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Abstract

The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural 

and functional aspects of the brain, encompassing the ramifications of diseases and developmental 

processes. However, prevailing methodologies, often focusing on synchronous BOLD signals 

from functional MRI (fMRI), may not capture directional influences among brain regions and 

rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective 

network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning 

framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates 

specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play 

between structural and effective networks via an ordinary differential equation (ODE) model, 

which characterizes spatial-temporal brain dynamics. Our framework is validated on several 

clinical phenotype prediction tasks using two independent publicly available datasets (HCP and 

OASIS). The experimental results clearly demonstrate the advantages of our model compared to 

several state-of-the-art methods.
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1 Introduction

Neuroimaging techniques, such as Magnetic Resonance Imaging (MRI), have significantly 

advanced our understanding of the brain by providing a non-invasive way to explore its 

anatomical structures and functions. Recent advances in network science have allowed for 

the analysis of MRI-derived brain networks, revealing new biomarkers for diseases such as 

Alzheimer’s and enabling the study of complex neural interactions across different brain 

regions [3].

Different MRI techniques reveal diverse aspects of brain organization and dynamics. For 

example, diffusion MRI (dMRI) maps white matter connections by tracking water molecule 

diffusion, showing how brain regions are structurally linked. Functional MRI (fMRI), on 

the other hand, utilizes blood-oxygen level-dependent (BOLD) signals to monitor brain 

activity, offering insights into functional brain dynamics. Recent research utilizing fMRI 

BOLD signals to delineate functional brain networks has made significant strides in 

identifying patterns of connectivity through temporal correlations (e.g., Pearson correlation) 

across different brain regions. These studies highlight the utility of fMRI in mapping the 

intricate web of neural interactions, presenting the brain’s complex connectivity patterns 

[20]. However, traditional methods primarily focus on synchronous BOLD signals, which 

may overlook the nuanced directional influences (e.g., causality) between brain regions 

over time. To capture the directional influences among brain regions, we employ Dynamic 

Causal Modeling (DCM) [5,10] with time-lagged BOLD signals to construct temporal 

effective connectivity networks. The temporal effective networks represent the dynamic 

causal relationships where the activity of one brain region influences another over time.

In recent years, Graph Neural Networks (GNNs) [13] have become increasingly prominent 

in brain network studies, showing significant advancements in mining brain structural and 

functional networks [24]. Despite this progress, a scarcity of graph learning methods is 

designed for dynamic effective network learning [4]. The dynamic effective brain networks 

are a series of time-evolving directed graphs, which may present two challenges when we 

build up GNNs on these networks. First, existing GNNs focused on embedding nodes in 

undirected graphs, which may not effectively handle directed graph embeddings. Effective 

brain networks feature pairs of brain regions connected by directed edges with different 

weights, where the edge direction and weight represent the causal sequence and its 

magnitude, respectively. To address this, we propose a directed graph encoder specifically 

designed for capturing these causal sequences in brain node embedding. Furthermore, the 

dynamic effective brain network consists of temporal sequences of brain graphs, with 

changing connectivity over time. Thus, current GNNs need to be adapted to capture both 

spatial and temporal dynamics of the brain. Recent efforts in dynamic graph learning 

include approaches such as recurrent graph neural network [6], graph temporal attention 

network [15], and graph transformer [29]. In this study, we tackle the brain spatial-temporal 

dynamics with an ordinary differential equation (ODE) model. Particularly, we introduce 

a graph learning framework, Spatio-Temporal Embedding ODE (STE-ODE), designed to 

simultaneously solve an Ordinary Differential Equation (ODE) and embed brain networks, 

capturing both their structural and functional properties. The framework’s unique approach 

ensures that the training process yields brain network embeddings that are, in essence, 
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solutions to the ODE, thereby intertwining the learning model with the ODE resolution. 

