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Abstract

Background: The composition and function of gut microbiota, lipids, and

metabolites in patients with type 1 diabetes (T1D) or its association with glyce-

mic control remains unknown. We aimed to use multi-omics sequencing tech-

nology and machine learning (ML) approaches to investigate potential

function and relationships among the gut microbiota, lipids, and metabolites

in T1D patients at varied glycemic levels.

Methods: We conducted a multi-omics analysis of the gut microbiome from

fecal samples, metabolites, and lipids obtained from serum samples, collected

from a cohort of 72 T1D patients. The patients were divided into two groups

based on their hemoglobin A1c (HbA1c) levels. 16S rRNA sequencing, and

metabolomics methods were applied to analyze changes in composition and

function of gut microbiota, metabolites, and lipids.

Results: The linear discriminant analysis, Shapley additive explanations

(SHAP) algorithm, and ML algorithms revealed the enrichment of Bacteroi-

des_nordii, Bacteroides_cellulosilyticus in the glycemic control (GC) group,

while Bacteroides_coprocola and Sutterella_wadsworthensis were enriched in

the poor glycemic control (PGC) group. Several metabolic enrichment sets like

fatty acid biosynthesis and glycerol phosphate shuttle metabolism were differ-

ent between two groups. Bacteroides_nordii exhibited a negative association

with D-fructose, a component involved in the starch and sucrose metabolism

pathway, as well as with monoglycerides (16:0) involved in the glycerolipid

metabolism pathway.

Conclusions: We identified distinct characteristics of gut microbiota, metabo-

lites, and lipids in T1D patients exhibiting different levels of glycemic control.

Through comprehensive analysis, microbiota (Bacteroides_nordii, Bacteroides_

coprocola), metabolites (D-fructose), and lipids (Monoglycerides) may serve as
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potential mediators that communicated the interaction between the gut, circu-

latory systems, and glucose fluctuations in T1D patients.
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1 | INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease charac-
terized by the immune-mediated destruction of pancre-
atic beta cells,1 resulting in insulin deficiency and
uncontrolled glucose levels.2 Achieving optimal glucose
control is pivotal in managing T1D and mitigating the
risk of associated complications, which encompass a wide
range of cardiovascular, renal, and neurological
disorders.3–5 The Diabetes Control and Complications
Trial (DCCT) found that in T1D patients,6 intensive gly-
cemic control (mean A1C about 7%) compared to stan-
dard control (mean A1C about 9%) significantly reduced
rates of microvascular complications development and
progression by 50%–76%.

The gut microbiota influences host metabolism and is
involved in the early metabolic disturbances during the
progression of T1D.7 There are differences in the gut
microbiome between T1D patients and healthy individ-
uals.8 Importantly, mounting evidence suggests a link
between dysregulated gut microbiota and disrupted blood
glucose control.9,10 In patients with type 2 diabetes, those
with higher abundance of Bacteroides species in the gut
microbiota exhibit better blood glucose control.11 Fur-
thermore, studies have found differences in various
serum metabolites and lipid molecules between T1D
patients and healthy individuals.12 Short-chain fatty acids
(SCFAs), metabolites of the gut microbiota, can reduce
fasting blood glucose and lipid levels in T1D mice and
patients,13,14 while some metabolites can lower blood glu-
cose levels in type 2 diabetes mice.15 However, there is
currently no research observing the correlation between
different gut microbiota profiles and different levels of
blood glucose control in T1D patients with various
metabolites/lipids. Therefore, the interactions among
blood glucose regulation, gut microbiota, serum lipids,
and metabolites in T1D patients' bodies, influencing
blood glucose management, are largely unexplored and
not well understood.

