig. 2. The
contents of the 17 gene communities are listed in Supplementary
Information Section 6. G2M checkpoint, E2F targets, and mitotic
spindle, which were enriched in the exacerbation dataset only, appeared
in the same community of co-regulated genes. Estrogen response and
KRAS signaling were co-regulated only in the exacerbation event, and
involved a limited number of genes.

hsa−let−7b− 5p targets, possibly in CD4+ T cells, might have a
role in exacerbation
To further characterize stable-state and exacerbation conditions, we ana-
lyzed the identified communities with the enrichment of biological func-
tions and processes annotated in three specific functional databases: the
blood transcription modules (BTMs), the targets of transcription factors
(ENCODE), and the targets ofmicroRNAs (miRTarBase). As shown in Fig.
3a, the enrichment test for targets of transcription factors showed IRF4 was
associated exclusively with one community in the stable condition (com-
munity id: ST_535), while STAT1 and STAT2 were significantly associated
with gene communities for both the stable-state and exacerbation condi-
tions. Moreover, STAT1 and STAT2 significantly targeted genes of the
community EX_532 during exacerbation, also enriched with antiviral
interferon signature and activated dendritic cells, which were not enriched
in the stable-state multi-network.

For microRNAs, there were no significant results in the stable
state, while the exacerbation gene community, EX_182, was not only
enriched with biological functions linked to cell cycle and mitotic cell
cycle in stimulated CD4+ T cells, but also substantially over-
represented targets of several microRNAs. Among these potential
regulators, as shown in Fig. 3b, the most significant was hsa−let
−7b− 5p; the Let-7 family is known to be associated with respiratory
disease, including lung cancer and COPD34–38.

The targets of microRNA hsa−let−7b− 5p and of transcription
factors NFYA, SUZ12, CTBP2, TAL1 modulate their expression
with decreasing lung function
We examined if stable-state and exacerbation conditions were linked to a
particular COPD severity stage and if limiting each analysis to a specific
severity level could lead to the identification of other regulators, previously
hidden in the stable-state and exacerbation groups overall.

For stable-state COPD in patients with moderate and very severe
airway obstruction (Global Initiative for Chronic Obstructive Lung Disease
(GOLD) grade classification, based on forced expiratory volume in 1 s
(FEV1) test39), we identified targets of microRNAs hsa−miR−4677− 3p
and hsa−miR−4679, as shown in Fig. 4a. For exacerbations in patients with
moderate COPD severity, we identified the enrichment of targets of hsa
−miR−4668− 3p, and for exacerbations in patients with severe COPD, we
identified three microRNAs: hsa−miR−4668− 3p, hsa−let−7b− 5p, and
hsa−miR−193b− 3p (Fig. 4a).

The targets of the microRNAs, hsa−miR−4668− 3p and hsa−let
−7b− 5p, were modulated significantly (p < 0.01, after Benjamini-
Hochberg (BH) correction) in the pooled exacerbation condition and not
in the stable state (Fig. 3a). Moreover, the targets of the microRNAs, hsa
−miR−4668− 3p and hsa−let−7b− 5p, were not modulated in stable
state for each airway obstruction severity level (Fig. 4a), suggesting those
microRNAs may play a role during exacerbation.

Focusing on the role of transcription factors, the targets of STAT1 and
STAT2 were modulated for each airway obstruction severity level, in
agreement with the results of the previous grouped analysis. The number of
identified transcription factors that targeted the gene communities sig-
nificantly increased with disease severity, both for stable state and exacer-
bation condition. The newly detected regulators were IRF4 (only for severe
and very severe airway obstruction at exacerbation, and severe obstruction
at stable state), NFYA (for severe airway obstruction at exacerbation),
SUZ12 (for severe and very severe airway obstruction at exacerbation and
severe at stable state), and CTBP2 (for severe and very severe at exacerba-
tion). Moreover, the targets of the transcription factor TAL1 were modu-
lated for very severe airway obstruction status, for both stable state and
exacerbation.

