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An integrative network-based approach to
identify driving gene communities in
chronic obstructive pulmonary disease
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Chronic obstructive pulmonary disease (COPD) is an etiologically complex disease characterized by
acute exacerbations and stable phases. We aimed to identify biological functions modulated in
specific COPD conditions, using whole blood samples collected in the AERIS clinical study

(NCT01360398). Considered conditions were exacerbation onset, severity of airway obstruction, and
presence of respiratory pathogens in sputum samples. With an integrative multi-network gene
community detection (MNGCD) approach, we analyzed expression profiles to identify communities of
correlated genes. The approach combined different layers of gene interactions for each explored
condition/subset of samples: gene expression similarity, protein-protein interactions, transcription
factors, and microRNAs validated regulons. Heme metabolism, interferon-alpha, and interferon-
gamma pathways were modulated in patients at both exacerbation and stable-state visits, but with the
involvement of distinct sets of genes. An important gene community was enriched with G2M
checkpoint, E2F targets, and mitotic spindle pathways during exacerbation. Targets of TAL1 regulator
and hsa—let—7b — 5p microRNA were modulated with increasing severity of airway obstruction.
Bacterial infections with Moraxella catarrhalis and, particularly, Haemophilus influenzae triggered a
specific cellular and inflammatory response in acute exacerbations, indicating an active reaction of the
host to infections. In conclusion, COPD is a complex multifactorial disease that requires in-depth
investigations of its causes and features during its evolution and whole blood transcriptome profiling
can contribute to capturing some relevant regulatory mechanisms associated with this disease. In this
work, we explored multi-network modeling that integrated diverse layers of regulatory gene networks
and enhanced our comprehension of the biological functions implicated in the COPD pathogenesis.

Chronic obstructive pulmonary disease (COPD) is a complex disease
characterized by inflammation of the airways and pulmonary parenchymal
disruption, with progressive and irreversible airflow obstruction over time'.
The most common respiratory symptoms are dyspnea, cough, and sputum
production, and patients generally experience periods of stable chronic
inflammation alternating with acute exacerbations of COPD (AECOPD) or
transient periods of aggravated symptoms requiring additional medical
treatment. The disease and, particularly, exacerbations can be triggered by
different agents, including bacterial and viral infections or inhaled

particles™. Current treatment relies on bronchodilators, corticosteroids,
and, when necessary, oxygen and antibiotics'. Moreover, influenza and
pneumococcal vaccinations reduce the risk of exacerbations®, supporting
the development of new vaccines against other respiratory pathogens that
may trigger AECOPD.

While the primary site of illness is the lung, with different levels of
airway obstruction determining COPD severity', additional systemic
inflammation, metabolic alterations, and skeletal muscle dysfunction make
COPD a systemic disease”. Consequently, various studies have used blood
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transcriptome profiling to retrieve information about host response and
disease evolution, such as the attempt to identify systemic biomarkers for
AECOPD via the evaluation of specific genes, pathways, and gene modules’,
or genes and pathways linked to inflammation, the immune system, and
ceramide metabolism’, but no single biomarker has gained wide
acceptance'’. A meta-analysis of lung tissue gene expression data from
different studies, which used Gene Set Enrichment Analysis (GSEA) to rank
genes according to their differential expression'’, showed the same biolo-
gical functions linked to COPD despite largely non-overlapping lists of
differentially-expressed genes (DEGs)". Subsequently, Morrow et al.
showed that the expression of individual genes in whole blood was not
significantly associated with the frequency of exacerbations but, with net-
work modeling methods, a statistically significant community of co-
expressed genes was identified related to exacerbation frequency'”. Similarly,
in a meta-analysis of two observational studies of patients with COPD,
COPDGene', and ECLIPSE", Reinhold et al. identified communities of co-
expressed genes in blood associated with airflow obstruction, emphysema,
immune response, and with genes specific for natural killer cells, dendritic
cells, and neutrophils'.