Prior research has primarily noted the connection
between gut microbiota and hemoglobin A1c (HbA1c)
levels among T1D patients.16–18 A study classified indi-
viduals into two groups based on HbA1c levels (<7.5%
and ≥7.5%) and examined the association between con-
tinuous subcutaneous insulin infusion (CSII) therapy,

dietary habits, and HbA1c levels in T1DM partici-
pants.19 Another study, stratifying T1D patients receiv-
ing guided insulin pump therapy into two groups based
on HbA1c levels: <7.0% and ≥7.0%, observed blood glu-
cose control and gut microbiota profiles.20 We are cate-
gorizing T1D patients based on the recommended
glycemic control target (<7.0% HbA1c) outlined in
guidelines, aiming to investigate multi-omics differences
(including gut microbiota, metabolites, and lipids) for
the first time.3,21

In this study, we employ a multi-omics strategy to
elucidate the distinct features associated with glycemic
control in individuals with T1D. Leveraging gut micro-
biome and metabolomic and lipidomic analyses, we strive
to identify key gut microbiome, metabolites, and lipids
linked to glucose regulation, facilitating the exploration
of multi-omics variances between these groups and pro-
viding critical insights into potential pathways crucial for
glycemic regulation.

2 | METHODS

2.1 | Participant recruitment and
sample collection

In this cross-sectional study, we recruited 101 patients
from the Department of Endocrinology at the Third Affil-
iated Hospital of Sun Yat-sen University from 2019 to
2020.22 The diagnosis of T1D was made based on the cri-
teria outlined by the American Diabetes Association.23

Exclusion criteria covered chronic gastrointestinal
disorders, recent use of antibiotics, probiotics, or cortico-
steroids within 3 months post-enrollment, both chronic
and acute inflammatory and infectious conditions, as
well as pregnancy and breastfeeding. We defined glyce-
mic control (GC) using the recommended glucose control
targets by IPSAD and ADA as having HbA1c <7%. Glyce-
mic control not meeting the criteria is defined as PGC
(poor glycemic control, HbA1c ≥7%).3,21

In result, 36 T1D patients with well glycemic control
(GC group) were recruited to match 36 T1D patients with
poor glycemic control (PGC group). Clinical assessment
with blood draws and fecal sample collection from each
participant were conducted at in-person clinic visit.
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2.2 | Gut microbiome 16S rRNA gene
sequence analysis

Fecal samples were processed for DNA extraction using
the MagPure Stool DNA KF kit B (Magen, China). PCR
amplification of the V3–V4 regions of the bacterial 16S
rRNA gene was conducted using primers 806R and 341F.
AmpureXP beads were employed for the purification of
amplicons, followed by paired-end sequencing performed
on the Illumina platform. Raw sequencing data were pro-
cessed using the Quantitative Insights Into Microbial
Ecology (QIIME2).24 Sequence assembly was performed
with FLASH (Fast Length Adjustment of Short reads,
v1.2.11),25 where paired-end reads were merged based on
overlapping regions to generate single sequences repre-
senting hypervariable region tags. Tags were clustered
into operational tax units (OTUs) by using USEARCH
(v7.0.1090) with a 97% similarity cutoff.26 Chimeric
sequences were removed using UCHIME (v4.2.40) prior
to further analysis.27 Additionally, high-quality sequences
were processed to generate amplicon sequence variants
(ASVs) using the DADA2 (Divisive Amplicon Denoising
Algorithm) method within QIIME2.28 The representative
sequence of each OTU was then annotated with taxo-
nomic information based on the SILVA database (v138,
released December 16, 2019),29 using the Mothur algo-
rithm (v1.44.2).30

We utilized various alpha diversity indices like the
Chao1 index and the Shannon diversity index to evaluate
differences in gut microbial community abundance
between the GC and PGC groups. Beta diversity compari-
sons were conducted between the two groups to assess
global differences in microbiota composition and struc-
ture, based on ASV abundance. These analyses were per-
formed via the MicrobiomeAnalyst website.31,32

Additionally, linear discriminant analysis effect size
(LEfSe)33 was also employed on the MicrobiomeAnalyst
to identify significantly different taxa between the GC
and PGC groups. The Shapley additive explanations
(SHAP) algorithm values of the data were calculated
using the TreeExplaine, implemented in Python 3.8.34

