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This article proposes a method to improve the efficiency of solar power plants by estimating and 
forecasting the spatial distribution of direct normal irradiance (DNI) using a sensor network and 
anemometer data. For this purpose, the proposed approach employs spatio-temporal kriging with 
an anisotropic spatio-temporal variogram that depends on wind speed to accurately estimate the 
distribution of DNI in real-time, making it useful for short-term forecast and nowcast of DNI. 
Finally, the method is validated using synthetic data from varying sky conditions, outperforming 
another state-of-the-art technique.

1. Introduction

Climate change is considered one of the top challenges for the future of humanity. For this reason, many society efforts aim at 
decreasing their levelized costs of electricity (LCOE) from renewable energies to beat those of fossil fuel technologies [1]. Therefore, 
it is not surprising that the use of solar energy around the world has rapidly increased in recent years. The most common plants for 
electric production using solar energy are photovoltaic plants (PV) and concentrated solar thermal plants (CST). In this regard, the 
LCOE of PV plants is substantially lower than that of CST plants, but CST plants can incorporate thermal energy storage (TES) (e.g., 
using molten salt) to generate electricity even during the night.

CST plants are usually located on large extensions of land with high solar incidence, with parabolic trough collector CST being 
the most cost-effective and common type [2]. These plants use parabolic mirrors that concentrate solar rays onto pipes located at the 
focal point of the parabola, where a heat transfer fluid (HTF) circulates and absorbs the concentrated solar radiation. The HTF is then 
sent to a power generation plant through a collector that gathers the hot oil from the manifolds. In most commercial plants, the solar 
field consists of a number of loops connected in parallel, with each loop formed by a number of serially connected collectors, usually 
four, which track the sun on one axis to maximize the collected energy [3]. Since the total flow rate through the collectors needs to 
be controlled to maintain the HTF temperature within operational limits while maximizing the power generated, a major challenge 
occurs when irradiance varies across the plant. For example, a localized cloud could trigger a harmful flow decrease in unshaded 
collectors, so their HTF temperature might go beyond the admissible levels, damaging the plant equipment. Because of this, in some 
cases it is necessary to defocus the collectors as a safety measure.

The problem of controlling CST flows has been addressed from different approaches, among which the best performance is achieved 
by the use of predictive control strategies such as model predictive control (MPC) [4–6], particularly when it is possible to control the 
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Nomenclature

Acronyms

DNI Direct Normal Irradiance

GIS Geographic information system

CST Concentrated solar thermal plants

HTF Heat transfer fluid

TES Thermal energy storage

MPC Model predictive control

STV Spatio-temporal variogram

Sets

 Set of sensors

V Number of measurements

 Set of cells

𝑐𝑐 Cell 𝑐
𝑠𝑛 Sensor 𝑛
S Number of sensors

 Set of measurements

𝑚𝜇 Measurement 𝜇
𝑥𝜇 𝑥 coordinate of 𝜇 measurement

𝑦𝜇 𝑦 coordinate of 𝜇 measurement

𝑡𝜇 𝑡 in which 𝜇 measurement was taken

𝐼𝜇 DNI lecture of 𝜇 measurement

Algorithm variables

CFR
𝑐𝑡

Real cloud factor in cell 𝑖𝑗 at time instant 𝑡
𝐽PS
𝑡

Adjustment error of PolyS at time instant 𝑡
CFE

𝑐𝑡
Estimated cloud factor in cell 𝑖𝑗 at time instant 𝑡

𝐸𝑡 Estimation error at time instant 𝑡
𝛾D Proposed STV

𝛾PS PolyS STV

𝛾M Experimental STV

𝐽D Adjustment error of proposed method

𝐽D
𝑡

Adjustment error of proposed method at time in-

stant 𝑡
𝐽PS Adjustment error of PolyS

Algorithm parameters

𝑅T Range of instants in which a measurement affects 
other measurements

𝑅D Range of cells where a measurement affects other 
measurements

𝑅M Maximum number of measurements considered to 
estimate a certail cell DNI value

ℎ𝑥,𝑦,𝑡 Spatial and temporal lags of measurements

𝑎1, 𝑎2,… Parameters to adjust 𝛾D to 𝛾M

Other parameters

N Number of cells in the 𝑋-axis

M Number of cells in the 𝑌 -axis

flow entering each loop of collectors by means of valves. For these controllers, an estimation of the current and future distribution 
of the Direct Normal Irradiance (DNI) throughout the plant is needed. To this end, some authors such as [7] and [8] have proposed 
to use all-sky cameras to estimate the spatially distributed DNI from the images, and other authors such as [9], [10], and [11] have 
proposed the use of robot fleets to estimate it from the DNI measurements gathered.

In this context, the mapping of environmental variables has been largely approached using kriging [12], which has become a de 
facto standard for many geographic information systems (GIS) such as ArcGIS. Kriging is a technique that was first developed in [13]

and has since become widespread for all types of spatial applications [14]. In particular, the spatio-temporal generalization is specially 
indicated for dynamic variables with shifting concentration over a certain area, becoming a suitable method to deal with DNI changes 
due to clouds. This technique also introduces significant advances in accuracy and applicability. Notably, existing approaches often 
rely on static spatial models that fail to capture the dynamic nature of environmental factors influencing solar irradiance. In contrast, 
these methods leverage both spatial and temporal data to account for rapid environmental changes. Indeed, this method has been 
proposed for simultaneous environmental mapping of dynamic variables in works such as [15], [16] and [17], and sensor placement 
in works such as [18], and [19]. [20,21], and [22] proposed time-forward Kriging and vector autoregressive models to perform DNI 
forecasting. Some works also consider the effect of wind on the spatial distribution of DNI, e.g., [23] which highlighted the relevance 
of taking into account its direction and speed in this context, especially when carrying out short-term forecasting. However, this 
last method requires symmetry in the variogram, which is unreasonable with clouds moving in the wind direction, and employs a 
polynomial function to model the wind influence, losing accuracy in the estimation. Moreover, it also requires the estimation of a 
high number of parameters, particularly when many past measurements are used for the DNI prediction.