Overall, these studies suggest that the complexity of COPD is reflected
on mRNA transcripts modulated in whole blood of patients in a non-trivial
way, and not described by simple single-gene signatures. Pathways and gene
modules appear to better capture the disease features, playing a more relevant
role in the description of COPD evolution. Due to these observations and
similarities with other complex diseases and systemic biology networks" ™,
we explored whole blood transcriptomic data from COPD patients, using
multi-omic integrative methods based on network modeling to identify gene
communities that interact in a complex and articulated way, while removing
apparent noisy signals™. Specifically, we followed the rationale used by
Cantini and colleagues for the identification of the driver gene in different
cancer types”' and used multilayer network modeling of the gene interactions
to describe the signaling and regulatory network of the immune system at a
whole blood level during the evolution of COPD. As shown by Cantini et al. *
and other comprehensive studies™, the approach has the advantage to more
realistically represent the interactions exhibited in complex regulatory pro-
cesses, for example in the evolution of cancer or other systemic diseases,
compared to the simple observation of gene expression similarities and the
consequent identification of clusters of co-expressed genes. In fact, these
regulatory pathways are controlled at transcriptional and post-transcriptional
levels and their alteration often involves modified expression levels of genes
that are at the same time partners in a protein-protein interaction” and
targeted by the same set of transcription factors” and microRNAs”. These
interactions were modeled in our multilayer network-based analysis, in which
genes are considered interactors in a network subdivided in multiple layers,
with each layer representing a specific kind of gene-gene interaction, such as
protein-protein interactions, transcription factor co-targeting networks, and
microRNA co-targeting networks (Fig. 1). These layers are defined a priori
since they model biological processes and interactions collected from public
reference databases. To this stack of layers, two further layers are added,
representing the actual co-expression network derived from whole blood
transcriptomic data of COPD patients in each specific explored ‘condition’ or
subset of samples, thus modeling different multi-layer networks for each
explored condition (Fig. 1a). This enables the consideration of two aspects of
gene expression, gene expression profiles correlation (co-expression) and
gene expression level similarity (radial basis function (RBF) expression
similarity), with results that are relatively simple to interpret. Because of this,
and because multilayer integrative techniques have recently showed very
informative results, particularly in cancer research®*****, multilayer clus-
tering was selected over other forms of data integration.

Finally, we aimed to analyze these multi-layer networks using multi-
network gene community detection (MNGCD) method”, based on the
partition of maps of information algorithm®, to identify subnetworks of
strongly interacting genes (‘gene communities’), which were then char-
acterized for enrichment with annotated biological functions or sets of reg-
ulons (Fig. 1b).

The blood sample and clinical data considered in this work were col-
lected in the Acute Exacerbation and Respiratory InfectionS in COPD
(AERIS) observational cohort study of 127 patients with COPD’**”. Patients
were followed for up to 2 years via monthly study visits, when patients had
stable COPD symptoms, and additional visits when patients experienced
exacerbation events. A complete description of the COPD evolution,
together with exacerbation frequency and severity, have been reported”; the
mean exacerbation rate was 3.04 per patient-year and most exacerbations
(85.6%) were moderate in severity. Results from the AERIS cohort revealed
the most common bacterial species associated with AECOPD were Hae-
mophilus influenzae (Hi) and Moraxella catarrhalis (Mcat), and the most
common virus was rhinovirus, with a higher rate of bacterial and viral
coinfection at exacerbation than stable state, and a dependence with
seasonality””. Analysis of lung microbiome diversity in the same patients
also revealed that stability over time was more likely to decrease at exacer-
bation and in individuals with higher exacerbation frequencies’. These
observations led us to conduct further assessments to better understand the
association of bacterial and viral infections and worsening of COPD
symptoms at a systemic level, in particular, in relation to the whole blood
transcriptome of patients with COPD.

Results

Differentially-expressed genes across different conditions

Gene expression data were analyzed using blood samples collected during
the AERIS study every six months from stable-state visits and at each
exacerbation visit. Quality check rejection of microarrays and interquartile
range (IQR) probes filtering across the samples returned an overall dataset
of 585 arrays (corresponding to 112 patients with COPD) and 7016 probes
(corresponding to 4420 genes).

Differential expression analysis was performed across numerous
contrasts to identify DEGs between stable and AECOPD conditions in
samples overall and also considering specific subsets of samples according to
type of infection (bacterial, viral, or eosinophilic) or to the bacterial species
present in sputum (see Supplementary Information Section 4 for a detailed
list of the contrasts considered). None of the analyses identified DEGs, with
the exception of the following contrasts:

1. Comparison of exacerbation samples with Hi present and Mcat absent
versus Hi-negative and Mcat-positive exacerbation samples;

2. Comparison of patients with Hi and Mcat co-infections with patients
without Hi or Mcat infections.

Both comparisons were done by defining three different sets of samples
on the basis of the absence of other bacterial and viral infections, i.e., sets
with: (1) any other pathogen, any virus; (2) no other pathogen, any virus; (3)
no other pathogen, no virus. The DEGs identified are listed in Supple-
mentary Information Section 4; these lists were input in a specific GSEA for
Hallmark molecular signatures database (MSigDB) functional annotations,
as reported in Supplementary information section 5. These analyses high-
lighted the modulation of heme metabolism and mitotic spindle for the first
set (samples with any other pathogen, any virus), where there were con-
current Hiand Mcat infections at the gene-wise level. Heme metabolism was
also modulated when samples with alternate occurrences of Hi and Mcat
were compared. These cross signals suggested an important link between the
presence of Hi and Mcat and the modulation of genes involved in the
metabolism of heme iron-porphyrin complex and erythroblast differ-
entiation. The roles of the two infections were then dissected by the mul-
tinetwork analysis that considered Hi- and Mcat-positive samples
independently.

