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As animals age, they exhibit a suite of phenotypic changes, often including
reductions in movement and social behaviour (‘behavioural ageing’).
By altering an individual’s exposure to parasites, behavioural ageing
may influence infection status trajectories over the lifespan. However,
these processes could be confounded by age-related changes in other
phenotypic traits, or by selective disappearance of certain individuals
owing to parasite-induced mortality. Here, we uncover contrasting
age-related patterns of infection across three helminth parasites in wild
adult female red deer (Cervus elaphus). Counts of strongyle nematodes
(order: Strongylida) increased with age, while counts of liver fluke
(Fasciola hepatica) and tissue worm (Elaphostrongylus cervi) decreased,
and lungworm (Dictyocaulus) counts did not change. These relationships
could not be explained by socio-spatial behaviours, spatial structuring,
or selective disappearance, suggesting behavioural ageing is unlikely to
be responsible for driving age trends. Instead, social connectedness and
strongyle infection were positively correlated, such that direct age–infection
trends were directly contrasted with the effects implied by previously
documented behavioural ageing. This suggests that behavioural ageing
may reduce parasite exposure, potentially countering other age-related
changes. These findings demonstrate that different parasites can show
contrasting age trajectories depending on diverse intrinsic and extrinsic
factors, and that behaviour’s role in these processes is likely to be complex
and multidirectional.

This article is part of the discussion meeting issue ‘Understanding age
and society using natural populations’.

1. Introduction
An individual’s disease status depends on a combination of its exposure and
susceptibility to parasites [1,2]. Exposure is broadly a function of an individ-
ual’s social and spatial behaviour within the context of a population, and
between- and within-individual variation in behaviour can have important
consequences for infectious disease status [3–5]. In humans and wild animals,
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individuals alter their behaviour as they age [6,7], with a series of general changes characterized by reduced movement [8–
10] and sociality [10,11], and specifically a tendency towards positive interactions with specific individuals known as ‘social
selectivity’ [11–14]. Because these processes influence the way that individuals contact each other, they could affect rates of
exposure to pathogens, and therefore their infection probability [6]. Nevertheless, since behaviour has yet to be linked to
age-related changes in infection in a given population, the role of behavioural ageing in driving infection dynamics remains
unclear [6].

Behaviour could drive age-related changes in infection status through a series of mechanisms (see [6] for a review). For
example, individuals could alter their feeding locations as they age, which could move them into areas that are more or less
likely to support environmental parasites [5], or it could result in lower-quality resource intake, driving weaker immunity and
therefore greater susceptibility to infection [15]. Similarly, ageing individuals could become more socially isolated, potentially
driving decreased exposure to directly transmitted parasites [7,10]. More subtly, if ageing individuals tend to prefer a few close
associates over socializing broadly (i.e. showing increasing selectivity), this could drive an increase in modularity, with complex
outcomes for epidemiological dynamics [6,16]. However, age also alters other phenotypic and demographic changes that could
complicate these relationships. For example, ageing individuals experience a suite of physiological changes [17], many of which
affect the immune system (i.e. ‘immunosenescence’ [18–20]). Because these changes often result in increased susceptibility to
infection, the conventional wisdom is that individuals will exhibit a greater prevalence or burden of parasites as they senesce
[20–22]. Alternatively, individuals may acquire adaptive immunity to certain parasites as they become exposed, potentially
leading to an increase in immunity to these particular parasites [23]. Additionally, because parasites often exert survival costs on
their hosts, more heavily infected individuals may be more likely to die—a process known as ‘selective disappearance’—which
could produce a negative age–infection trend at the population level and may bias estimates of within-individual ageing
patterns [24,25]. The emergent pattern of infection status over the lifespan will depend on a combination of these factors.

Given these combined behavioural, immunological, and demographic changes, ageing individuals’ infection statuses could
be asynchronous and divergent for different parasite taxa, leading to an age-related shift in parasite community composition.
This possibility is supported by the literature on observed age–infection relationships, which comprises a wide diversity of
positive, negative, and nonlinear changes in prevalence and intensity of infection (e.g. [26–31]); however, most such studies
focus on one parasite taxon, and it is therefore unclear how often parasites show divergent age-related trends within a
population. These studies are likewise often cross-sectional rather than longitudinal (i.e. they do not follow the same known
individuals through time), and are therefore unable to identify and extricate selective disappearance effects ([24,25]; but see
[26,27,30]). This is an especially important gap in our understanding, particularly given that parasites are generally defined by
their ability to cause harm to their hosts [6,32] and will therefore likely drive patterns of disappearance. Additionally, because
studies rarely model variable age–infection relationships within a given population (which requires longitudinal data), it is
unclear how these processes drive variable infection trajectories over the lifespan [6]. Contrasting age trajectories for different
parasites in the same individuals within the same population may help to untangle the mechanisms underlying age–infection
trends more broadly.