To deal with the above issues, this work proposes an innovative anisotropic spatio-temporal variogram (STV) that explicitly 
incorporates wind direction and speed into the model. These meteorological variables, readily measurable and routinely recorded by 
meteorological stations at most solar plant locations, improve the responsiveness of the STV to changing weather conditions. This 
integration enables more accurate and robust estimation and short-term forecasting, i.e., nowcasting, of the spatial distribution of 
solar irradiance. In addition, the proposed STV model achieves these improvements while requiring fewer parameters compared to 
traditional methods, which simplifies the computational process. Not only does this reduction in complexity make the model more 
efficient but it also increases its applicability in real-world scenarios, offering significant advantages in operational solar energy 
management. Additionally, a new method has been developed to select the measurements used in the kriging estimation, further 
refining the accuracy of our predictions. Finally, the versatility of the proposed method may also benefit PV plants, which can 
leverage distributed estimation and forecasting of DNI for enhanced operational efficiency.

The rest of this work is organized as follows: Section 2 details the formulation of the problem and describes how the proposed 
2

variogram was computed. Section 3 describes both how the data were generated and how the STV was adjusted to the data, and the 
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Fig. 1. Thermosolar power plant scheme: (a) represents the layout of the plant and (b) represents the same layout in 3D under a certain distribution of clouds.

results obtained for both real-time estimation and short-term forecasting. Finally, in Section 4 the conclusions of this work are listed 
and some future lines are discussed.

2. Spatial and temporal DNI mapping using Kriging

Kriging is a powerful geostatistical method that can be used for spatial and temporal estimation and prediction. It estimates the 
value of a variable at a specific location and time instant based on recent observations at nearby locations and time points [14]. 
Consider a PTC solar plant as the one shown in Fig. 1a, which is deployed over a very large flat area that can be discretized

into a meshgrid of N × M elements, yielding a set of cells  = {𝑐1, 𝑐2… , 𝑐𝑐 , … , 𝑐N⋅M} whose DNI value at point (𝑥𝑐, 𝑦𝑐) to be 
computed for each instant in a set  ∈ {𝑡1, … , 𝑡T}. It is assumed that there is a set of S DNI sensors  = {𝑠1, 𝑠2, … , 𝑠S} located at 
different positions on the 𝑋𝑌 plane. Each sensor is assumed to continuously perform DNI measurements with metadata regarding 
their position and time, yielding a set of V measurements  = {𝑚1, 𝑚2, … , 𝑚V}, with 𝑚𝜇 = {𝑥𝜇, 𝑦𝜇, 𝑡𝜇, 𝐼𝜇} and 𝜇 = 1, 2, … , V. In this 
context, 𝑥𝜇 and 𝑦𝜇 denote the coordinates where the measurement 𝜇 was taken, 𝑡𝜇 indicates the time when the measurement was 
taken, and 𝐼𝜇 represents the DNI recorded.

Since the nominal DNI profile for a clean sky (no clouds or particles) can be computed using latitude, solar day, and solar time, as 
shown by [24], a Cloud Factor (CF) 𝐶𝐹𝑐𝑡 ∈ [0, 1] is defined to measure the nominal DNI drop in the cell 𝑐 ∈  at time instant 𝑡 when 
clouds are present, as in Fig. 1b. In particular, 𝐶𝐹𝑐𝑡 is 1 when a cloud eliminates 100% of the nominal DNI in a cell and 0 when the 
cell receives the nominal DNI. Intermediate values represent situations where the cloud is not dense enough to clog the nominal DNI 
completely.

The problem therefore is to compute an estimated/predicted CF in all cells 𝑐 ∈  and in all 𝑡 ∈  , say 𝐶𝐹 E
𝑐𝑡

, such that the total 
error:

𝐸 =
∑
𝑡∈

𝐸𝑡,

𝐸𝑡 =
1

N ⋅M
∑
𝑐∈

|𝐶𝐹𝑐𝑡 −𝐶𝐹 E
𝑐𝑡
|, 𝑡 ∈  ,

is minimized.

The estimation/prediction of the cloud factor at a location (𝑥𝑐 , 𝑦𝑐) and time instant 𝑡 using kriging is performed as:

𝐶𝐹 E
𝑐𝑡
=

∑
𝑤𝜇(𝑥𝑐, 𝑦𝑐 , 𝑡) ⋅ 𝐼𝜇,
3

𝜇∈′(𝑥𝑐 ,𝑦𝑐 ,𝑡)
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where 𝑤𝜇(𝑥𝑐, 𝑦𝑐, 𝑡) are weights associated with each measurement in a measurement subset ′(𝑥𝑐, 𝑦𝑐, 𝑡) = {𝑚′
1, 𝑚

′
2, … , 𝑚′

V′ } ⊂.1

These weights are computed solving the linear equations of ordinary kriging:

⎧⎪⎨⎪⎩
∑

𝑗∈′(𝑥𝑐 ,𝑦𝑐 ,𝑡)
𝑤𝑖(𝑥𝑐, 𝑦𝑐 , 𝑡) ⋅ 𝛾(𝑥𝑖 − 𝑥𝑗 , 𝑦𝑖 − 𝑦𝑗 , 𝑡𝑖 − 𝑡𝑗 ) + 𝑢 = 𝛾(𝑥𝑖 − 𝑥, 𝑦𝑖 − 𝑦, 𝑡𝑖 − 𝑡), 𝑖 ∈′(𝑥𝑐, 𝑦𝑐 , 𝑡)∑

𝑖∈′(𝑥𝑐 ,𝑦𝑐 ,𝑡)
𝑤𝑖(𝑥𝑐, 𝑦𝑐 , 𝑡) = 1

,

where 𝑥𝑖, 𝑦𝑖, 𝑡𝑖 and 𝑥𝑗 , 𝑦𝑗 , 𝑡𝑗 are the locations and time instants of the 𝑖-th and 𝑗-th measurements, 𝑢 is an additional variable to 
remove bias, and 𝛾(ℎ𝑥, ℎ𝑦, ℎ𝑡) is the spatio-temporal variogram (STV), which sets the semivariance for the lags in distance (ℎ𝑥 , ℎ𝑦) 
and time (ℎ𝑡). Here, 𝛾(ℎ𝑥, ℎ𝑦, ℎ𝑡) has been designed as (1):