Communities of interacting genes identified in stable-state
COPD and at exacerbation

Functions modulated during stable COPD state and exacerbation events
were examined using GSEA and integrative MNGCD, considering the
dataset of 4420 gene transcripts passing IQR filtering across the whole
dataset.
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Fig. 1 | Overview of the analysis pipeline. a The analysis pipeline of the microarray
measurements from blood samples obtained from 127 patients enrolled in the
AERIS study. After quality control filtering, the final dataset was composed of 585
microarray experiments corresponding to 112 patients. b A detail of the integrative
multi-network approach to identify driving COPD genes and their associated
biological functions. (§) The 14 defined multi-networks are: stable state and
exacerbation (2 multi-networks); severity of airway obstruction at stable state (3
multi-networks) and at exacerbation (3 multi-networks); presence or absence of any

< o: co-expression network

< B:RBF expression similarity network

4 Y:transcription factor co-targeting
network

< §: microRNA co-targeting network

< g:human protein-protein interaction

Hypergeometric test to establish
if genes in each community are
significantly associated to a
functionally annotated gene set

bacteria at stable state (2 multi-networks) and at exacerbation (2 multi-networks);
alternate occurrence of H. influenzae and M. catarrhalis infections at exacerbation
(2 multi-networks). The 14 multi-networks used to perform the six comparisons of
interest are described in detail in the Methods. COPD chronic obstructive pul-
monary disease, DEG differentially-expressed genes, GSEA gene set enrichment
analysis, IQR interquartile range, MNGCD multi-network gene community
detection, RBF radial basis function.
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Table 1 | Comparison of enriched pathways and biological processes (annotated by Hallmark molecular signatures database)

between COPD stable-state and exacerbation conditions

Pathways and biological processes (Hallmark Hallmark MSigDB

MNGCD analysis

GSEA

MSigDB) systematic name Exacerbation, average Stable, average Exacerbation-stable contrast,
p value (278 samples) p value 209 corrected p value
samples)

E2F_TARGETS M5925 10°° NS NS
ESTROGEN_RESPONSE_LATE M5907 5¢10°* NS NS
G2M_CHECKPOINT M5901 1077 NS NS
KRAS_SIGNALING_DN M5956 3¢10°3 NS NS
MITOTIC_SPINDLE M5893 107 NS NS
HEME_METABOLISM M5945 6e10°° 5¢10°* 301078
INTERFERON_ALPHA_RESPONSE M5911 8e10°° 2¢10°* 301078
INTERFERON_GAMMA_RESPONSE M5913 7010 % 104 3¢10°°
ALLOGRAFT_REJECTION M5950 NS 6e10°° NS

Results of the MNGCD analysis are reported separately for stable and exacerbation conditions, and as direct contrast for the GSEA analysis (significance p < 0.01 after Benjamini-Hochberg correction). In
the MNGCD analysis, for multiple communities enriched with the same Hallmark term, the minimum p value for that repetition was taken and p values of the 20 iterations were then log-averaged (details in

Supplementary Information Section 3).

COPD chronic obstructive pulmonary disease, GSEA gene set enrichment analysis, MNGCD multi-network gene community detection, MSigDB molecular signatures database, NS not significant.

*p value was significant in more than 80% of the iterations but floating.

The enriched gene communities identified by MNGCD and the
enriched gene sets identified by GSEA from the Hallmark MSigDB
functional annotations are summarized in Table 1. MNGCD identi-
fied gene communities associated to eight biological processes speci-
fically modulated at exacerbation and four modulated at stable state.
Three relevant processes, heme metabolism, interferon-alpha, and
interferon gamma responses, were commonly identified by GSEA
and MNGCD.

Genes identified by MNGCD in the 17 communities for exacer-
bation and stable conditions, together with enriched biological functions
from the Hallmark collection, are shown as an alluvial plot in Fig. 2. The
contents of the 17 gene communities are listed in Supplementary
Information Section 6. G2M checkpoint, E2F targets, and mitotic
spindle, which were enriched in the exacerbation dataset only, appeared
in the same community of co-regulated genes. Estrogen response and
KRAS signaling were co-regulated only in the exacerbation event, and
involved a limited number of genes.

hsa—let—7b — 5p targets, possibly in CD4" T cells, might have a
role in exacerbation

To further characterize stable-state and exacerbation conditions, we ana-
lyzed the identified communities with the enrichment of biological func-
tions and processes annotated in three specific functional databases: the
blood transcription modules (BTMs), the targets of transcription factors
(ENCODE), and the targets of microRNAs (miRTarBase). As shown in Fig.
3a, the enrichment test for targets of transcription factors showed IRF4 was
associated exclusively with one community in the stable condition (com-
munity id: ST_535), while STAT1 and STAT2 were significantly associated
with gene communities for both the stable-state and exacerbation condi-
tions. Moreover, STAT1 and STAT?2 significantly targeted genes of the
community EX_532 during exacerbation, also enriched with antiviral
interferon signature and activated dendritic cells, which were not enriched
in the stable-state multi-network.