As shown in Fig. 4b, the targets of IRF4, STAT2, and STAT1 were
enriched in gene communities that weremodulated by interferon. The gene
community enriched with NFYA, the EXSE_182, was the same as the one
enriched with targets of hsa−miR−4668− 3p and hsa−let−7b− 5p, and
was modulated with functions connected to cell cycle and mitosis in

Table 1 | Comparison of enriched pathways and biological processes (annotated by Hallmark molecular signatures database)
between COPD stable-state and exacerbation conditions

Pathways and biological processes (Hallmark
MSigDB)

Hallmark MSigDB
systematic name

MNGCD analysis GSEA

Exacerbation, average
p value (278 samples)

Stable, average
p value 209
samples)

Exacerbation–stable contrast,
corrected p value

E2F_TARGETS M5925 10−5 NS NS

ESTROGEN_RESPONSE_LATE M5907 5•10−4 NS NS

G2M_CHECKPOINT M5901 10−7 NS NS

KRAS_SIGNALING_DN M5956 3•10−3 NS NS

MITOTIC_SPINDLE M5893 10−3 NS NS

HEME_METABOLISM M5945 6•10−3 5•10−4 3•10−3

INTERFERON_ALPHA_RESPONSE M5911 8•10−6 2•10−4 3•10−3

INTERFERON_GAMMA_RESPONSE M5913 7•10−8* 10-4* 3•10−3

ALLOGRAFT_REJECTION M5950 NS 6•10−3 NS

Results of theMNGCD analysis are reported separately for stable and exacerbation conditions, and as direct contrast for the GSEA analysis (significance p < 0.01 after Benjamini-Hochberg correction). In
theMNGCD analysis, for multiple communities enrichedwith the same Hallmark term, theminimum p value for that repetition was taken and p values of the 20 iterations were then log-averaged (details in
Supplementary Information Section 3).
COPD chronic obstructive pulmonary disease, GSEA gene set enrichment analysis,MNGCDmulti-network gene community detection,MSigDBmolecular signatures database, NS not significant.
*p value was significant in more than 80% of the iterations but floating.
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stimulated CD4+ T cells. SUZ12 was enriched together with a non-
annotated BTM in the group with severe COPD at exacerbation. However,
in the very severe condition, together with SUZ12, we identified the com-
munities enriched inmyeloid cells andmonocytes, a non-annotatedmodule
andplatelets.Concerning the transcription factorCTBP2, for the very severe
condition at exacerbation we detected, together with its targets, the
enrichment for B cell surface signature and B cells. Furthermore, for gene
communities that were enriched with targets of TAL1, there was an
enrichment with erythrocytes.

Bacterial infection in the lungs during AECOPDmodulates spe-
cific functions in the blood transcriptome
After checking for differences between exacerbation and stable conditions,
we examined the impact of bacterial infections andco-infections, as detected
in sputum samples, on the blood transcriptome during those episodes.

As shown in Table 2, modulation of E2F targets, G2M checkpoints,
mitotic spindle, estrogenic response, and KRAS signaling were found for
exacerbation with bacterial infection only. The same functions were also
enriched for the exacerbation event overall (Table 1).Moreover, as observed
before, hememetabolismsignalwas activated in all groups. Interferon-alpha
and interferon-gamma responses were activated in both bacteria-positive
and -negative groups at exacerbation and stable state in the presence of
bacterial infection only.

Haemophilus influenzae in absence ofMoraxella catarrhalis
induces modulation of hememetabolism and interferon
To examine the specific response to two bacterial pathogens, Hi and Mcat,
associated with exacerbation occurrences32, blood samples taken at

exacerbation from patients with Hi-positive and Mcat-negative sputum
samples (79 blood samples) were compared to those from patients with
Mcat-positive and Hi-negative sputum samples (20 blood samples).

Several gene communities, which were enriched with biological func-
tions that were detected at exacerbation but not in stable state, were also
present inHi-positive andMcat-negative exacerbations. In particular, of the
four gene communities that were enriched with terms present at exacer-
bation and not stable state, three were present with the same biological
functions for Hi-positive and Mcat-negative exacerbations.