These embedded graph representations are then leveraged for different clinical predictions, 

such as brain disease classifications. Beyond prediction tasks, our study aims to identify 

most significant connectomes related to various clinical phenotypes and neurodegenerative 

diseases, tracking their changes over time for different tasks. To this end, we develop an 

interpretable toolkit within our directed node embedding layer. This toolkit focuses on 

pinpointing the top K edges with significant temporal changes, marking them as potential 

biomarkers for distinct phenotypes. This method directly connects dynamic brain network 

changes to specific biological traits, enhancing our comprehension of the mechanisms 

tied to different phenotypes. Our contributions can be summarized as follows. (1) We 

design a directed graph embedding layer tailored for encoding effective network under 

the constrains of its structural counterpart. (2) We present a learning framework with the 

directed graph embedding layer, referred to as STE-ODE, which captures temporal effective 

network representations by solving an ordinary differential equation that models the brain 

spatial-temporal dynamics. (3) We develop a toolkit to enhance the interpretability of our 

framework, which enables the identification of the most significant connectome changes, 

marking them as potential biomarkers for different clinical phenotypes.

2 Methodology

We first introduce our method for constructing directed effective networks through the 

dynamic causal model (DCM). Additionally, we propose our interpretable directed graph 

node embedding layer, which is tailored to encode both directed effective networks and 

their structural counterparts. Subsequently, we detail our comprehensive spatio-temporal 

framework with the directed graph embedding layer for downstream tasks. This framework 

involves solving an ordinary differential equation that captures the spatial-temporal 

dynamics of the brain.

2.1 Preliminaries

A brain network is a weighted graph G = {V , E} = (A, X) with N nodes, where V = {vi}i = 1
N  is 

the set of graph nodes representing brain regions, and E = {ei, j} is the edge set. X ∈ ℝN × c is 

the node feature matrix where xi ∈ ℝ1 × c is the i − th row of X representing the node feature 

(dim = c) of vi. A ∈ ℝN × N is the adjacency matrix where ai, j ∈ ℝ represents the weights of 

the edge between vi and vj. A brain structural network, denoted as Gs, is an undirected graph, 

where ei, j
s = ej, i

s ≥ 0. In stead, a brain effective network, denoted as Gf, is a directed graph, 

where ei, j
f ≠ ej, i

f ∈ ℝ. The sign of ei, j
f  indicates the causal sequence between vi and vj, where 

ei, j
f > 0 signifies the causal effect on vj induced by vi, vice versa. Additionally, we denote the 

blood-oxygen-level-dependent (BOLD) signal (with b signal points) obtained from fMRI as 

B ∈ ℝN × b.

2.2 Construction of Brain Effective Network

We employ fMRI BOLD signals to construct brain effective networks using the dynamic 

causal modeling (DCM) approach [17,21]. Each brain region serves as a graph node 

embedded within the brain effective network, while the temporal dynamic effective 
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connectivity comprises the edge set. Given the fMRI BOLD signals, the dynamic adjacency 

matrix Af(t) can be modeled as follows:

dB(t)
dt = αAf(t)B(t) + Cu(t)

(1)

Cu(t) represents the term governing the influence of external neuronal inputs u(t) on the 

dynamics of Af. In this work, Cu(t) = 0 as we concentrate on resting-state fMRI studies. 

The parameter α serves as a constant regulating the neuronal lag among brain nodes. 

Consequently, we can derive the expression of Af as follows:

Af(t) = 1
αB(t)

dB(t)
dt

(2)

We construct the effective connectivity by deriving the discrete expression of the Eq. (2):

Af(t) = 1
αB(t)

B(t + 1) − B(t)
t + 1 − t = 1

α(B(t + 1)
B(t) − 1)

(3)

We define the connectivity between brain node vi
f and vj

f at timepoint t as follows, with 

β = 1
α ∈ [0, 1]:

Ai, j
f (t) = β(Bj(t + 1)

Bi(t) − 1),

(4)

where Bi is the BOLD signal of vi. The process of constructing brain effective networks is 

illustrated in Fig. 1(a).