2.3 | Serum metabolomics and
lipidomics analysis

The metabolite and lipid extraction process closely fol-
lowed established protocols.35,36 Samples (100 μL) were
extracted in a 2:1 (v/v) mixture with 300 μL of pre-cooled
methanol and acetonitrile, along with a combination of
internal standards (IS1 and IS2) for sample preparation
quality control. After vortexing for 1 min, the samples

were incubated at �20�C for 2 h, followed by centrifuga-
tion at 4000 rpm for 20 min. The resulting supernatant
was transferred for vacuum and freeze-drying. Dried
metabolites were reconstituted in 150 μL of 50% metha-
nol and centrifuged at room temperature for 30 min. The
supernatant was transferred into autosampler vials for
LC–MS analysis. A quality control sample, pooling equal
volumes of individual samples, was prepared to assess
the overall repeatability of the LC–MS analysis.

Metabolomics and lipidomics analyses were con-
ducted using the MetaboAnalyst website.37 Orthogonal
projections with orthogonal projections to latent struc-
tures discriminant analysis (OPLS-DA) were utilized to
evaluate the overall metabolic distribution and identify
differential metabolites between the GC and PGC
groups; the same is true of lipidomics analysis. Differ-
ential serum metabolites and lipids were determined
based on fold changes (>1.2) and p-values (<0.05). The
signaling pathways and biochemical metabolic path-
ways associated with these differential metabolites were
annotated using MetaboAnalyst.38 We applied four
machine learning algorithms (logistic regression [LR],
support vector machine [SVM], Gaussian naive Bayes
[GNB], and random forest [RF]) in Python to identify
the differing metabolites or lipids between GC
and PGC.

2.4 | Correlational analysis of
microbiome and metabolome/lipidome

We employed Spearman correlation analysis to investi-
gate the intricate relationship between the microbiome
and metabolome/lipidome through connectivity network
analysis. Differential metabolites/lipids and microbiota
identified earlier were selected to compute correlation
coefficients and statistical significance using the R pack-
age psych 2.1.9.

2.5 | Statistical analysis

Statistical analyses were performed using R version 4.2.3
(http://www.r-project.org/) and Python 3.8 (https://www.
python.org/). We utilized the R package Comparison
Group 4.5.1 to analyze clinical characteristics. We uti-
lized the TreeExplainer implemented in Python 3.8 to
calculate the SHAP values of the data. We first used the
Shapiro–Wilk test to check the normal distribution of
continuous variables. Then, we compared continuous
variables between groups using T-tests or analysis of vari-
ance (ANOVA). Specific statistical methods and websites
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were utilized for microbiome and metabolome data ana-
lyses, as mentioned previously. A significance level of
p values <0.05 was considered.

3 | RESULTS

3.1 | Clinical characteristics

In this study, 72 patients with T1D were enrolled.
Recruitment details can be found in the methods section.
These patients were divided into two groups based on
their glycemic control: Well glycemic control group (GC,
33.3% male) and poor glycemic control group (PGC,
41.6% male).

The well glycemic control is defined as HbA1c <7.0%.
No significant differences were found between the groups
in terms of gender, body mass index, total cholesterol,
total calories, and LDL-cholesterol. As expected, GC had
significantly lower levels of HbA1c. Additional clinical
characteristics are detailed in Table 1 for further refer-
ence and analysis.

3.2 | Microbiome community profiling
of GC and PGC

Figure 1A illustrates the summary of relative abundances
at the family levels. Other taxonomic level results, includ-
ing phylum, class, order, genus, and species, are pre-
sented in Figure S1A–E. At the phylum level, both GC
and PGC groups are primarily dominated by two phyla:
Bacteroidetes and Firmicutes. However, Proteobacteria
appears more abundant in the GC group, whereas Actino-
bacteria shows a slightly higher relative abundance in the
PGC group.