As shown in Fig. 5, EX_532 was enriched with the same biological
functions as for gene communityEXHI_541,whichwas also associatedwith
antiviral interferon signature (LI.M75), activated dendritic cells (LI.M165),
and interferon (DC.M1.2) fromBTMs. For the gene set collection involving
targets of transcription factors, both communities were over-represented by
STAT1 and STAT2 targets. Also, the gene community EX_7, which was
enriched for the exacerbation group with the terms platelets (DC.M1.1),
myeloid cells, and monocytes (LI.M81), and one undetermined one
(DC.M6.14), shared these biological functions with gene community
EXHI_7, also enrichedwith cellmovement, adhesion, andplatelet activation
(LI.M30). Moreover, EX_78, which was enriched in the exacerbation group
with an undetermined biological function (DC.M7.13), had as parallel gene
community, EXHI_77, enriched with the same term.

Biological functions modulated in exacerbation but not at stable state
were not modulated in exacerbations with Mcat-positive and Hi-negative
sputum samples. Furthermore, Hi-positive and Mcat-negative exacerba-
tions showed modulation of heme metabolism, erythrocytes, and of targets
of STAT1, STAT2, and SUZ12. All these enriched communities, except
SUZ12, were enriched for each condition in the previous analyses, reflecting

Fig. 2 | Seventeen gene communities detected bymulti-network gene community
detection (MNGCD) in stable COPD and acute exacerbation visits from whole
blood transcriptomic profiling. The alluvial plot shows the relationships between
gene communities detected by MNGCD (central column) and the genes belonging
to these communities (left column) that contribute to significant enrichments of
pathways and biological processes, as collected by Hallmark database (right

column). The represented communities are those detected with a rate higher than
80% by iterating the analysis pipeline 20 times. Each color code is a different gene
community (red/orange for exacerbation multiplex, blue/green for stable-state
multiplex). ° Symbol in left column indicates genes in the core enrichment of gene set
enrichment analysis (GSEA) with the Hallmark gene-set collection. COPD, chronic
obstructive pulmonary disease.
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Table 2 |Comparisonof enrichedpathwaysandbiological processes (annotatedbyHallmarkmolecular signaturesdatabase) at
COPD stable-state and exacerbation conditions in presence or absence of bacterial infection

Pathways and biological processes
(Hallmark MSigDB)

Hallmark
MSigDB
systematic
name

Exacerbation, Bacteria-
negative, average
p value (88 samples)

Exacerbation, Bacteria-
positive, average
p value (146 samples)

Stable, Bacteria-
negative, average
p value
(63 samples)

Stable, Bacteria-
positive, average
p value
(79 samples)

E2F_TARGETS M5925 NS 10-5 NS NS

ESTROGEN_RESPONSE_EARLY M5906 NS 7•10-3 NS NS

ESTROGEN_RESPONSE_LATE M5907 NS 6•10-4 NS NS

G2M_CHECKPOINT M5901 NS 10-7 NS NS

HEME_METABOLISM M5945 5•10-4 6•10-3 5•10-4 5•10-4

INTERFERON_ALPHA_RESPONSE M5911 2•10-6* 10-6* NS 2•10-4*

INTERFERON_GAMMA_RESPONSE M5913 5•10-10* 8•10-7* NS 2•10-4*

KRAS_SIGNALING_DN M5956 NS 4•10-3* NS NS

MITOTIC_SPINDLE M5893 NS 10-3 NS NS

OXIDATIVE_PHOSPHORYLATION M5936 NS 2•10-3 NS 2•10-3

Results of the multi-network gene community detection (MNGCD) analysis reported separately for stable-state and exacerbation conditions combined with presence (positive) and absence (negative) of
bacterial infection. Thep valuesof thehypergeometric enrichment are correctedbyBenjamini-Hochbergmethod (significancep < 0.01). Formultiple communities enrichedwith the sameHallmark term, the
minimum p value for that repetition was taken and p values of the 20 iterations were then log-averaged (details in Supplementary information section 3).
COPD chronic obstructive pulmonary disease,MSigDBmolecular signatures database, NS not significant.
*p value was significant in more than 80% of the iterations but floating.
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possibly the higher prevalence of Hi in sputum samples. Moreover, the
GSEAon both the genes passing IQRfiltering and onDEGs determined the
enrichment of heme metabolism. With MNGCD, no significant result was
obtained in terms of microRNAs enrichment when comparing the two
types of infections.