2.3 Interpretable Structural-Effective Network Embedding

Given a directed effective network Gf = (Af, Xf), we first perform asymmetric Laplacian 

normalization on its adjacency matrix. The normalized adjacency matrix can be represented 

as:

Af = Din
− 1

2AfDout
− 1

2 ,

(5)

where Din and Dout are in-degree and out-degree of the adjacency matrix, respectively. Then, 

our node embedding layer for the structural-effective network can be formulated as a 

function ℱG:
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Z = ℱG(As, Af, Xf; W , γ, λ)
= σ(γ ⊙ As ⊙ [λAf + (1 − λ)AfT]XfW ),

(6)

where As represents the Laplacian-normalized adjacency matrix of the brain structural 

network [13]. The brain structural network serves as spatial information to constrain the 

temporal function dynamics, under the assumption that two brain regions are functionally 

interconnected as long as they are structurally connected [22]. σ( ⋅ ) is a nonlinear activation 

function, such as ReLU. λ ∈ [0, 1] is a parameter that balances the information flow into 

and out of each brain node. W  represents trainable parameters for brain node embedding. 

γ ∈ ℝN × N are trainable parameters used for model interpretability, enabling edge weights 

to adapt themselves for different prediction targets. During the model validation stage, 

we utilize self-adapted edge weights to track the most important connectomes for various 

prediction tasks. The brain node embedding layer is depicted in Fig. 1(b).

2.4 Spatio-Temporal Embedding with ODE

Given a series of temporal effective networks (i.e., Gf(t), t ∈ [0, T ]), their dynamic 

embeddings can be modeled using the following ordinary differential equation:

ℱG(Gf(t + Δt), Θ) = ℱG(Gf(t), Θ) + ∫
t

t + Δt
ℱG(Gf(τ), Θ)dτ,

(7)

where Θ is the parameter sets (i.e., Θ = {W , γ, λ}) of the embedding function. We can 

approximate the Eq. 7 into the discrete expression with our proposed node embedding layer 

(see Eq. 6) as:

Z(t + 1) = Z(t) + σ(γAs ⊙ [λAf(t + 1) + (1 − λ)AfT(t + 1)]X(t + 1)W ) .

(8)

We unfold the temporal brain network embedding into an residual graph learning 

framework. In this framework, each embedding layer processes the dynamic effective 

network at Gf(t + 1), while the previous dynamic network embedding (i.e., Z(t)) is treated as 

a residual term.

2.5 STE-ODE Framework for Brain Network Predictions

The proposed STE-ODE framework, incorporating the spatio-temporal embedding model, 

is depicted in Fig. 1(c). Assuming we have obtained the last node embedding (i.e., Z(T)), 

we employ an average global pooling layer (ZG = 1
N ∑i = 1

N Zi(T )) to extract the entire graph 

representation. Subsequently, a fully connected neural network (such as a Multilayer 

Perceptron or MLP) is employed to generate the final classification or regression output 
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(i.e., y = MLP(ZG)). For the classification task, we utilize the negative log likelihood loss 

function, where ℒ = NLL_Loss(y, y). For the regression task, we use the L2 loss function, 

where ℒ = L2Loss(y, y).

3 Experiments

3.1 Dataset Description and Preprocessing

Two publicly available datasets were used to evaluate our framework. The first includes data 

from 1206 young healthy subjects (mean age 28.19 ± 7.15, 657 women) from the Human 

Connectome Project [25] (HCP). The second includes 1326 subjects (mean age = 70.42 

± 8.95, 738 women) from the Open Access Series of Imaging Studies (OASIS) dataset 

[14]. Details of each dataset can be found on their official websites. The preprocessing of 

functional BOLD signals and the reconstruction of structural networks were conducted using 

CONN [26] and FSL Probtrackx [12], respectively. For the HCP data, both structural and 

effective networks have a dimension of 82 × 82 based on 82 ROIs defined using FreeSurfer 

(V6.0) [9]. For the OASIS data, both networks have a dimension of 132 × 132 based on the 

Harvard-Oxford Atlas and AAL Atlas. This intentional variation in network resolutions for 

the HCP and OASIS datasets served to examine whether the dimension of the network or the 

choice of atlas influences the efficacy of our newly developed framework.