𝛾D(ℎ𝑥,ℎ𝑦, ℎ𝑡) = 𝛾D0 + 𝛾D1 (ℎ𝑡) + 𝛾D21(ℎ𝑡) ⋅ 𝛾
D
3 (ℎ𝑥,ℎ𝑦, ℎ𝑡), (1)

where D stands for designed. In particular, 𝛾D0 is the nugget effect (in this context, the standard deviation of the sensor), and 𝛾D1 (ℎ𝑡), 
𝛾D2 (ℎ𝑡), and 𝛾D3 (ℎ𝑥, ℎ𝑦, ℎ𝑡) are functions that depend on a set of parameters 𝑎1, … , 𝑎10 and 𝑏1 that must be adjusted:

• 𝛾D1 (ℎ𝑡) models the purely temporal evolution of STV following a sigmoid that goes from 𝑎1 to 𝑎2 as |ℎ𝑡| grows, with 𝑎3 and 𝑎4
setting respectively its medium time and slope. Its expression is given by:

𝛾D1 (ℎ𝑡) = 𝑎1 +
𝑎2

1 + 𝑒

−(ℎ𝑡+𝑎3)
𝑎4

,

• 𝛾D2 (ℎ𝑡) modulates the amplitude of 𝛾D3 (ℎ𝑥, ℎ𝑦, ℎ𝑡) with the time lag ℎ𝑡, and follows an inverse sigmoid that decreases to 0 as ℎ𝑡
grows. Parameters 𝑎5 and 𝑎6 play an analogous role to that of 𝑎3 and 𝑎4. Its expression has been designed as:

𝛾D2 (ℎ𝑡) =
𝑏1

1 + 𝑒

ℎ𝑡−𝑎5
𝑎6

.

Regarding its initial value, parameter 𝑏1 is set as:

𝑏1 = −𝛾D0 +
⎛⎜⎜⎝𝑎1 +

𝑎2

1 + 𝑒
− 𝑎3
𝑎4

⎞⎟⎟⎠ ⋅
(
1 + 𝑒

− 𝑎5
𝑎6

)
,

to guarantee that 𝛾D(0, 0, 0) = 𝛾D0 , so that the variance of a measurement in the same spot and at the same time coincides with 
the nugget effect (the only uncertainty is that of the sensor). By setting 𝑏1 in this manner, we ensure that the model’s variance at 
the origin accurately reflects only the sensor’s uncertainty, thus anchoring the model’s response surface to a known baseline.

• 𝛾D3 (ℎ𝑥, ℎ𝑦, ℎ𝑡) corresponds to a bidimensional Gaussian function given by:

𝛾D3 (ℎ𝑥,ℎ𝑦, ℎ𝑡) = exp (−(ℎ′
𝑥
(ℎ𝑥,ℎ𝑡) + ℎ′

𝑦
(ℎ𝑦,ℎ𝑡))).

This function goes from 1 to 0 as the sum of the modified distance lags:

ℎ′
𝑥
(ℎ𝑥,ℎ𝑡) =

ℎ𝑥 − 𝑎7 ⋅ 𝑣W𝑥 ⋅ ℎ𝑡
𝑎8

, ℎ′
𝑦
(ℎ𝑦,ℎ𝑡) =

ℎ𝑦 − 𝑎9 ⋅ 𝑣W𝑦 ⋅ ℎ𝑡
𝑎10

,

grows. These lags set the center of the Gaussian function considering the displacement of the cloud in time, which is given by 
the product of ℎ𝑡 and the wind speed components in the 𝑋 and 𝑌 axis, 𝑣W𝑥 and 𝑣W𝑦, which are weighed by 𝑎7 and 𝑎9, and 
the distance lags ℎ𝑥 and ℎ𝑦, which are again weighed by parameters 𝑎8 and 𝑎10. The rationale of including the wind velocity is 
that the STV can be adjusted with data of any wind direction and velocity. Also, note that if there is total certainty in the wind 
direction and speed, 𝑎7 and 𝑎9 must be identical.

Fig. 2 shows a STV. As can be seen, it becomes an upward-moving plane with a moving bump located at the spatio-temporal region 
where a measurement is more meaningful for the point and time where the cloud factor is to be estimated/predicted. That is, the lower 
the variogram, the stronger the effect of the corresponding measurements in the estimation/forecast. In general, 𝛾 increases with |ℎ𝑡|
until it saturates, with the bump moving upwind pointing out the most relevant measurements. For example, if cloud shadows are 
moving eastward at 10 meters per minute and the cloud factor of point (𝑥, 𝑦, 𝑡) is to be estimated using measurements only from 10
minutes ago, the most meaningful measurements will be those located 100 meters west of (𝑥, 𝑦). However, as |ℎ𝑡| increases so does 
the minimum 𝛾 , since there is more uncertainty.
4

1 For a given 𝑡 ∈  , forecasting is performed when time 𝑡 > max
𝜇∈′ (𝑥,𝑦,𝑡)

𝑡𝜇 ; otherwise, estimation is performed.
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Fig. 2. Temporal evolution of a STV: (a) represents the STV with the temporal lag being 0 seconds, (b) represents the STV with the temporal lag being 25 seconds, 
and (c) represents the STV with the temporal lag being 80 seconds.

2.1. Identification of the STV parameters

Tuning the parameters of the proposed STV (𝑎1, … , 𝑎10) can be done as follows:

1. Select ND randomly distributed points in space-time.

2. For each random point 𝑟 = (𝑥𝑟, 𝑦𝑟, 𝑡𝑟), compute its experimental semivariance 𝛾M
𝑟

in its surroundings using the cloud factor 
𝐶𝐹R(𝑥, 𝑦, 𝑡) and that of the points surrounding it 𝐶𝐹R(𝑥 + ℎ𝑥, 𝑦 + ℎ𝑦, 𝑡 + ℎ𝑡) using (2):

𝛾M
𝑟
(ℎ𝑥,ℎ𝑦, ℎ𝑡) =

1
2
⋅
(
𝐶𝐹R(𝑥𝑟 + ℎ𝑥, 𝑦𝑟 + ℎ𝑦, 𝑡𝑟 + ℎ𝑡) −𝐶𝐹R(𝑥𝑟, 𝑦𝑟, 𝑡𝑟)

)2
, ℎ𝑥 ∈x, ℎ𝑦 ∈y,

ℎ𝑡 ∈t , (2)

where 𝛾M
𝑟

is the measured gamma for point 𝑟, and x, y , and t are sets of predefined distances and time lags. Note that t
will only have negative values since, obviously, future measurements cannot be used. x and y will have negative and positive 
values with higher resolution upwind.