For microRNAs, there were no significant results in the stable
state, while the exacerbation gene community, EX_182, was not only
enriched with biological functions linked to cell cycle and mitotic cell
cycle in stimulated CD4" T cells, but also substantially over-
represented targets of several microRNAs. Among these potential
regulators, as shown in Fig. 3b, the most significant was hsa—let
—7b — 5p; the Let-7 family is known to be associated with respiratory
disease, including lung cancer and COPD**.

The targets of microRNA hsa—let—7b — 5p and of transcription
factors NFYA, SUZ12, CTBP2, TAL1 modulate their expression
with decreasing lung function

We examined if stable-state and exacerbation conditions were linked to a
particular COPD severity stage and if limiting each analysis to a specific
severity level could lead to the identification of other regulators, previously
hidden in the stable-state and exacerbation groups overall.

For stable-state COPD in patients with moderate and very severe
airway obstruction (Global Initiative for Chronic Obstructive Lung Disease
(GOLD) grade classification, based on forced expiratory volume in 1s
(FEV1) test”), we identified targets of microRNAs hsa—miR—4677 — 3p
and hsa—miR—4679, as shown in Fig. 4a. For exacerbations in patients with
moderate COPD severity, we identified the enrichment of targets of hsa
—miR—4668 — 3p, and for exacerbations in patients with severe COPD, we
identified three microRNAs: hsa—miR—4668 — 3p, hsa—let—7b — 5p, and
hsa—miR—193b — 3p (Fig. 4a).

The targets of the microRNAs, hsa—miR—4668 — 3p and hsa—let
—7b —5p, were modulated significantly (p<0.01, after Benjamini-
Hochberg (BH) correction) in the pooled exacerbation condition and not
in the stable state (Fig. 3a). Moreover, the targets of the microRNAs, hsa
—miR—4668 — 3p and hsa—let—7b — 5p, were not modulated in stable
state for each airway obstruction severity level (Fig. 4a), suggesting those
microRNAs may play a role during exacerbation.

Focusing on the role of transcription factors, the targets of STAT1 and
STAT2 were modulated for each airway obstruction severity level, in
agreement with the results of the previous grouped analysis. The number of
identified transcription factors that targeted the gene communities sig-
nificantly increased with disease severity, both for stable state and exacer-
bation condition. The newly detected regulators were IRF4 (only for severe
and very severe airway obstruction at exacerbation, and severe obstruction
at stable state), NFYA (for severe airway obstruction at exacerbation),
SUZ12 (for severe and very severe airway obstruction at exacerbation and
severe at stable state), and CTBP2 (for severe and very severe at exacerba-
tion). Moreover, the targets of the transcription factor TAL1 were modu-
lated for very severe airway obstruction status, for both stable state and
exacerbation.

As shown in Fig. 4b, the targets of IRF4, STAT2, and STAT1 were
enriched in gene communities that were modulated by interferon. The gene
community enriched with NFYA, the EXSE_182, was the same as the one
enriched with targets of hsa—miR—4668 — 3p and hsa—let—7b — 5p, and
was modulated with functions connected to cell cycle and mitosis in
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to these communities (left column) that contribute to significant enrichments of
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stimulated CD4" T cells. SUZ12 was enriched together with a non-
annotated BTM in the group with severe COPD at exacerbation. However,
in the very severe condition, together with SUZ12, we identified the com-
munities enriched in myeloid cells and monocytes, a non-annotated module
and platelets. Concerning the transcription factor CTBP2, for the very severe
condition at exacerbation we detected, together with its targets, the
enrichment for B cell surface signature and B cells. Furthermore, for gene
communities that were enriched with targets of TALI, there was an
enrichment with erythrocytes.

Bacterial infection in the lungs during AECOPD modulates spe-
cific functions in the blood transcriptome

After checking for differences between exacerbation and stable conditions,
we examined the impact of bacterial infections and co-infections, as detected
in sputum samples, on the blood transcriptome during those episodes.

As shown in Table 2, modulation of E2F targets, G2M checkpoints,
mitotic spindle, estrogenic response, and KRAS signaling were found for
exacerbation with bacterial infection only. The same functions were also
enriched for the exacerbation event overall (Table 1). Moreover, as observed
before, heme metabolism signal was activated in all groups. Interferon-alpha
and interferon-gamma responses were activated in both bacteria-positive
and -negative groups at exacerbation and stable state in the presence of
bacterial infection only.

Haemophilus influenzae in absence of Moraxella catarrhalis
induces modulation of heme metabolism and interferon

To examine the specific response to two bacterial pathogens, Hi and Mcat,
associated with exacerbation occurrences”, blood samples taken at

exacerbation from patients with Hi-positive and Mcat-negative sputum
samples (79 blood samples) were compared to those from patients with
Mcat-positive and Hi-negative sputum samples (20 blood samples).

Several gene communities, which were enriched with biological func-
tions that were detected at exacerbation but not in stable state, were also
present in Hi-positive and Mcat-negative exacerbations. In particular, of the
four gene communities that were enriched with terms present at exacer-
bation and not stable state, three were present with the same biological
functions for Hi-positive and Mcat-negative exacerbations.