Discussion
We aimed to characterize, through blood gene expression profiling, acute
exacerbations, the severity of airway obstruction, and specific respiratory
tract infections in COPD, to better understand the disease and possibly
develop a signature for stratifying COPD patients taking part in future
clinical trials.We analyzed blood gene expression data collected every six
months from stable-state visits and at all exacerbation visits over a two-
year period from 127 patients with COPD taking part in the AERIS
study32,33. Although COPD is a mainly pulmonary disease, it is also
associated with prolonged inflammation and exacerbations with sys-
temic presentations. An impact on the transcriptomic modulations of
whole blood cells was therefore expected. Despite this, our search for
significant DEGs was, for the great majority of compared conditions,
unsuccessful. This might be due to the heterogeneity that characterizes
COPD40 and to the number of tested patients in our study, which may
have been too low to overcome the false discovery rate control linked to
fold-change in gene expression. Another reason could be that whole
blood transcriptome results from the activity of many cell types, some in
low abundance, and modulations of relevant genes of specific cell types
might be diluted in the total peripheral blood transcripts. Also, our
findings are consistent with other reports of difficulties in clearly iden-
tifying DEG signatures fromwhole blood transcripts profiling associated
with other disease conditions, contributing to the recent shift in focus to
identifying networks of interacting genes associated with particular
COPD conditions13,16,40–44. Consequently, we usedMNGCD, a multilayer
gene community detection approach that integrates transcriptomic data
with other kinds of omic information21, and compared results using a
well-established functional analysis method, GSEA. This enabled us to
describe the diverse regulatory gene communities and the associated
functional modules in the different conditions of the study, rather than
examining the dependence of the results on the different layers of
interaction, which was beyond the scope of the analysis. Both approaches
are based on the coherent (correlated or anticorrelated) behavior of genes
participating in the same biological process, even if none is regulated in a
statistically significant way. Moreover, this modeling technique has
various advantages, including the simplicity to implement layers in a
unique network framework without the need to treat different kinds of
information with a different modeling formalism, and the scalability of
networkmodeling algorithms for community detection of large numbers
of samples and genes. Also, there was a need in this study to compare
transcriptomes of tens of different samples groups/conditions and a
method that allows the interchange of transcriptome layers, leaving the
other layers unchanged (that were capturing other omics interactions),
was particularly useful for the interpretation. The transcriptomic mod-
ulation was thereby captured in two layers (gene co-expression and RBF
expression similarity), which were changed (or recomputed) every time
the group of selected samples was changed to answer a given question.
When this is applied tomultiple multilayers, the result shows which gene
communities have reorganized their expression across the different
conditions. Another important advantage was the interpretability of the
identified communities that allowed their functional role and the kind of
interactions behind their structure to be identified. Finally, the network
modeling formalism allowed us to consider two aspects of the gene
expression, gene co-expression and gene RBF expression similarity, in a
unique framework, using two layers based on two different metric defi-
nitions that captured the two aspects.

The first key comparison performed was identification of tran-
scriptomic differences between patients with stable COPD and patients
with acute exacerbations, where no significant DEGs could be identified.

Through MNGCD and GSEA methods, we identified interferon-alpha
and interferon-gamma responses and heme metabolism at both
exacerbation and stable-state conditions. GSEA identified a statistically
significant difference for these functions in the contrast between samples
at stable visits and exacerbation. MNGCD revealed these functions were
activated in both stable and exacerbation conditions, but involved a
different, diverse set of genes, suggesting an important role for these
functions in COPD. In particular, the gene community enriched for the
interferon response showed a higher number of modulated genes at
exacerbation compared to stable state. Conversely, heme metabolism
was modulated in both groups but with a higher number of genes in the
stable-state dataset, as identified by bothMNGCDandGSEA.Moreover,
these functions were identified in other specific COPD conditions sug-
gesting a physiological circumstance for patients with COPD. Also, with
MNGCD, we identified different hallmark biological processes specific
for the stable-state or exacerbation condition, with a prevalence of
inflammatory and cell-cycle related pathways (mitotic spindle, G2M
checkpoint, and E2F targets) during exacerbations. With the MNGCD
approach, it was possible to identify multiple biological functions
associated with one gene community, suggesting a possible interplay of
functions via the modulation of these genes.