3. Use these ND ⋅ |x| ⋅ |y| ⋅ |t | points to compute the |x| ⋅ |y| ⋅ |t | points of the experimental STV by averaging, where | ⋅ |
denotes the cardinality of the corresponding set, by (3):

𝛾M(ℎ𝑥,ℎ𝑦, ℎ𝑡) =
1
ND

⋅
ND∑
𝑟=1

𝛾M
𝑟
(ℎ𝑥,ℎ𝑦, ℎ𝑡), ℎ𝑥 ∈x, ℎ𝑦 ∈y, ℎ𝑡 ∈t . (3)

4. Finally, the values of the parameters of the STV are obtained by minimizing the error between the designed STV 𝛾D(ℎ𝑥, ℎ𝑦, ℎ𝑡) 
and the experimental one, 𝛾M(ℎ𝑥, ℎ𝑦, ℎ𝑡), by (4):

𝐽D =
∑
ℎ𝑡∈t

𝐽D
𝑡
, (4)

with

𝐽D
𝑡
=

∑
ℎ𝑥∈x

∑
ℎ𝑦∈y

|𝛾M(ℎ𝑥,ℎ𝑦, ℎ𝑡) − 𝛾D(ℎ𝑥,ℎ𝑦, ℎ𝑡)| ℎ𝑡 ∈t .

Since this optimization is non-convex, it is necessary to run the optimization algorithm from many different initial points to avoid 
local minima.

2.2. The point of minimum semivariance and the selection of measurements

To estimate the cloud factor of point (𝑥𝑐 , 𝑦𝑐) at time 𝑡, it is necessary to define the point of minimum semivariance as the point with 
the most significant measurement according to the STV. Considering the STV proposed in (1), this point can be computed as:

𝑝𝑚𝑠(𝑥, 𝑦,ℎ𝑡) =
[
𝑥𝑚𝑠(𝑥, 𝑦,ℎ𝑡)
𝑦𝑚𝑠(𝑥, 𝑦,ℎ𝑡)

]
=

[
𝑥− 𝑎7

𝑎8
⋅ 𝑣W𝑥 ⋅ ℎ𝑡

𝑦− 𝑎9
𝑎10

⋅ 𝑣W𝑦 ⋅ ℎ𝑡

]
Then, the measurement set ′(𝑥, 𝑦, 𝑡) used for the estimation is selected as shown in Fig. 3. In particular, measurements are 

taken considering a temporal threshold, 𝑅T , and a spatial threshold, 𝑅D , based on their distance to 𝑝𝑚𝑠. Finally, measurements are 
5

evaluated using 𝛾D and sorted in decreasing order, so that the first 𝑅M are chosen.
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Fig. 3. A mesh of 24 sensors takes 24 measurements per time instant with 𝑅T = 2, i.e., only the current instant and the two previous instants are considered, having 
a total of V = 72 measurements (in red, green or blue depending on whether they were taken at 𝑡, 𝑡 − 1 or 𝑡 − 2 respectively). The position of the point of minimum 
semivariance in 𝑡, 𝑡 − 1 and 𝑡 − 2 is represented with a red, green and blue cross, and a circle with 𝑅D radius is represented in the same color. Then, ′(𝑥, 𝑦, 𝑡) will 
be composed of red measurements inside the red circle plus green measurements inside the green circle plus blue measurements inside the blue circle. Note that even 
though 𝑠8 and 𝑠12 are very close to the point where the estimation is wanted, it makes no sense to use measurements from these sensors of the instant 𝑡 −2.

3. Case study and results

In this section the case-study used to test the proposed method is presented. Particularly, Subsection 3.1 describes how the synthetic 
CF data were generated, Subsection 3.2 describes the process of adjusting the theoretic variogram in (1) to the data, in Subsection 3.3

the algorithm used for comparison is presented, and in Subsection 3.4 both algorithms are tested.

3.1. Data generation

Obtaining an accurate STV requires spatially distributed dynamic maps, which ideally involve a dense network of sensors. Such 
setups are cost-prohibitive due to high expenses in sensor deployment and maintenance. Therefore, generating data computationally 
provides a feasible and economical alternative that allows for extensive spatial analysis. Clouds are modeled as clusters of ellipsoids 
in random directions contained within a larger ellipsoid with random Gaussian dimensions following [25]; see, e.g., Fig. 1b. Wind is 
considered as a vectorial field in the volume contained within the limits of the plant area, the ground, and the maximum height of 
the cumulus clouds (2000 meters). It is important to keep in mind that the higher the altitude the faster the wind becomes, following 
the well-known Hellmann equation:

𝑣W
𝑣oW

=
(
ℎW
ℎoW

)𝛼

where 𝑣W is the speed of wind at height ℎW and 𝑣oW is the speed of wind at the measurement height ℎoW; 𝛼 is the Hellmann coefficient, 
which depends on the type of terrain. In this work, it is assumed that 𝛼 = 0.2, which corresponds to a moderately rough terrain.

Given the turbulent nature of the wind, it is also considered that in each of the mesh cells there is a disturbance  (0, 𝜎V) ∈ℝ3. 
Since the velocity field is available, the velocity of each cloud at each time instant can be interpolated. Then, Spencer equations [26]

can be used to obtain solar rays from the center of each cell (here, cells are 20 × 20 𝑚2) and calculate their interference with clouds, 
assigning larger values of 𝐶𝐹 if the interference of the solar rays with a cloud is significant, and lower values otherwise. By generating 
random clouds and various wind fields as described above, different data sequences have been generated as shown here.2

3.2. Obtention of the variogram and adjustment to theoretical model

To compute the STV, ND = 500000 random points {𝑥𝑦𝑡} have been generated and then a spatio-temporal mesh has been created 
surrounding each point, by defining x, y , t (see (5)), to use (2) and (3).
6
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Table 1

Adjusted parameters of the proposed 
spatio-temporal variogram.