As shown in Fig. 5, EX_532 was enriched with the same biological
functions as for gene community EXHI_541, which was also associated with
antiviral interferon signature (LLM?75), activated dendritic cells (L1.M165),
and interferon (DC.M1.2) from BTMs. For the gene set collection involving
targets of transcription factors, both communities were over-represented by
STAT1 and STAT?2 targets. Also, the gene community EX_7, which was
enriched for the exacerbation group with the terms platelets (DC.M1.1),
myeloid cells, and monocytes (LLM81), and one undetermined one
(DC.M6.14), shared these biological functions with gene community
EXHI_7, also enriched with cell movement, adhesion, and platelet activation
(L1.M30). Moreover, EX_78, which was enriched in the exacerbation group
with an undetermined biological function (DC.M7.13), had as parallel gene
community, EXHI_77, enriched with the same term.

Biological functions modulated in exacerbation but not at stable state
were not modulated in exacerbations with Mcat-positive and Hi-negative
sputum samples. Furthermore, Hi-positive and Mcat-negative exacerba-
tions showed modulation of heme metabolism, erythrocytes, and of targets
of STATI, STAT2, and SUZI12. All these enriched communities, except
SUZ12, were enriched for each condition in the previous analyses, reflecting
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Table 2| Comparison of enriched pathways and biological processes (annotated by Hallmark molecular signatures database) at
COPD stable-state and exacerbation conditions in presence or absence of bacterial infection

Pathways and biological processes Hallmark Exacerbation, Bacteria- Exacerbation, Bacteria- Stable, Bacteria- Stable, Bacteria-
(Hallmark MSigDB) MSigDB negative, average positive, average negative, average positive, average

systematic p value (88 samples) p value (146 samples) p value p value

name (63 samples) (79 samples)
E2F_TARGETS M5925 NS 10° NS NS
ESTROGEN_RESPONSE_EARLY M5906 NS 70107 NS NS
ESTROGEN_RESPONSE_LATE M5907 NS 6e10™ NS NS
G2M_CHECKPOINT M5901 NS 107 NS NS
HEME_METABOLISM M5945 5010 610° 5010 5¢10*
INTERFERON_ALPHA_RESPONSE M5911 2010 10 NS 20107
INTERFERON_GAMMA_RESPONSE M5913 510710 8e107* NS 2e107*
KRAS_SIGNALING_DN M5956 NS 401073 NS NS
MITOTIC_SPINDLE M5893 NS 10 NS NS
OXIDATIVE_PHOSPHORYLATION M5936 NS 2¢10° NS 2¢10°

Results of the multi-network gene community detection (MNGCD) analysis reported separately for stable-state and exacerbation conditions combined with presence (positive) and absence (negative) of
bacterial infection. The p values of the hypergeometric enrichment are corrected by Benjamini-Hochberg method (significance p < 0.01). For multiple communities enriched with the same Hallmark term, the
minimum p value for that repetition was taken and p values of the 20 iterations were then log-averaged (details in Supplementary information section 3).

COPD chronic obstructive pulmonary disease, MSigDB molecular signatures database, NS not significant.

*p value was significant in more than 80% of the iterations but floating.
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possibly the higher prevalence of Hi in sputum samples. Moreover, the
GSEA on both the genes passing IQR filtering and on DEGs determined the
enrichment of heme metabolism. With MNGCD, no significant result was
obtained in terms of microRNAs enrichment when comparing the two
types of infections.

Discussion
We aimed to characterize, through blood gene expression profiling, acute
exacerbations, the severity of airway obstruction, and specific respiratory
tract infections in COPD, to better understand the disease and possibly
develop a signature for stratifying COPD patients taking part in future
clinical trials. We analyzed blood gene expression data collected every six
months from stable-state visits and at all exacerbation visits over a two-
year period from 127 patients with COPD taking part in the AERIS
study’>”. Although COPD is a mainly pulmonary disease, it is also
associated with prolonged inflammation and exacerbations with sys-
temic presentations. An impact on the transcriptomic modulations of
whole blood cells was therefore expected. Despite this, our search for
significant DEGs was, for the great majority of compared conditions,
unsuccessful. This might be due to the heterogeneity that characterizes
COPD™ and to the number of tested patients in our study, which may
have been too low to overcome the false discovery rate control linked to
fold-change in gene expression. Another reason could be that whole
blood transcriptome results from the activity of many cell types, some in
low abundance, and modulations of relevant genes of specific cell types
might be diluted in the total peripheral blood transcripts. Also, our
findings are consistent with other reports of difficulties in clearly iden-
tifying DEG signatures from whole blood transcripts profiling associated
with other disease conditions, contributing to the recent shift in focus to
identifying networks of interacting genes associated with particular
COPD conditions'*'******, Consequently, we used MNGCD, a multilayer
gene community detection approach that integrates transcriptomic data
with other kinds of omic information”, and compared results using a
well-established functional analysis method, GSEA. This enabled us to
describe the diverse regulatory gene communities and the associated
functional modules in the different conditions of the study, rather than
examining the dependence of the results on the different layers of
interaction, which was beyond the scope of the analysis. Both approaches
are based on the coherent (correlated or anticorrelated) behavior of genes
participating in the same biological process, even if none is regulated in a
statistically significant way. Moreover, this modeling technique has
various advantages, including the simplicity to implement layers in a
unique network framework without the need to treat different kinds of
information with a different modeling formalism, and the scalability of
network modeling algorithms for community detection of large numbers
of samples and genes. Also, there was a need in this study to compare
transcriptomes of tens of different samples groups/conditions and a
method that allows the interchange of transcriptome layers, leaving the
other layers unchanged (that were capturing other omics interactions),
was particularly useful for the interpretation. The transcriptomic mod-
ulation was thereby captured in two layers (gene co-expression and RBF
expression similarity), which were changed (or recomputed) every time
the group of selected samples was changed to answer a given question.
When this is applied to multiple multilayers, the result shows which gene
communities have reorganized their expression across the different
conditions. Another important advantage was the interpretability of the
identified communities that allowed their functional role and the kind of
interactions behind their structure to be identified. Finally, the network
modeling formalism allowed us to consider two aspects of the gene
expression, gene co-expression and gene RBF expression similarity, in a
unique framework, using two layers based on two different metric defi-
nitions that captured the two aspects.