Withmore specific functional annotations by transcriptional regulator
targets and BTMs, an interesting gene community was identified during
exacerbations that linked the microRNA hsa−let−7b− 5p targets, mitotic
cell cycle ofCD4+Tcells, andG2Mcheckpoint andE2F target genes.One in
particularwas the interferon response in exacerbation, linked to STAT1 and
STAT2 and dendritic cells activation.

The analysis of more specific conditions related to patients with
severe obstruction at exacerbation identified significant modulation of
targets of hsa−let−7b− 5p microRNA. This finding is in agreement
with the literature for anothermember of let-7microRNA family targets,
although that analysis was performed on sputum samples from patients
with COPD45. The Let-7 family is known to be involved in cell devel-
opment and differentiation and has relationships with oncogenesis46, T
cell immunity47, and the development of lung cancer from COPD34.
Moreover, we found several transcription factors, NFYA, SUZ12,
CTBP2, and TAL1, modulated the expression of their targets with
decreasing lung function in COPDpatients, as assessed by FEV1 (GOLD
grade). These were identified in addition to STAT1 and STAT2, which
were detected in all multi-network analyses stratified by FEV1, were in
the same communities that were enriched with interferon, and have
already been associated with COPD in previous studies26,48,49. Of these
transcription factors, TAL1 is of particular interest as it was identified in
our study for very severe airway obstruction only. In both exacerbation
and stable state, TAL1was enriched together with hememetabolism and
erythrocytes. TAL1 was previously identified as the top upstream reg-
ulator of peripheral blood mononuclear cell gene expression in asthma
and was detected together with miR-486, which has been identified
previously as a potential marker of childhood asthma in plasma50. In
particular, our analysis relates the activation of a community of genes
enriched with targets of hsa−let−7b− 5p microRNA in CD4 T cell
activity in exacerbation with worsening conditions of the airways. This
finding improves our knowledge of the activity of genes specifically
associated with CD4+, CD8+ T cells in COPD patients with more severe
airway obstruction, as observed in other studies41.

Finally, we analyzed whole blood gene expression samples from
exacerbations that were positive for bacterial infection, comparing samples
positive forHi andnegative forMcatwith those thatwereMcat-positive and
Hi-negative. GSEA functional analysis of DEGs in samples containing
concurrent or alternate infections of Hi and Mcat identified a key set of
modulated genes involved in heme metabolism and erythroblast differ-
entiation. No microRNA targets were modulated in either condition, while
targets of STAT2, STAT1, and SUZ12 were modulated only with Hi pre-
sence andMcat absence. Targets of STAT2 and STAT1 were modulated in
the same communities enriched with interferon. Moreover, biological
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functions connected to heme were enriched only for Hi-positive andMcat-
negative exacerbations, suggesting specificmodulation of hememetabolism
linked to Hi infection in COPD51. The similarity between the AECOPD
condition overall and its subset of Hi-positive and Mcat-negative exacer-
bationsmight bedue to the fact that, in theAERISdataset, a largeproportion
of exacerbation sputum samples were positive for Hi32. Of 278 exacerbation
samples, 107 contained Hi and 48 contained Mcat, with or without the
presence of other pathogens. Alternatively, since heme metabolism was
modulated in almost all analyzed COPD conditions, this might reflect an
increase in oxygen carrying molecules, as COPD is linked to breathing and
oxygenation issues, but also the inflammation status,whichmaybe linked to
variations in specific enzymes like heme oxygenase-1, known to play a role
in the immune system and viral infection52.

This studywas limited, asmentioned previously, by its sample size and
also by the use of a whole blood readout to investigate the transcriptome
changes in a chronic pulmonary disease. Additionally, since the AERIS
dataset was derived from samples from COPD patients only, with no
healthy controls, it cannot be confirmed if some biological functions iden-
tified in the analyzes were specifically related to COPD. Moreover, in
principle, it would have been interesting to analyze many other conditions
or sample subsets, but not enough samples were available from the AERIS
study to conduct these investigations.