𝑎1 0.0994 𝑎6 55.5886
𝑎2 0.0047 𝑎7 −0.2041
𝑎3 40000.0921 𝑎8 72.3831
𝑎4 2001.8875 𝑎9 −0.2041
𝑎5 −589.0172 𝑎10 80.2274

x =y = [−1200,−1100,… ,−100,−80,… ,−20,0,200,… ,1200] m,

t = [−200,−180,… ,−40,−30,−25,… ,−10,−8,… ,0] s.
(5)

For the sake of accuracy, the mesh is denser upwind since the most significant measurements in the past are those in the upwind 
direction and farther away. In addition, as it was previously explained the significance of measurements decreases with time. Fig. 2

represents its spatial variation for ℎ𝑡 = 0 seconds (Fig. 2a), ℎ𝑡 = −25 seconds (Fig. 2b), and ℎ𝑡 = −80 seconds (Fig. 2c) considering 
the velocity of the cloud shadows 𝑣W = [2, 2].

Parameters 𝑎1, … , 𝑎10 in equation (1) were adjusted using the fmincon optimization algorithm in MATLAB® to minimize equa-

tion (4), thereby obtaining the parameter values as listed in Table 1. The adjustment process consisted of employing SQP algorithms 
within fmincon to fine-tune the parameter values, in order to minimize the discrepancy between the model output and observed 
data, as defined by equation (1). For the sake of simplicity, 𝛾D0 is set to 0 in this work. In Fig. 4, the adjusted proposed function, 
𝛾D(ℎ𝑥, ℎ𝑦, ℎ𝑡) (Fig. 4a-4c), along with |𝛾M(ℎ𝑥, ℎ𝑦, ℎ𝑡) − 𝛾D(ℎ𝑥, ℎ𝑦, ℎ𝑡)| (Fig. 4d-4f) are shown in the same temporal slices that were 
presented in Fig. 2.

3.3. Baseline variogram and adjustment

The algorithm PolyS presented in [23] is used for comparison. This algorithm relies on the covariance function given by:

PS(ℎ1, ℎ2, ℎ𝑡) = FS(ℎ1, ℎ2, ℎ𝑡) + 𝜆 ⋅ Diff (ℎ1, ℎ2, ℎ𝑡),

FS(ℎ1, ℎ2, ℎ𝑡) =
1 − 𝜈

1 + 𝑎 ⋅ |ℎ𝑡|2⋅𝛼 ⋅
⎡⎢⎢⎣𝑒

−
𝑐⋅
√
ℎ21+ℎ

2
1

(1+𝑎⋅|ℎ𝑡|2⋅𝛼 )𝛽∕2 + 𝜈

1 − 𝜈
⋅ ℎ=0

⎤⎥⎥⎦ ,
Diff (ℎ1, ℎ2, ℎ𝑡) = |ℎ𝑡|>0 ⋅ ℎ1>0[𝐾1(|ℎ𝑡|) ⋅ ℎ1 +𝐾2(|ℎ𝑡|) ⋅ |ℎ2|+𝐾3(|ℎ𝑡|) ⋅ ℎ1 ⋅ |ℎ2|+

+𝐾4(|ℎ𝑡|) ⋅ ℎ21 +𝐾5(|ℎ𝑡|) ⋅ ℎ22 +𝐾6(|ℎ𝑡|)]+,
with ℎ1 and ℎ2 the lag in the wind direction and its perpendicular respectively,  indicator functions, 𝜈 the nugget effect, and a set 
of parameters that need to be adjusted (𝑎, 𝑐, 𝛼, 𝛽, 𝜆, and a six 𝐾 ’s for each ℎ𝑡 considered). Then, considering that the semivariogram 
and the covariance are related by 𝛾PS(ℎ𝑥, ℎ𝑦, ℎ𝑡) = PS(∞, ∞, ∞) −PS(ℎ𝑥, ℎ𝑦, ℎ𝑡) and that the coordinates ℎ1, ℎ2, can be transformed 
into ℎ𝑥, ℎ𝑦 simply by a rotation, the same method as before can be used to adjust the parameters, i.e., fmincon in MATLAB® was 
used to minimize:

𝐽PS =
∑
ℎ𝑡∈t

𝐽PS
𝑡
,

with

𝐽PS
𝑡

=
∑

ℎ𝑥∈x

∑
ℎ𝑦∈y

|𝛾M(ℎ𝑥,ℎ𝑦, ℎ𝑡) − 𝛾PS(ℎ𝑥,ℎ𝑦, ℎ𝑡)| ℎ𝑡 ∈t ,

obtaining 𝑎 = 5.9254, 𝑐 = 1.2491, 𝛼 = 0.2786, 𝛽 = 0.4592, 𝜆 = 4.6955, and, since the nugget effect is disregarded, 𝜈 = 0 = 𝛾D0 . However, 
by using this method, one set of six 𝐾 ’s for each ℎ𝑡 ∈ t is obtained. To obtain continuous 𝐾 that allow us to use the STV with 
measurements at any temporal lag polynomial interpolation is used and the coefficients obtained can be seen in Table 2. In Fig. 5

the adjusted proposed function, 𝛾PS(ℎ𝑥, ℎ𝑦, ℎ𝑡) (Fig. 5a-5c), along with |𝛾M(ℎ𝑥, ℎ𝑦, ℎ𝑡) − 𝛾PS(ℎ𝑥, ℎ𝑦, ℎ𝑡)| (Fig. 5d-5f) are shown in the 
same temporal slices that were presented in Fig. 2.

A video containing ℎ𝑡 ∈𝑡 can be seen here.3 The graph shows the experimental values on the left, the proposed adjusted function 
in the second place, the error between the former and the obtained data in the third place, the adjusted PolyS in the fourth place, and 
finally, the error between the PolyS and the experimental data is depicted on the right.
7
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Fig. 4. 𝛾D time slices: (a-c) represent the 𝛾D with the temporal lag being 0, 25, and 80 seconds respectively, and (d-f) represent the error with the STV with the same 
temporal lags.

Table 2

𝐾 values in form 𝐾𝑖 = 𝑐1 ⋅ |ℎ𝑡|3 + 𝑐2 ⋅ |ℎ𝑡|2 + 𝑐3 ⋅ |ℎ𝑡| + 𝑐4 .

𝑐1 ⋅ 108 𝑐2 ⋅ 106 𝑐3 ⋅ 104 𝑐4 ⋅ 104

𝐾1 0.0114 −0.0393 0.0361 −0.3667
𝐾2 0.0109 0.0382 0.0357 −0.05541
𝐾3 −0.0002 0.0006 −0.0005 0.0035
𝐾4 0.0001 0.0002 −0.0002 0.0023
𝐾5 −0.0001 0.0002 −0.0002 −0.0004
𝐾6 0.4505 1.5310 −1.4394 9.8246

3.4. Map estimation results

In this subsection a field of 5000 × 2000 meters (based on a typical CST), was meshed into a 250 × 50 grid, i.e., in 20 × 20 meters 
cells.