Within the class level, Bacteroidia and Clostridia are
predominant in both groups. Notably, Gammaproteo-
bacteria has a higher relative abundance in the GC
group compared to the PGC group. Negativicutes and
Bacilli also show variation between the groups, with
Bacilli being slightly more represented in the PGC
group. At the order level, Bacteroidales and Clostridiales
are the most abundant orders in both groups. Entero-
bacteriales (which belongs to Gammaproteobacteria) is
more prevalent in the GC group, while Lactobacillales

TABLE 1 Clinical characteristics of

the participants.
GC PGC

p overallN = 36 N = 36

Age (year) 31.9 (9.80) 31.1 (10.8) 0.733

Male 12 (33.3%) 15 (41.6%) 0.472

BMI (kg/m2) 20.66 (1.84) 21.25 (2.70) 0.285

TC (mmol/L) 4.75 (0.82) 4.80 (0.84) 0.779

TG (mmol/L) 0.79 (0.31) 0.79 (0.38) 0.922

HDLC (mmol/L) 1.57 (0.31) 1.56 (0.29) 0.897

LDLC (mmol/L) 2.69 (0.70) 2.89 (0.67) 0.226

HbA1c (%) 6.12 (0.50) 8.09 (1.52) <0.001

Fasting C peptide (nmol/L) 0.05 (0.06) 0.04 (0.05) 0.456

Islet autoantibodies (+) 21 (58.3%) 25 (69.4%) 0.462

GADA (+) 14 (38.9%) 22 (61.1%) 0.099

ZnT8A (+) 6 (16.7%) 6 (16.7%) 1.000

IA2A (+) 10 (27.8%) 10 (27.8%) 1.000

Age of onset (year) 19.97 (8.80) 18.39 (10.6) 0.492

Diabetes duration (year) 11.91 (5.74) 12.62 (6.61) 0.630

Alcohol (yes) 8 (22.2%) 15 (41.6%) 0.079

Smoking (yes) 2 (5.56%) 6 (16.67%) 0.260

Note: Data are presented as number (%) and median (interquartile range). The normal reference ranges for
the clinical parameters mentioned are as follows: TC (3.6–5.2 mmol/L); TG (0.6–2.3 mmol/L); HDLC
(≥1.0 mmol/L); LDLC (<3.4 mmol/L).

Abbreviations: BMI, body mass index; GADA, anti-glutamic acid decarboxylase antibodies; HbA1c,
hemoglobin A1c; HDLC, high-density lipoprotein cholesterol; IA2A, insulinoma associated-2
autoantibodies; LDLC, low-density lipoprotein cholesterol; TC, total cholesterol; TG, triacylglycerol; ZnT8A,
zinc transporter 8 autoantibodies.
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(from Bacilli) is more dominant in the PGC group.
Genus-level analysis shows that Prevotella and Bacter-
oides are significantly abundant across both groups.
Escherichia (from Enterobacteriaceae) has a notably
higher presence in the GC group, while Lactobacillus is

more represented in the PGC group. At the species
level, certain species within the genera Bacteroides and
Prevotella are highly abundant in both groups.

In α-diversity analysis, both the ACE index (T-test,
p = 0.7115) and the Chao1 index (T-test, p = 0.5903)

FIGURE 1 Results of diversity and taxonomy. (A) At the family level, the stacked bar plots. (B) Result of β-diversity visualized using

principal coordinate analysis based on Bray–Curtis Index (permutational MANOVA test, F = 0.92729, R2 = 0.013074, p = 0.4520). (C, D)

The plots of α-diversity. (C) The Chao1 diversity boxplots (T-test, p = 0.5903). (D) The ACE index boxplots (T-test, p = 0.7115).
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FIGURE 2 Results of different taxa (screened by p value < 0.05) between two groups by LEfSe analysis. (A) Histogram of LDA value

distribution. (B) Cladogram plots depicting the microbial taxa that differed significantly. (C) SHAP summary plot depicting the top

40 microbial features. (D) The top 15 microbial features predicted by ML that contribute to the well glycemic control. (E) The top

15 microbial features predicted by ML that contribute to the poor glycemic control.
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exhibited a slight but nonsignificant increase between
PGC and GC groups (Figure 1C,D). Figure S1F–H present
results of the Shannon index (T-test, p = 0.7873), Simp-
son index (T-test, p = 0.7294), and Fisher index (T-test,
p = 0.4424). Although graphical differences are observ-
able, none reached statistical significance between the
two groups. β-diversity plots can be seen in Figure 1B,
indicating no significant difference between groups (per-
mutational multivariate analysis of variance test,
F = 0.92729, R2 = 0.013074, p = 0.4520).