In conclusion, the shift in focus from classical detection ofDEGs to the
identification of modulated gene communities helped us to navigate the
high complexity of COPD. This approach has enhanced our comprehen-
sionof the biological functions implicated in thepathogenesis of this disease.
With an innovative integrative networkmodelingmethod for analyzing the
transcriptome, we identified biological functions and regulators that have
the potential to characterize particular COPD conditions, especially severe
obstruction of the airway during exacerbation. It would be of interest to test
ifmicroRNAs of the let-7 family can be used for the classification of patients
with severe disease or to further investigate molecular targets identified in
different pathways (such as heme) in the discovery of new drugs and
therapies. Finally, we observed that the presence of bacterial infections with
Mcat and, in particular, Hi, triggered a specific cellular and inflammatory
response inAECOPD, indicating an active reaction of the host to infections.
This supports the development of a vaccine against these specific pathogens
as a strategy for preventing exacerbations in COPD.

Methods
An overview of the procedures for analyzing gene expression in blood
samples from the AERIS study (gene expression profiling, GSEA, and
MNGCD) is shown in Fig. 1.

AERIS clinical study and ethical approval
The AERIS study was a prospective, observational cohort study based at
University Hospital Southampton, UK (ClinicalTrials.gov:
NCT01360398)32,33. In this study, 127patientswithmoderate, severe, or very
severe COPD aged 40–85 years were followed for up to 2 years, collecting
various data, including FEV1 at monthly visits and at exacerbation to
classify airway obstruction level according to GOLD grade39. Anonymized
individual participant data and study documents can be requested for fur-
ther research from www.clinicalstudydatarequest.com.

Sputum samples collected at monthly visits and at exacerbation were
analyzed for the presence of bacterial pathogens (H. influenzae, M. catar-
rhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas
aeruginosa) byDNAPCR test. Blood for gene transcript profile analysis was
collected every 6 months during the study and within 72 h of the onset of
exacerbation, resulting in 723 samples with no duplicates. The exact criteria
used for the inclusion of stable-state and exacerbation visit samples are
described in Supplementary information section 1.

TheAERIS studywas conducted in accordancewith theDeclaration of
Helsinki andGoodClinical Practice, andwas approvedby the Southampton
and South West Hampshire Research Ethics Committee. All participants
provided written informed consent.

RNA extraction, microarray hybridization, and data pre-
processing
Total RNA was extracted from the 723 PaxGene tubes and purified, as
previously described in refs. 53,54. RNA quality was assessed using a
Bioanalyzer-2100 (Agilent Technologies, CA, USA); 27 samples did not
meet the quality control (QC) criteria (RNA integrity number (RIN) > 6).
Total RNA50 ngwas used for complementaryDNA(cDNA) amplification,
fragmentation, and labeling using the Ovation whole blood kit (NuGEN,
CA, USA). Fragmented cDNA was hybridized using hgu133 Plus2.0 Gen-
eChip (Affymetrix, CA, USA; 54675 probe-sets, including long non-coding
RNA and microRNAs, as shown in several works55–58). Microarrays failing
initial pre-definedQC criteria (glyceraldehyde 3-phosphate dehydrogenase
ratio < 2.5 and scale factor < 8) were repeated in two follow-up batches.
Therefore, 1134 microarrays were generated, corresponding to 696 whole
blood sampleswith technical, but not biological, replicates. The screening of
arrays by standard QC metrics was applied to reject slides not passing QC
metrics thresholds (described in Supplementary Information Section 2).
Raw data were then normalized with Robust Multi-array Average (RMA)
with the help of probe sequence and with GC-content background cor-
rection method (GCRMA R package v2.42.0), log2-transformed and IQR-
filtered, taking those probes with IQR > 0.75. We then averaged the
expression of probe sets referring to the same gene.

Whole blood transcriptome analysis
The IQR-filtered and probe-averaged transcript profiles were the input for
the three parallel analysis pipelines written in R, namely the computation of
significant DEGs in specific COPD conditions (Limma R package v3.34),
the GSEA11 (clusterProfiler R package v3.6) and the MNGCD pipeline21

(based on an ad hoc R script to wrap the Infomap software v0.x execution),
as depicted in Fig. 1. In theMNGCDpipeline, we integrated the community
detectionby Infomapwith a consensus robustness two-level step assessment
by averaging the results of the stochastic algorithm across 100 iterations
repeated 20 times. Details of the MNGCD pipeline are described in Sup-
plementary information section 3.