3.4.1. Sensor meshes

The spatio-temporal Kriging was tested in 2 different scenarios: one with sensors every 500 meters (coarse mesh scenario) and 
another one with sensors every 200 meters (fine mesh scenario). The temporal range, the spatial range and the maximum number of 
measurements were adjusted manually in both scenarios, and their values can be seen in Table 3.

3.4.2. Random instant analysis

In order to test the effectiveness of the algorithm a specific time instant 𝑡⋆ = 3670 is randomly selected, which can be seen in Fig. 6a. 
Some previous instants are used to gain insight on the selected one, namely 𝑡⋆ − 60 = 3610, 𝑡⋆ − 180 = 3490, and 𝑡⋆ − 300 = 3370, 
which are also shown in Fig. 6b, Fig. 6c, and Fig. 6d respectively. Note that instant 3370 is the least significant instant for their 
estimation since time range is 300 seconds. All these time frames can also be seen here.4

First, the ability of the fine mesh to estimate the complete map at 𝑡⋆ (see Fig. 7a) has been tested (the results are shown in Fig. 7b) 
obtaining 𝐸𝑡 = 0.05132. Next, the very short-term (1 minutes in advance) forecast estimation is assessed obtaining 𝐸𝑡 = 0.05591, i.e., 
only 8.9% worse than the real time estimation (see Fig. 7c). Finally, for the short-term (5 minute in advance) forecast estimation 
8
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Fig. 5. 𝛾PS time slices: (a-c) represent the 𝛾PS with the temporal lag being 0, 25, and 80 seconds respectively, and (d-f) represent the error with the STV with the same 
temporal lags.

Table 3

Ranges for kriging.

Fine Mesh of sensors Coarse mesh of sensors

𝑅T [s] 300 300
𝑅D [m] 220 560
𝑅M [measurements] 40 200

(which can be seen in Fig. 7d) 𝐸𝑡 = 0.08189 is obtained, which is 58.56% worse than the current estimation. Note that the most 
relevant clouds (the ones around [1200, 600], [2000, 800], [2600, 700], [4400, 800], and [4600, 800]) can be seen in the short term 
estimation.

Then, the ability of the coarse mesh to estimate the instant 𝑡⋆ (see Fig. 8a) is checked (results that can be seen in Fig. 8b) obtaining 
𝐸𝑡 = 0.08231. Next, the very-short-term forecasting capability is checked by estimating the DNI along the plant 1 minute in advance 
(see Fig. 8c), obtaining an average error of 𝐸𝑡 = 0.08794, which is 6.85% worse than the real time estimation. Finally, the short-term 
forecasting capability (5 minutes in advance) using the coarse mesh is tested (see Fig. 8d) obtaining 𝐸𝑡 = 0.09833, which is 19.47%
worse than the real time estimation.

As can be seen in Fig. 7 and Fig. 8, the estimation becomes fuzzier as the forecasting time increases. Also, note that the relative 
decrease in performance with this parameter in the coarse mesh is less than in the fine mesh, but the real time estimation is 60.37%
worse with the coarse mesh.

3.4.3. Averaging results

The 𝐸𝑡 in the two meshes was also compared with different forecasts, from 1 to 5 minutes during a 10-minute simulation from 
𝑡1 = 337 until 𝑡T = 349 (randomly selected) to study how it varies with it. The averaged results can be seen in Fig. 9 and a video can 
be seen here.5 Note that the error increases as the forecasting time does. However, this increase is greater with the coarse mesh than 
with the fine one.

Then, 100 random points were taken where the current estimation and 1, 2, 3, 4, and 5 minutes forecasts were performed during 
the 11 hours simulation and the error was averaged, obtaining the results in Fig. 10a. Also, in order to test the forecasting capacity 
of both algorithms in a point where there is a sensor, the same test was performed considering the 4 points where there is a sensor 
in both the fine and the coarse meshes ([1000, 1000], [2000, 100], [3000, 1000], and [4000, 1000]) obtaining the results in Fig. 10b.
9
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Fig. 6. Simulated data in different interesting time instants. (a) represents the real CF in 𝑡⋆ , (b) represents the real CF one minute before 𝑡⋆ , (c) represents the real CF 
three minutes before 𝑡⋆ , and (d) represents the real CF five minutes before 𝑡⋆. The video can be seen here.

Fig. 7. Comparison between kriging estimation with fine mesh and real DNI. (a) represents the real CF in 𝑡⋆ , (b) represents the estimation obtained in 𝑡⋆ , (c) represents 
the forecasting of 𝑡⋆ done one minute before, and (d) represents the forecasting of 𝑡⋆ done five minutes before. Red dots represent sensors of the fine mesh.

Finally, a summary comparing both methods is shown in Table 4. It can be seen that the proposed method outperforms the one in 
the literature for the estimation and the forecasting except for the 5 minutes forecasting with the coarse mesh, where similar results 
were obtained. Also, it can be seen that the improvement is greater for estimation or nowcasting, rather than for short-term forecasting 
because performance decreases with forecasting time.

4. Conclusions

A novel anisotropic STV considering the direction and speed of the wind is presented here. The proposed method can be used 
to obtain spatially distributed estimation of DNI and short-term forecast estimations and outperforms another recent method in the 
literature for the considered application.

The spatio-temporal kriging technique provides an estimation of the variables measured and the standard deviation at each 
point of the map. Therefore, a similar strategy to the one in [11] can be carried out, paving the way to replace the wireless sensor 
network proposed here by a robotic sensor network. In addition, kriging also offers the possibility of integrating different types of 
data. Currently, other sources of data such as the temperature sensors of the loops are in the process of being included, which can 
help estimate the DNI received by the loops [27]. Furthermore, following [28] estimations of DNI through video cameras will be 
incorporated, which can be available at the plant at present and that can be integrated in aerial robots in the future. Finally, this 
10

method could be enhanced by machine-learning hybrid techniques as the ones presented in [29], [30], and [31].
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Fig. 8. Comparison between kriging estimation with coarse mesh and real DNI. (a) represents the real CF in 𝑡⋆ , (b) represents the estimation obtained in 𝑡⋆ , (c) 
represents the forecasting of 𝑡⋆ done one minute before, and (d) represents the forecasting of 𝑡⋆ done five minutes before. Red dots represent sensors of the coarse 
mesh.