The first key comparison performed was identification of tran-
scriptomic differences between patients with stable COPD and patients
with acute exacerbations, where no significant DEGs could be identified.

Through MNGCD and GSEA methods, we identified interferon-alpha
and interferon-gamma responses and heme metabolism at both
exacerbation and stable-state conditions. GSEA identified a statistically
significant difference for these functions in the contrast between samples
at stable visits and exacerbation. MNGCD revealed these functions were
activated in both stable and exacerbation conditions, but involved a
different, diverse set of genes, suggesting an important role for these
functions in COPD. In particular, the gene community enriched for the
interferon response showed a higher number of modulated genes at
exacerbation compared to stable state. Conversely, heme metabolism
was modulated in both groups but with a higher number of genes in the
stable-state dataset, as identified by both MNGCD and GSEA. Moreover,
these functions were identified in other specific COPD conditions sug-
gesting a physiological circumstance for patients with COPD. Also, with
MNGCD, we identified different hallmark biological processes specific
for the stable-state or exacerbation condition, with a prevalence of
inflammatory and cell-cycle related pathways (mitotic spindle, G2ZM
checkpoint, and E2F targets) during exacerbations. With the MNGCD
approach, it was possible to identify multiple biological functions
associated with one gene community, suggesting a possible interplay of
functions via the modulation of these genes.

With more specific functional annotations by transcriptional regulator
targets and BTMs, an interesting gene community was identified during
exacerbations that linked the microRNA hsa—let—7b — 5p targets, mitotic
cell cycle of CD4" T cells, and G2M checkpoint and E2F target genes. One in
particular was the interferon response in exacerbation, linked to STAT1 and
STAT?2 and dendritic cells activation.

The analysis of more specific conditions related to patients with
severe obstruction at exacerbation identified significant modulation of
targets of hsa—let—7b — 5p microRNA. This finding is in agreement
with theliterature for another member of let-7 microRNA family targets,
although that analysis was performed on sputum samples from patients
with COPD*. The Let-7 family is known to be involved in cell devel-
opment and differentiation and has relationships with oncogenesis*, T
cell immunity”, and the development of lung cancer from COPD™.
Moreover, we found several transcription factors, NFYA, SUZI12,
CTBP2, and TALIl, modulated the expression of their targets with
decreasing lung function in COPD patients, as assessed by FEV1 (GOLD
grade). These were identified in addition to STAT1 and STAT2, which
were detected in all multi-network analyses stratified by FEV1, were in
the same communities that were enriched with interferon, and have
already been associated with COPD in previous studies****. Of these
transcription factors, TALI is of particular interest as it was identified in
our study for very severe airway obstruction only. In both exacerbation
and stable state, TAL1 was enriched together with heme metabolism and
erythrocytes. TAL1 was previously identified as the top upstream reg-
ulator of peripheral blood mononuclear cell gene expression in asthma
and was detected together with miR-486, which has been identified
previously as a potential marker of childhood asthma in plasma™. In
particular, our analysis relates the activation of a community of genes
enriched with targets of hsa—let—7b — 5p microRNA in CD4 T cell
activity in exacerbation with worsening conditions of the airways. This
finding improves our knowledge of the activity of genes specifically
associated with CD4", CD8" T cells in COPD patients with more severe
airway obstruction, as observed in other studies'.