We subsequently analyzed the distinct microbiota
composition between the GC group and PGC group
employing LEfSe. Discriminative features were identified
with a linear discriminant analysis (LDA) score threshold
of 1.2. A total of four bacterial species were significantly
enriched in two groups. The histogram of LDA value dis-
tribution and the cladogram of different taxa are demon-
strated in Figure 2A,B. Bacteroides_nordii (Wilcox
p value = 0.0092) and Bacteroides_coprocola (Wilcox
p value = 0.0011) exhibit the most notable disparity
between the GC and PGC groups, respectively. The iden-
tification of specific bacterial species that are enriched in
either the GC or PGC groups provides insights into
potential microbial markers for glycemic control. Bacter-
oides_nordii, which is more abundant in the GC group,
might play a beneficial role in glucose metabolism, while
Bacteroides_coprocola's higher abundance in the PGC
group could be associated with poorer glycemic
outcomes.

We applied the TreeExplainer framework by Lund-
berg et al. to compute and visualize SHAP values. Local
explanations for three randomly selected subjects are
depicted in Figure S2(A–C).34 To understand the influ-
ence direction, we visualized the SHAP values of the top
40 features using beeswarm plots, referred to as the sum-
mary plot (Figure 2C). The x-axis position represents the
bacterial species' influence on the classifier predictions
for each feature. Colors indicate original feature values
(relative abundance), with blue indicating low and red
indicating high abundance. Notably, Bacteroides_nordii
and Bacteroides_cellulosilyticus exhibit a trend where
high relative abundance (red) aligns with positive x-axis
values, suggesting a higher likelihood of GC. Conversely,
lower abundances (blue) are associated with a lower GC
probability. Conversely, Bacteroides_coprocola and Sutter-
ella_wadsworthensis show an inverse pattern, indicating
that higher abundance corresponds to a lower GC proba-
bility and vice versa. Additionally, we employed LR,
GNB, SVM, and RF, suitable for limited sample sizes, to
identify differential microbes. Combining SHAP and
machine learning (ML) algorithms enhances the screen-
ing of strict microbial biomarkers.

3.3 | Circulating metabolite profiles of
GC and PGC

The two groups displayed markedly distinct compositions
of serum lipids and metabolites, as discerned through
OPLS-DA. Additionally, we identified 441 differential
metabolites and 36 lipids using criteria based on fold
change (>1.2) and p-value (<0.05). These findings are
depicted in volcano plots presented in Figure S3A,B. We
utilized ML algorithms (LR, GNB, SVM, and RF) to iden-
tify altered metabolic signatures in GC, depicted in
Figure 3E,F. Subsequently, we combined the upregulated
metabolites in GC, the top 100 candidate biomarkers
identified by ML, and the increased differential metabo-
lites identified in OPLS-DA. Similarly for downregulated
metabolites. In comparison to the PGC group, Α-l-
fucopyranose and L-rhamnose exhibited decreased levels
in the GC group. The differences between the two groups
for Α-l-fucopyranose and L-rhamnose are illustrated in
the violin plots presented in Figure S4A. We then con-
ducted enrichment analysis of metabolites to further elu-
cidate their biological significance. The enrichment
results of differential serum metabolites are illustrated in
Figure 3C, revealing the top three enriched pathways as
follows: glycerol phosphate shuttle (p = 0.0218), ribofla-
vin metabolism (p = 0.0399), and glycerolipid metabo-
lism (p = 0.0499). Furthermore, pathways enriched with
upregulated metabolites included fatty acid biosynthesis
(p = 0.0687) and tryptophan metabolism (p = 0.1140), as
depicted in Figure S4B. The enrichment analysis further
supports the relevance of these metabolic pathways in
distinguishing between the two groups, underscoring the
importance of integrated metabolic and microbial ana-
lyses in understanding disease mechanisms.