Fig. 9. Mean error of the current estimation and the forecasted estimations with different forecasting times (1, 2, 3, 4, and 5 minutes) in both sensor meshes during 
the time interval that goes from 𝑡1 = 3370 seconds to 𝑡T = 3970 seconds. A video of the current estimation and the forecasts during this time interval can be seen here.

Table 4

Comparison of our proposal and the baseline method.

Prop./PolyS Fine Mesh Coarse Mesh

Forecasting time [min] 0 1 2 3 4 5 0 1 2 3 4 5

Random points 0.69 0.69 0.71 0.73 0.74 0.78 0.88 0.91 0.92 0.94 0.96 0.99
In sensors NA 0.67 0.80 0.77 0.77 0.81 NA 0.63 0.87 0.98 0.95 1.03
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Fig. 10. Average error during the complete simulation. (a) represents the average of the error among 100 random points, and (b) represents the average error on those 
points where there are sensors on both meshes.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing 
interests: Eduardo Fernandez Camacho reports was provided by European Research Council (grant agreement No 789051). Jose 
Maria Maestre Torreblanca reports financial support was provided by Spain Ministry of Science and Innovation (Grant no. PID2023-

152876OB-I00). If there are other authors, they declare that they have no known competing financial interests or personal relation-

ships that could have appeared to influence the work reported in this paper.

Acknowledgements

This project has been funded by the European Research Council (ERC) project OCONTSOLAR (grant agreement No 789051) under 
the European Union Horizon 2020 Research and Innovation Programme, and by the Ministry of Science, Innovation and Universities, 
Spain /10.13039/501100011033 for the project C3PO-R3 (Grant no. PID2023-152876OB-I00).

Data availability

All data required to support this study is available on request.

References

[1] G.R. Timilsina, Are renewable energy technologies cost competitive for electricity generation? Renew. Energy 180 (2021) 658–672.

[2] J. Lilliestam, R. Pitz-Paal, Concentrating solar power for less than USD 0.07 per kWh: finally the breakthrough? Renew. Energy Focus 26 (2018) 17–21.

[3] E.F. Camacho, M. Berenguel, Control of solar energy systems, IFAC Proc. Vol. 45 (15) (2012) 848–855.

[4] J.R.D. Frejo, E.F. Camacho, Centralized and Distributed Model Predictive Control for the maximization of the thermal power of solar parabolic-trough plants, 
Sol. Energy 204 (2020) 190–199.

[5] A.J. Sánchez, A.J. Gallego, J.M. Escaño, E.F. Camacho, Event-based MPC for defocusing and power production of a parabolic trough plant under power limitation, 
Sol. Energy 174 (2018) 570–581.

[6] A.J. Sánchez, A.J. Gallego, J.M. Escaño, E.F. Camacho, Temperature homogenization of a solar trough field for performance improvement, Sol. Energy 165 
(2018) 1–9.

[7] B. Nouri, S. Wilbert, N. Blum, P. Kuhn, T. Schmidt, Z. Yasser, T. Schmidt, L.F. Zarzalejo, F.M. Lopes, H.G. Silva, et al., Evaluation of an All Sky Imager Based 
Nowcasting System for Distinct Conditions and Five Sites, AIP Conference Proceedings, vol. 2303, AIP Publishing LLC, 2020, p. 180006.

[8] V. Bone, J. Pidgeon, M. Kearney, A. Veeraragavan, Intra-hour direct normal irradiance forecasting through adaptive clear-sky modelling and cloud tracking, Sol. 
Energy 159 (2018) 852–867.

[9] J.M. Aguilar López, R.A. García Rodríguez, E.F. Camacho, Algoritmo para la Detección de Formas Aplicable a la Estimación Solar, Rev. Iberoam. Autom. Inform. 
Ind. 18 (3) (2021) 277–287.

[10] J.M. Aguilar-López, R.A. García, A.J. Sánchez, A.J. Gallego, E.F. Camacho, Mobile sensor for clouds shadow detection and direct normal irradiance estimation, 
Sol. Energy 237 (2022) 470–482.

[11] J. Martin, J. Maestre, E. Camacho, Spatial irradiance estimation in a thermosolar power plant by a mobile robot sensor network, Sol. Energy 220 (2021) 735–744.

[12] C.K. Williams, Prediction with Gaussian processes: from linear regression to linear prediction and beyond, in: Learning in Graphical Models, Springer, 1998, 
pp. 599–621.

[13] G. Matheron, Principles of geostatistics, Econ. Geol. 58 (8) (1963) 1246–1266.

[14] N. Cressie, C.K. Wikle, Statistics for Spatio-Temporal Data, John Wiley & Sons, 2015.

[15] V. Roy, A. Simonetto, G. Leus, Spatio-temporal sensor management for environmental field estimation, Signal Process. 128 (2016) 369–381.

[16] V. Roy, A. Simonetto, G. Leus, Spatio-temporal field estimation using kriged Kalman filter (KKF) with sparsity-enforcing sensor placement, Sensors 18 (6) (2018) 
12

1778.

http://refhub.elsevier.com/S2405-8440(24)15278-4/bibDB587D7ACC4B37305E3AD0AF69F9E129s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib7126642103E7B09535D5013B26001487s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib45997D653B87A4F3102DB6E2E2651D4Es1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibDD2619106D4F137A033B992ED30AC9EDs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibDD2619106D4F137A033B992ED30AC9EDs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib9C2DEAC73EA8FD8A46AC2C3A3CCE4959s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib9C2DEAC73EA8FD8A46AC2C3A3CCE4959s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib5D11660779078734EA0F6E9155AA4788s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib5D11660779078734EA0F6E9155AA4788s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib7451BAD5BDAC9C6B9BC551966F2626F8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib7451BAD5BDAC9C6B9BC551966F2626F8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib3058567C3A5F1C22D6208061657AD4EBs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib3058567C3A5F1C22D6208061657AD4EBs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibEE912B52CCE553C7D9291AC517A4C5D8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibEE912B52CCE553C7D9291AC517A4C5D8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib811C2EA78E632913FB7BF10A2E3257B9s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib811C2EA78E632913FB7BF10A2E3257B9s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib7956C1435B57748CF5D6B4C56B7B1553s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib6AF8D19CCF7188C485EF483DD0E427E8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib6AF8D19CCF7188C485EF483DD0E427E8s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibC41170149004C85E582E58E1D4C4ACD0s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib4A46319E3339D20BD1F1F62825234F08s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib3A14586DB7D208C8434D124A7B3E9F77s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1884F801F955CE6C5B916D887ADB1D6Fs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1884F801F955CE6C5B916D887ADB1D6Fs1


Heliyon 10 (2024) e39247J.G. Martin, J.R.D. Frejo, J.M. Maestre et al.