The aim of the GSEA andMNGCD analyses was to identify biological
functions that were modulated in certain COPD conditions/subsets of
samples.

GSEA, which requires a contrast between two diverse conditions, was
extensively applied in our analysis (as detailed in Supplementary Infor-
mation Section 5). Here we report the results of the following comparisons
of interest, that can also be compared to MNGCD results:
• Exacerbation versus stable state;
• Presence versus absence of any bacteria in sputumduring exacerbation

and at stable state;
• Exacerbations with presence in sputum of Hi and absence of Mcat

versus exacerbations with Mcat presence and Hi absence.

MNGCDwas applied if a minimum of 20 samples per condition were
available21. For this reason,we considered14COPDconditions/subsetswith
enough samples for six comparisons of interest defined as follows:
• AECOPD: visits at (1) exacerbation and (2) stable state;
• Severity of airway obstruction at exacerbation: (3)moderate, (4) severe,

and (5) very severe, according to FEV1 GOLD grade;
• Severity of airway obstruction at stable state: (6) moderate, (7) severe,

and (8) very severe, according to FEV1 GOLD grade;
• (9) Presence or (10) absence of any bacterial infection in sputum

sample at exacerbation;
• (11) Presence or (12) absence of any bacterial infection in sputum

sample at stable state;
• (13) Exacerbations with presence of Hi and absence of Mcat, or (14)

exacerbations with presence of Mcat and absence of Hi.

Therefore, as shown inFig. 1a,we built 14multi-networks, one for each
COPD condition/subset of samples. We integrated gene expression data
from the AERIS study for each selected condition with different layers of
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omics information, embodying experimentally validated interactions, as
described in detail in Supplementary Information Section 3. In brief, the
network layers in each multi-network were:
• A gene co-expression network and an RBF expression similarity

network, both based on the gene expression microarray data of
this study;

• A transcription factor co-targeting network, from ENCODE experi-
mentally validated interactions59;

• A microRNA co-targeting network from experimentally validated
interactions by different assays and collected in miRTarBase database
release 7.060;

• A binary human protein-protein interaction network based only on
experimentally validated interactions taken from the public database
APID (Agile Proteins Interactomes DataServer)61.

Once the COPD conditions to be considered were defined and the
corresponding samples were identified, only the first two network layers
(gene co-expression network and RBF expression similarity network)
captured information about gene expression from theAERIS study samples.
The remaining three layers were defined a priori and not dependent on the
considered samples/condition, acting as a filter for the interactions in the
expression networks by excluding mere correlations21.

The identified communities can group together genes cooperating in
relevant biological pathways/functions for the analyzed COPD condition.
Therefore, we used the hypergeometric test (p < 0.01 after BH correction) to
assess the over-representation in each community of biological functions
defined by the Hallmark biological functions gene-set collection
(MSigDB)62, the BTMs63,64 and the databases used to build the transcription
factors and microRNAs networks59,60. Moreover, for greater confidence in
the detected communities, the only enrichments keptwere those detected in
the consensus clustering with a rate higher than 80%, iterating the entire
algorithm 20 times.

Finally, we also searched for significant DEGs in whole blood, com-
paring exacerbation and stable state, frequency of exacerbation episodes,
different severities of airway obstruction, and presence versus absence of
viruses and bacteria in sputum samples. Different Limma regressionmodels
were applied depending on the biological question (see Supplementary
information section 4). Each regressionmodel applied a false discovery rate
threshold of 0.05.

Data availability
Anonymized individual participant data and study documents can be
requested for further research from www.clinicalstudydatarequest.com.

Code availability
Codes can be requested for further research from www.
clinicalstudydatarequest.com. An example of the scripts executed to per-
form the randomwalk clusteringby Infomapand the enrichment analyses is
available at https://github.com/muzzial1/MNGCD_for_COPD.
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