3.4 | Serum lipid profiles of GC and PGC

In this study, a comparative analysis of lipid profiles
between the GC and PGC groups revealed significant dif-
ferences. According to OPLS-DA analysis, differential
lipidomic profiles were observed between the GC and
PGC groups (Figure 3B); the majority of differential lipids
were phosphatidylcholines. Compared to the PGC group,
the GC group exhibited upregulation of 28 lipids, while
downregulation was noted in PC(14:0/20:4), MG(16:0),
PC(34:5), LPC(19:3), PS(38:6p), PE(16:0p/20:4)(rep),
PE(36:4p), and PE(16:0p/20:4)(rep)(rep). To further
understand the lipidomic changes associated with glyce-
mic control, machine learning algorithms were employed
to further examine the altered lipidome in GC. The top
10 upregulated lipids included PC(34:2e),
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FIGURE 3 Legend on next page.
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TG(18:0/18:1/18:1), SM(d40:2), PC(34:1e)(rep), PC(38:3)
(rep)(rep)(rep)(rep), PE(18:0/18:1), TG(16:0/16:0/18:2),
PC(38:2)(rep), PC(40:4)(rep), and PC(38:4e)(rep)(rep).
Notably, PC(38:2)(rep) was also among the top 10 differ-
ential lipids based on fold change (Figure 3F).

Subsequent pathway enrichment analysis of the upre-
gulated lipids revealed that these lipids were significantly
associated with metabolic pathways such as glycerolipid
metabolism (p = 0.0493) and arachidonic acid metabo-
lism (p = 0.1290). The involvement of these pathways
suggests that altered lipid metabolism could contribute to
differences in glycemic control among T1D patients, par-
ticularly through the modulation of glycerolipid and ara-
chidonic acid metabolic processes, as indicated by the
specific lipids MG(0:0/16:0/0:0) and PC(34:4).

3.5 | Correlation between serum
metabolites/lipids and gut microbiota

Analysis revealed positive associations between glycemic
control, differential gut microbiota, and differential
serum metabolites, notably linking Bacteroides_nordii
and Bacteroides_cellulosilyticus with 3-oxolauric acid
(HMDB0010727), as depicted in Figure 4A. Bacteroides_-
nordii was positively associated with taurolithocholic acid
3-sulfate (HMDB0002580) and negatively associated with
D-Fructose (HMDB0000660, hit by starch and sucrose
metabolism), MG(16:0) (hit by glycerolipid metabolism)
and PC(14:0;20:4). The compound benzoquinone
(HMDB0003364) is associated with multiple enriched
pathways, including glycerol phosphate shuttle, ribofla-
vin metabolism, and glycerolipid metabolism. Addition-
ally, it is positively correlated with Bacteroides_coprocola.
In the GC group, the increased lipid PC(38:2)(rep) dis-
played a negative correlation with Bacteroides_coprocola
observed in the PGC group.

4 | DISCUSSION

In this study, we analyzed the gut microbial composition,
examined metabolomic and lipidomic profiles of adults
with T1D, and identified associations between these
multi-omics profiles and glycemic control status in
patients with T1D.

Previous studies have demonstrated that environmen-
tal factors, including gut microbiota and metabolites,
influence the pathogenesis of T1D and have linked the
differential gut microbiota, serum lipids and metabolites
observed between the GC group and PGC group to the
development of T1D and other autoimmune diseases in
humans. In our study, the overlapping microbes identi-
fied through ML and SHAP include Bacteroides_nordii,
Bacteroides_cellulosilyticus, Bacteroides_coprocola, and
Sutterella_wadsworthensis. We discovered that GC
patients had a predominance of Bacteroides_nordii and
Bacteroides_cellulosilyticus. PGC patients had a predomi-
nance of Bacteroides_coprocola and Sutterella_wads-
worthensis. Bacteroides_nordii are found to be related to
diabetes and the other human autoimmune diseases in
previous studies inflammatory bowel diseases,39 allergic
rhinitis.40 Yaowen Chen et al.41 found that Bacteroides.
coprocola had a characteristic distribution of SNPs in the
T2D patient group. This study found that the genes
ranked first and sixth in Bacteroides_coprocola encode
glycoside hydrolases. This seems to suggest an association
of this fungus with glucose metabolism disruption.