3.2 Implementation Details and Experimental Setup

Implementation Details.—We divided the BOLD signal B into T = 5 time segments 

and calculated the mean value of the points within each segment to construct 4 effective 

networks. The edge weights of both the effective networks and structural networks were 

normalized to the intervals [−1, 1] and [0, 1], respectively. Node features were initialized 

by sampling from a standard Gaussian distribution with feature dimensions set to 16. 

Each dataset was randomly partitioned into 5 disjoint sets for 5-fold cross-validation in 

subsequent experiments. The Adam optimizer was utilized to train the model with a batch 

size of 128. The initial learning rate was set to 0.001 and decayed by (1 − current epoch
max epoch )

0.9
. We 

also regularized the training with an L2 weight decay of 1e−5. We terminated training if the 

validation loss fails to improve for 100 epochs, following the epoch termination condition 

outlined in [19], with a maximum of 500 epochs. All experiments were conducted on 1× 

NVIDIA A100 GPU.

Experimental Setup.—We compared our approach against 6 baseline methods, including 

3 static models (SVM [23], GCN [13] with global pooling, and DiffPool [28]), and 3 

dynamic brain network embedding methods (LSTM [8], ST-GCN [11], and FE-STGNN 

[4]). The β parameter is set to 0.5 for all experiments. We conducted a search for optimal 

λ parameter within the range of [0.1, 0.3, 0.5, 0.7, 0.9] (refer to Supplementary for details). 

The resulting values were λ = 0.3 for HCP and λ = 0.5 for OASIS.

3.3 Brain Network Predictions

Classification Tasks.—ϵ4 allele is a strong risk factor for the Alzheimers’ Disease 

(AD) [18]. Table 1 presents classification results for gender on HCP, as well as for AD 
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and ϵ4 on OASIS. It shows that our model achieves the highest accuracy across all tasks 

compared to other methods. Meanwhile, the comparison between results obtained with and 

without structural connectivity (SC) demonstrates the importance of anatomical (or spatial) 

constraints on effective network representation learning. Furthermore, the dynamic methods 

consistently outperform the static methods, indicating their efficacy in brain network 

analysis by capturing brain dynamics.

Regression Tasks.—The Mini-Mental State Exam (MMSE [2]) serves as a quantitative 

assessment tool for cognitive status in adults. The Diagnostic and Statistical Manual of 

Mental Disorders (DSM [1]) offers a comprehensive measure system for mental disorders 

utilized by mental health professionals worldwide. Within the DSM system, DSM-Depr 

and DSM-Antis gauge two mental disorders linked to depression and rebellious personality, 

respectively. Table 2 summarizes the regression results for DSM and MMSE on the HCP 

and OASIS datasets, showing that our model outperforms all baseline methods with lowest 

mean absolute values.

3.4 Biological Insights and Model Interpretability

We provided two distinct biological insights from our interpretable framework. Firstly, we 

utilized the designed parameter (γ) to identify the most crucial effective connectomes for 

various prediction tasks. Specifically, we pinpointed the top 400 and 256 connectomes 

(highlighted in bold red curve in Fig. 2(a)) with the highest ∣ γ ∣ weights for disease 

classification on OASIS and DSM-Depr regression tasks, respectively. Our disease 

classification results indicate that the highlighted connectomes are predominantly linked 

to the most relevant brain nodes of Alzheimer’s Disease (AD), such as the right/

left insula cortex, anterior/posterior cingulate gyrus, and anterior/posterior divisions 

of the parahippocampal gyrus. Additionally, connectomes associated with AD-relevant 

subnetworks, such as the Default Mode Network (DMN) [7,27], are highlighted. Similarly, 

connectomes connected to the most relevant brain nodes (e.g., left/right amygdala, 

hippocampus and orbitofrontal) of depression are identified from DSM-Depr regression. 

The Salience Network (SN) subnetwork, crucial for emotional regulation [16], is also 

highlighted. Furthermore, we present the brain temporal dynamics of the identified 

connectomes in Fig. 2(b), visualizing the related γ ⊙ Af derived from the disease 

classification task at each of the four time-points to illustrate how the effective connectomes 

change during an fMRI scan period. To quantify this change, we show the average of these γ
weighted connectomes in Fig. 2(c). It demonstrates that the causal influence strength of the 

normal control(NC) group and the AD group decays simultaneously over time. However, the 

degree of decline in the AD group is more pronounced than in the NC group.