[17] W. Wang, W. Cheng, J. Chen, Assessing and predicting nearshore seawater quality with spatio-temporal semivariograms: the case of coastal waters in Fujian 
province, China, ISPRS Int.l J. Geo-Inf. 13 (8) (2024) 292.

[18] R. Graham, J. Cortés, Adaptive information collection by robotic sensor networks for spatial estimation, IEEE Trans. Autom. Control 57 (6) (2011) 1404–1419.

[19] K. Masaba, M. Roznere, M. Jeong, A.Q. Li, Persistent monitoring of large environments with robot deployment scheduling in between remote sensing cycles, in: 
2024 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2024, pp. 8464–8470.

[20] D. Yang, C. Gu, Z. Dong, P. Jirutitijaroen, N. Chen, W.M. Walsh, Solar irradiance forecasting using spatial-temporal covariance structures and time-forward 
Kriging, Renew. Energy 60 (2013) 235–245.

[21] D. Yang, Z. Dong, T. Reindl, P. Jirutitijaroen, W.M. Walsh, Solar irradiance forecasting using spatio-temporal empirical Kriging and vector autoregressive models 
with parameter shrinkage, Sol. Energy 103 (2014) 550–562.

[22] R. Amaro e Silva, M. Brito, Impact of network layout and time resolution on spatio-temporal solar forecasting, Sol. Energy 163 (2018) 329–337.

[23] A.W. Aryaputera, D. Yang, L. Zhao, W.M. Walsh, Very short-term irradiance forecasting at unobserved locations using spatio-temporal Kriging, Sol. Energy 122 
(2015) 1266–1278.

[24] J. Nou, R. Chauvin, S. Thil, S. Grieu, A new approach to the real-time assessment of the clear-sky direct normal irradiance, Appl. Math. Model. 40 (15–16) (2016) 
7245–7264.

[25] G.P. Kulemin, Millimeter-Wave Radar Targets and Clutter, Artech House, 2003.

[26] J. Spencer, Fourier series reprensentation of the position of the Sun, Search 2 (5) (1971) 172.

[27] A. Gallego, E. Camacho, Estimation of effective solar irradiation using an unscented Kalman filter in a parabolic-trough field, Sol. Energy 86 (12) (2012) 
3512–3518.

[28] P. Kuhn, S. Wilbert, C. Prahl, D. Schüler, T. Haase, T. Hirsch, M. Wittmann, L. Ramirez, L. Zarzalejo, A. Meyer, et al., Shadow camera system for the generation 
of solar irradiance maps, Sol. Energy 157 (2017) 157–170.

[29] J.M. Tadić, V. Ilić, S. Ilić, M. Pavlović, V. Tadić, Hybrid machine learning and geostatistical methods for gap filling and predicting solar-induced fluorescence 
values, Remote Sens. 16 (10) (2024) 1707.

[30] G. Erdogan Erten, M. Yavuz, C.V. Deutsch, Combination of machine learning and Kriging for spatial estimation of geological attributes, Nat. Resour. Res. 31 (1) 
(2022) 191–213.

[31] T. Cui, D. Pagendam, M. Gilfedder, Gaussian process machine learning and Kriging for groundwater salinity interpolation, Environ. Model. Softw. 144 (2021) 
13

105170.

http://refhub.elsevier.com/S2405-8440(24)15278-4/bib88EB1BCACAAC9B2B9E05F7F4325E2E1Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib88EB1BCACAAC9B2B9E05F7F4325E2E1Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib0DB79E80F8A756E6451AAA3580D9AFF0s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibF2947E0B16E110F475E52C079EA7AC26s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibF2947E0B16E110F475E52C079EA7AC26s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib0A0BBD6A929690C5B9650B2B48DA2D84s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib0A0BBD6A929690C5B9650B2B48DA2D84s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1D96651A256C593767DD5A2A52A14938s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1D96651A256C593767DD5A2A52A14938s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibD59FB9BBF046A9CE0B5F3BBBF6D98D9Es1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib4C0CE722F6DD36A51B9AE6A60B7E7B6Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib4C0CE722F6DD36A51B9AE6A60B7E7B6Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib4BD3C516836D5ABB1D5D96F5B78AF5F7s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib4BD3C516836D5ABB1D5D96F5B78AF5F7s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib756EB55133801843A139E9E28AFD3DDDs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib24DD19ABE0110C00C372F139C7307F02s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib8DBA7BBB1D13733A4B245CE13E60D83Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib8DBA7BBB1D13733A4B245CE13E60D83Cs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibC549734520A707F1E9EAF64979085C8Ds1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibC549734520A707F1E9EAF64979085C8Ds1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibA1A81E9C1EB522FC4B2482ED8363E93Fs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bibA1A81E9C1EB522FC4B2482ED8363E93Fs1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1E228A7675A38E376CC3D39C35B6F98As1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib1E228A7675A38E376CC3D39C35B6F98As1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib207F72467061E036C03BFC7B76933AA6s1
http://refhub.elsevier.com/S2405-8440(24)15278-4/bib207F72467061E036C03BFC7B76933AA6s1

	Spatio-temporal Kriging for spatial irradiance estimation with short-term forecasting in a thermosolar power plant
	1 Introduction
	2 Spatial and temporal DNI mapping using Kriging
	2.1 Identification of the STV parameters
	2.2 The point of minimum semivariance and the selection of measurements

	3 Case study and results
	3.1 Data generation
	3.2 Obtention of the variogram and adjustment to theoretical model
	3.3 Baseline variogram and adjustment
	3.4 Map estimation results
	3.4.1 Sensor meshes
	3.4.2 Random instant analysis
	3.4.3 Averaging results


	4 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Data availability
	References