Bacteroides_cellulosilyticus has been reported to be
abundant T1D pediatric patients in Italy42; however, it is
a multifunctional carbohydrate-degrading microorgan-
ism. Its relative abundance is positively correlated with
the overall abundance of microbial glycoside hydrolases
in the infant gut.43 In our research, the observed enrich-
ment of Bacteroides_cellulosilyticus in the GC group
implies its potential role in influencing glycemic control
and its positive association with 3-oxolauric acid. This
effect on glycemic regulation may be attributed to its abil-
ity to upregulate microbial glycoside hydrolases in the
gut.44

Bacteroides_nordii is negatively associated with
D-fructose (HMDB0000660, hit by starch and sucrose
metabolism). In the D-fructose-fed mouse model of non-
alcoholic fatty liver disease (NAFLD) induction, a
decrease in the Bacteroidetes phylum was observed.45

This finding is consistent with the negative correlation
observed between Bacteroides_nordii and D-fructose in
our study, indicating a potential association of Bacteroi-
des_nordii with carbohydrate metabolism pathways.

In Tan et al.'s study, it was found that HbA1c levels
were positively correlated with six bacterial taxa: Rumi-
nococcus torques, Lactobacillales, Streptococcaceae, Bacilli,

FIGURE 3 Results of metabolites profiles analysis between two groups. (A) OPLS-DA analysis displaying a discriminative trend of

metabolite composition and (B) lipid composition between two groups. (C) Differential metabolites (screened by combining p value [<0.05]

and fold change [>1.2]) mainly involved in glycerol phosphate shuttle enrichment. (D) Differential lipids (screened by combining p value

[<0.05] and fold change [>1.2]) mainly involved in glycerollipid metabolism enrichment. (E) The top 10 metabolic features predicted by ML

that contribute to the well glycemic control. (F) The top 10 lipidomic features predicted by ML that contribute to the well glycemic control.
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FIGURE 4 Results of combined analysis between two groups. (A) Results of combined analysis of microbiome and metabolome

between two groups. (B) Results of combined analysis of microbiome and lipidome between two groups.

10 of 14 GU ET AL.



Erysipelotrichales, and Erysipelatoclostridiaceae. Interest-
ingly, in our research, among the top 40 bacterial taxa
identified by the SHAP algorithm, there was a species
belonging to the Erysipelatoclostridiaceae taxa (Erysipelo-
trichaceae UCG-003).46 Differential upregulated serum
metabolites detected in this study were enriched around
fatty acid biosynthesis (hit by 3-oxododecanoic acid),
and the association between fatty acid biosynthesis
and diabetes, including T2D,47 as well as diabetic
cardiomyopathy,48 has been investigated in previous
studies.

In terms of differential lipid metabolites, the majority
of phosphatidylcholines and lysophosphatidylcholines
exhibited elevated levels in the GC group. Dysregulation
of lipid and amino acid metabolism has been noted prior
to the onset of islet autoimmunity in children who later
develop T1D.49 Additionally, reduced levels of the PC
class have been observed in early prediabetic NOD
mice.50

Subsequently, we performed correlation analysis
between these differentials and distinct microbial
communities. In the correlation analysis, we observed
a positive correlation between Bacteroides_nordii,
Bacteroides_cellulosilyticus, and the 3-oxolauric acid. Pre-
vious studies have indicated that lauric acid can exert
antidiabetic effects,51 alleviate insulin resistance,52 and
reduce hyperglycemia by restoring insulin and glucose
homeostasis.53 This could be one of the indirect mecha-
nisms through which the gut microbiota influences glyce-
mic control. The upregulated lipid PC(38:2)(rep) in the
GC group exhibited a negative correlation with Bacteroi-
des_coprocola, which showed high abundance in the
PGC group. This suggests its potential as a promising bio-
marker for predicting poor blood glucose control in
patients with T1D.