Finally, we analyzed whole blood gene expression samples from
exacerbations that were positive for bacterial infection, comparing samples
positive for Hi and negative for Mcat with those that were Mcat-positive and
Hi-negative. GSEA functional analysis of DEGs in samples containing
concurrent or alternate infections of Hi and Mcat identified a key set of
modulated genes involved in heme metabolism and erythroblast differ-
entiation. No microRNA targets were modulated in either condition, while
targets of STAT2, STAT1, and SUZ12 were modulated only with Hi pre-
sence and Mcat absence. Targets of STAT2 and STAT1 were modulated in
the same communities enriched with interferon. Moreover, biological
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functions connected to heme were enriched only for Hi-positive and Mcat-
negative exacerbations, suggesting specific modulation of heme metabolism
linked to Hi infection in COPD’". The similarity between the AECOPD
condition overall and its subset of Hi-positive and Mcat-negative exacer-
bations might be due to the fact that, in the AERIS dataset, a large proportion
of exacerbation sputum samples were positive for Hi*”. Of 278 exacerbation
samples, 107 contained Hi and 48 contained Mcat, with or without the
presence of other pathogens. Alternatively, since heme metabolism was
modulated in almost all analyzed COPD conditions, this might reflect an
increase in oxygen carrying molecules, as COPD is linked to breathing and
oxygenation issues, but also the inflammation status, which may be linked to
variations in specific enzymes like heme oxygenase-1, known to play a role
in the immune system and viral infection™.

This study was limited, as mentioned previously, by its sample size and
also by the use of a whole blood readout to investigate the transcriptome
changes in a chronic pulmonary disease. Additionally, since the AERIS
dataset was derived from samples from COPD patients only, with no
healthy controls, it cannot be confirmed if some biological functions iden-
tified in the analyzes were specifically related to COPD. Moreover, in
principle, it would have been interesting to analyze many other conditions
or sample subsets, but not enough samples were available from the AERIS
study to conduct these investigations.

In conclusion, the shift in focus from classical detection of DEGs to the
identification of modulated gene communities helped us to navigate the
high complexity of COPD. This approach has enhanced our comprehen-
sion of the biological functions implicated in the pathogenesis of this disease.
With an innovative integrative network modeling method for analyzing the
transcriptome, we identified biological functions and regulators that have
the potential to characterize particular COPD conditions, especially severe
obstruction of the airway during exacerbation. It would be of interest to test
if microRNAs of the let-7 family can be used for the classification of patients
with severe disease or to further investigate molecular targets identified in
different pathways (such as heme) in the discovery of new drugs and
therapies. Finally, we observed that the presence of bacterial infections with
Mcat and, in particular, Hi, triggered a specific cellular and inflammatory
response in AECOPD, indicating an active reaction of the host to infections.
This supports the development of a vaccine against these specific pathogens
as a strategy for preventing exacerbations in COPD.

Methods

An overview of the procedures for analyzing gene expression in blood
samples from the AERIS study (gene expression profiling, GSEA, and
MNGCD) is shown in Fig. 1.

AERIS clinical study and ethical approval

The AERIS study was a prospective, observational cohort study based at
University ~ Hospital ~ Southampton, =~ UK  (ClinicalTrials.gov:
NCT01360398)*>". In this study, 127 patients with moderate, severe, or very
severe COPD aged 40-85 years were followed for up to 2 years, collecting
various data, including FEV1 at monthly visits and at exacerbation to
classify airway obstruction level according to GOLD grade”. Anonymized
individual participant data and study documents can be requested for fur-
ther research from www.clinicalstudydatarequest.com.

Sputum samples collected at monthly visits and at exacerbation were
analyzed for the presence of bacterial pathogens (H. influenzae, M. catar-
rhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Pseudomonas
aeruginosa) by DNA PCR test. Blood for gene transcript profile analysis was
collected every 6 months during the study and within 72 h of the onset of
exacerbation, resulting in 723 samples with no duplicates. The exact criteria
used for the inclusion of stable-state and exacerbation visit samples are
described in Supplementary information section 1.

The AERIS study was conducted in accordance with the Declaration of
Helsinki and Good Clinical Practice, and was approved by the Southampton
and South West Hampshire Research Ethics Committee. All participants
provided written informed consent.

RNA extraction, microarray hybridization, and data pre-
processing

Total RNA was extracted from the 723 PaxGene tubes and purified, as
previously described in refs. 53,54. RNA quality was assessed using a
Bioanalyzer-2100 (Agilent Technologies, CA, USA); 27 samples did not
meet the quality control (QC) criteria (RNA integrity number (RIN) > 6).
Total RNA 50 ng was used for complementary DNA (cDNA) amplification,
fragmentation, and labeling using the Ovation whole blood kit (NuGEN,
CA, USA). Fragmented cDNA was hybridized using hgu133 Plus2.0 Gen-
eChip (Affymetrix, CA, USA; 54675 probe-sets, including long non-coding
RNA and microRNAs, as shown in several works™ ™). Microarrays failing
initial pre-defined QC criteria (glyceraldehyde 3-phosphate dehydrogenase
ratio < 2.5 and scale factor < 8) were repeated in two follow-up batches.
Therefore, 1134 microarrays were generated, corresponding to 696 whole
blood samples with technical, but not biological, replicates. The screening of
arrays by standard QC metrics was applied to reject slides not passing QC
metrics thresholds (described in Supplementary Information Section 2).
Raw data were then normalized with Robust Multi-array Average (RMA)
with the help of probe sequence and with GC-content background cor-
rection method (GCRMA R package v2.42.0), log,-transformed and IQR-
filtered, taking those probes with IQR>0.75. We then averaged the
expression of probe sets referring to the same gene.