4 Conclusion

We propose an interpretable spatio-temporal framework with directed graph embedding 

layers for learning brain effective network representations, leveraging ordinary differential 

equations to model brain dynamics. Our framework contributes to important clinical 

prediction tasks, pinpointing important connectomes linked to different clinical phenotypes 
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and illustrating dynamic causal influence strengths across fMRI scan periods. Future work 

will investigate dynamic causal influences at the level of brain ROIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) describes the construction of brain effective networks from the BOLD signals. (b) is 

the directed graph embedding layer for structural and effective networks. (c) presents the 

STE-ODE framework for different clinical prediction tasks.
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Fig. 2. 
(a) illustrates the importance of various effective connectomes (i.e., ∣ γ ∣) for disease 

classification and DSM-Depr regression, with the most crucial connectomes highlighted 

in bold red. (b) visualizes the brain dynamics of the identified effective connectomes during 

an fMRI scan period, where colors tending towards red indicate large values. (c) quantifies 

the change in the average strength of identified connectomes during an fMRI scan period.
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Table 1.

Classification accuracy and F1-scores, along with their standard deviations under 5-fold cross-validation. The 

best results are highlighted in bold.

Method HCP OASIS

Gender Disease ϵ4
Acc. F1 Acc. F1 Acc. F1

SVM 59.25 ± 1.39 60.85 ± 2.29 ± 57.72 ± 0.98 56.58 ± 1.93 58.09 ± 2.37 59.83 ± 0.99

GCN 68.83 ± 1.48 67.48 ± 2.32 64.64 ± 1.05 66.58 ± 2.12 65.56 ± 1.51 64.28 ± 1.11

DiffPool 73.25 ± 0.71 70.43 ± 1.87 71.67 ± 0.83 69.58 ± 1.75 69.04 ± 2.52 70.42 ± 0.87

LSTM 70.95 ± 1.09 72.37 ± 2.16 68.22 ± 2.04 68.90 ± 0.74 69.33 ± 1.88 67.31 ± 2.65

ST-GCN 78.44 ± 0.86 76.15 ± 1.17 76.26 ± 0.98 77.02 ± 1.47 77.20 ± 1.79 78.14 ± 1.35

FE-STGNN 81.04 ± 0.39 81.75 ± 1.26 79.92 ± 0.73 79.39 ± 1.15 78.98 ± 0.92 80.06 ± 0.85

Ours w/o SC 80.66 ± 2.02 80.77 ± 0.63 80.59 ± 1.71 81.05 ± 1.20 78.42 ± 1.07 78.59 ± 1.63

Ours 82.12 ± 1.17 83.97 ± 0.96 80.01 ± 1.26 81.31 ± 1.37 81.35 ± 0.86 80.92 ± 1.03
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Table 2.

Regression mean absolute values with their std under 5-fold cross-validation. The best results are highlighted 

in bold.

Method HCP OASIS

MMSE DSM-Depr DSM-Antis MMSE

SVM 4.06 ± 0.33 4.66 ± 0.79 3.43 ± 0.59 3.91 ± 0.24

GCN 3.16 ± 0.43 3.62 ± 0.98 3.41 ± 0.37 3.70 ± 1.06

DiffPool 2.82 ± 0.93 3.23 ± 0.54 2.09 ± 0.56 2.48 ± 0.90

LSTM 2.74 ± 0.91 2.37 ± 0.61 1.91 ± 0.47 1.88 ± 0.51

ST-GCN 1.97 ± 0.84 1.35 ± 0.17 1.24 ± 0.33 1.19 ± 0.23

FE-STGNN 0.73 ± 0.29 1.19 ± 0.14 1.08 ± 0.06 0.96 ± 0.15

Ours w/o SC 0.93 ± 0.44 1.24 ± 0.32 1.19 ± 0.24 1.08 ± 0.33

Ours 0.62 ± 0.23 1.08 ± 0.45 0.92 ± 0.79 0.76 ± 0.17
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