In terms of clinical significance, the identification of
specific gut microbes associated with glycemic control
highlights the potential for microbiome-based therapies
in managing T1D. The positive correlations observed
between specific microbial species and metabolites could
lead to the development of personalized treatment strate-
gies targeting gut microbiota to improve glycemic out-
comes. Recent studies have increasingly focused on the
role of gut microbiota in T1D, suggesting that alterations
in the gut microbial community might contribute to the
onset and progression of the disease. For instance, Murri
et al. found that children with T1D had distinct gut
microbial profiles compared to healthy controls,54 with
lower diversity and different abundances of specific bac-
terial taxa. Similarly, Kostic et al. demonstrated that the
gut microbiota undergoes dynamic changes preceding
the onset of T1D,55 indicating a potential causal role.
Despite these advances, the exact mechanisms by which
gut microbiota influences T1D remain largely

unexplored, particularly concerning how specific micro-
bial species might affect glycemic control. Our findings
suggest that the gut microbiota may serve as biomarkers
for predicting glycemic control status, which could be
valuable in the early identification of individuals at risk
for poor glycemic control. Future research could aim to
further elucidate the mechanisms through which these
microbial species influence glycemic control and explore
the therapeutic potential of modulating the gut micro-
biota in T1D. Additionally, large-scale longitudinal stud-
ies are needed to validate our findings and assess the
long-term effects of microbiome-metabolome-lipidome-
targeted interventions in T1D management.

Our study has limitations. The cross-sectional design
prevented establishing causality, and despite a reasonable
number of participants in our cohort, it was relatively
small for this type of study. However, our cohort com-
prised carefully selected T1D patients with diverse dis-
ease durations and glycemic control, which allows our
findings to be generalized to the majority of the diag-
nosed T1D population. In our study, the population
exclusively consisted of T1D patients, which likely con-
tributed to the observed similarity in microbial diversity
between the GC and PGC groups. Given the T1D disease
background, it is expected that microbial biodiversity
does not show significant variation at a broad level. This
consistency in biodiversity aligns with the homogeneity
typically seen in cohorts with specific health conditions
like T1D.56,57 Moreover, the absence of significant differ-
ences in both α- diversity and β-diversity analyses sug-
gests that, although there may be compositional
differences in specific microbial taxa, the overall gut
microbiome diversity remains relatively stable between
the two groups. This finding underscores the importance
of focusing on the functional implications of specific
microbial changes, rather than relying solely on general
diversity metrics, to better understand their potential
impact on glycemic control in T1D patients. In addition,
dietary habits may differ between those with good glyce-
mic control and those with poor glycemic control. There-
fore, more studies are needed to determine if our results
can be generalized to a larger population. A larger num-
ber of subjects would also serve to validate our findings.
The untargeted profiling approach in our study unveiled
numerous promising findings that enhance our compre-
hension of diabetic glycemic control pathophysiology.
These warrant in-depth exploration in larger prospective
studies.

5 | CONCLUSION

In conclusion, our study offers a comprehensive view of
the relationship between gut microbiota composition,
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metabolomic characteristics, lipidomic profiles, and glu-
cose control status in individuals with T1D. We have
demonstrated that different levels of blood glucose con-
trol correlate with unique patterns in gut microbiota
composition and circulating metabolites/lipids. Specifi-
cally, gut microbiota like Bacteroides_cellulosilyticus and
Bacteroides_coprocola, associated with carbohydrate
and fatty acid metabolism, show potential beneficial
effects on varying blood glucose control levels in T1D,
elucidated by microbiota-related metabolites such as
3-oxolauric acid. These insights deepen our understand-
ing of the intricate interplay between blood glucose con-
trol, gut microbiota, and circulating metabolites/lipids,
shedding light on their roles in T1D glycemic control.
Furthermore, they pave the way for personalized targeted
therapy strategies by modulating gut microbiota and
associated microbial metabolites/lipids, potentially offer-
ing more effective and precise treatment avenues
for T1D.
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