Whole blood transcriptome analysis

The IQR-filtered and probe-averaged transcript profiles were the input for
the three parallel analysis pipelines written in R, namely the computation of
significant DEGs in specific COPD conditions (Limma R package v3.34),
the GSEA" (clusterProfiler R package v3.6) and the MNGCD pipeline”
(based on an ad hoc R script to wrap the Infomap software v0.x execution),
as depicted in Fig. 1. In the MNGCD pipeline, we integrated the community
detection by Infomap with a consensus robustness two-level step assessment
by averaging the results of the stochastic algorithm across 100 iterations
repeated 20 times. Details of the MNGCD pipeline are described in Sup-
plementary information section 3.

The aim of the GSEA and MNGCD analyses was to identify biological
functions that were modulated in certain COPD conditions/subsets of
samples.

GSEA, which requires a contrast between two diverse conditions, was
extensively applied in our analysis (as detailed in Supplementary Infor-
mation Section 5). Here we report the results of the following comparisons
of interest, that can also be compared to MNGCD results:

o Exacerbation versus stable state;

* Presence versus absence of any bacteria in sputum during exacerbation
and at stable state;

* Exacerbations with presence in sputum of Hi and absence of Mcat
versus exacerbations with Mcat presence and Hi absence.

MNGCD was applied if a minimum of 20 samples per condition were
available”. For this reason, we considered 14 COPD conditions/subsets with
enough samples for six comparisons of interest defined as follows:

* AECOPD: visits at (1) exacerbation and (2) stable state;

* Severity of airway obstruction at exacerbation: (3) moderate, (4) severe,
and (5) very severe, according to FEV1 GOLD grade;

o Severity of airway obstruction at stable state: (6) moderate, (7) severe,
and (8) very severe, according to FEV1 GOLD grade;

* (9) Presence or (10) absence of any bacterial infection in sputum
sample at exacerbation;

e (11) Presence or (12) absence of any bacterial infection in sputum
sample at stable state;

* (13) Exacerbations with presence of Hi and absence of Mcat, or (14)
exacerbations with presence of Mcat and absence of Hi.

Therefore, as shown in Fig. 1a, we built 14 multi-networks, one for each
COPD condition/subset of samples. We integrated gene expression data
from the AERIS study for each selected condition with different layers of
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omics information, embodying experimentally validated interactions, as
described in detail in Supplementary Information Section 3. In brief, the
network layers in each multi-network were:

* A gene co-expression network and an RBF expression similarity
network, both based on the gene expression microarray data of
this study;

* A transcription factor co-targeting network, from ENCODE experi-
mentally validated interactions™;

* A microRNA co-targeting network from experimentally validated
interactions by different assays and collected in miRTarBase database
release 7.0%

* A binary human protein-protein interaction network based only on
experimentally validated interactions taken from the public database
APID (Agile Proteins Interactomes DataServer)'.

Once the COPD conditions to be considered were defined and the
corresponding samples were identified, only the first two network layers
(gene co-expression network and RBF expression similarity network)
captured information about gene expression from the AERIS study samples.
The remaining three layers were defined a priori and not dependent on the
considered samples/condition, acting as a filter for the interactions in the
expression networks by excluding mere correlations™.

The identified communities can group together genes cooperating in
relevant biological pathways/functions for the analyzed COPD condition.
Therefore, we used the hypergeometric test (p < 0.01 after BH correction) to
assess the over-representation in each community of biological functions
defined by the Hallmark biological functions gene-set collection
(MSigDB)®, the BTMs**** and the databases used to build the transcription
factors and microRNAs networks™*’. Moreover, for greater confidence in
the detected communities, the only enrichments kept were those detected in
the consensus clustering with a rate higher than 80%, iterating the entire
algorithm 20 times.

Finally, we also searched for significant DEGs in whole blood, com-
paring exacerbation and stable state, frequency of exacerbation episodes,
different severities of airway obstruction, and presence versus absence of
viruses and bacteria in sputum samples. Different Limma regression models
were applied depending on the biological question (see Supplementary
information section 4). Each regression model applied a false discovery rate
threshold of 0.05.

Data availability
Anonymized individual participant data and study documents can be
requested for further research from www.clinicalstudydatarequest.com.

Code availability

Codes can be requested for further research from www.
clinicalstudydatarequest.com. An example of the scripts executed to per-
form the random walk clustering by Infomap and the enrichment analyses is
available at https://github.com/muzziall/MNGCD_for_COPD.
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