Here, we examine how different helminth parasite counts change over the lifespan in a long-term study population of wild
red deer (Cervus elaphus), in which female deer are monitored from birth until their death, generally at least a decade later.
Building on a rigorous behavioural censusing operation [33] in a society with well understood spatial structuring [34], studies
have shown that female deer strongly alter their foraging and social behaviour as they age [9,10]. Specifically, they reduce
their home range sizes [9] as well as moving towards areas of lower density at the periphery of the population, and become
less socially connected [10]. The deer also feature high-resolution, individually tied egg and larval counts of multiple helminth
parasite taxa. These parasites infect individuals throughout their lives without inducing full immunity, and therefore exist
at high prevalence in the population, but with substantial within- and between-individual variation that enables testing of a
wide range of ecological questions [35]. Counts of these parasites fluctuate seasonally [35] and are influenced by allocation
of resources to reproduction [36], as well as having strong costs in terms of survival and reproduction [37]. Combining these
sources of information, this population is well suited to examining long-term age trajectories of infection by multiple parasites,
and the possible role of behaviour and demography in driving them. Specifically, we ask (i) how counts of multiple helminth
parasites change over the lifespan; (ii) whether these counts are influenced by spatial and social behaviours governing rates of
exposure; and (iii) whether these behaviours could explain or counteract the age-related changes we see.

2. Methods
(a) Study population
The study population was the individually monitored Isle of Rum red deer. This unmanaged wild population has been studied
since 1973 [33], with regular faecal parasite sampling since 2016 [35]. The deer are censused 40 times a year, with individuals
known by name and individually marked using a combination of coloured and patterned collars, tags, and ear punches. When
identified in a census, an individual’s location (to the nearest hectare) is recorded, providing it with an easting and northing
location in two-dimensional space; further, groups of deer are identified in the course of censusing and taken by the field
worker to be associating, forming the basis for the social network pipeline described below. The type of vegetation each deer is
on is noted.

The deer give birth in May and June, and daily censuses over the calving period allow >90% of calves to be caught, tagged
and weighed. The deer year runs from 1 May, and individuals are assigned an age in years based on the deer year they were
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born in; for example, all individuals turn 1 year old on 1 May the year after they were born. Forty study area censuses per
year allow us to keep track of each individual’s life history, and individuals have known death dates, generally to within one
month, and often to the day, allowing accurate quantification of mortality. Following our previous related work in this system
[10,34], here we assess mature females (3 years and older), as these are the best-understood age and sex class, with the largest
available dataset; young males disperse and few adult males live in the study area, and so males are less well sampled. Female
reproductive status in any year was coded as either ‘none’ (did not give birth that year), ‘summer’ (gave birth, but the calf died
before 1 October), or ‘winter’ (gave birth, but the calf died during its first winter, or was reared through its first winter). This
categorization is based on the relative costs of reproduction, which are observed to be high in individuals whose calf survives
to the winter, regardless of whether the calf then survives to the spring; these costs are reflected in terms of both parasitism and
fitness [36–38].

(b) Parasitology
We have previously described our parasitology monitoring regime in detail [35]. Briefly, three times a year (late April, August
and November), for two weeks at a time, we observe the deer intensively to collect faecal samples from as many individuals
as possible. After observing an individual defaecating, we collect the sample as soon as possible into a resealable plastic bag,
and at the end of the day, we homogenize it, and store it anaerobically (i.e. with the bag sealed) in a fridge at approximately
4°C until counting. By observing the individual and noting the location of the defaecation event itself, coupled with collection
within a short period (generally within an hour and most often within 10–20 min), we are able to tie samples to known
individuals.

We counted gastrointestinal helminth parasite propagules in these samples using a variety of techniques. We counted
strongyle nematode (order: Strongylida) eggs within three weeks of collection using a salt flotation–centrifugation technique,
where a gram of homogenized faecal matter was mixed with saturated salt solution and the mixture homogenized, causing
the eggs of a selection of parasites to rise to the surface, where they could be easily counted [35]. Liver fluke (Fasciola
hepatica) eggs were counted using a sedimentation technique, where a weighed amount of faecal matter was mixed with a
large amount of sediment and allowed to settle over 3 min, and the supernatant removed via vacuum suction. Finally, tissue
worm (Elaphostrongylus cervi) and lungworm (Dictyocaulus sp.) larvae were counted using a Baermannization technique. In this
method, a weighed amount of faecal matter was wrapped in porous cloth and submerged in water for 24 h to allow the mobile
larvae to escape, which were then reduced in volume by vacuum suctioning and preserved for counting. All techniques were
accurate to at least 1 egg or larva per gram. These different assays were required because of the different physical properties of
the propagules: strongyle eggs float in saturated salt solution, whereas fluke eggs are too heavy and must be sedimented, while
tissue worm and lungworms are alive and possible to isolate using their movement behaviour. Our salt flotation also detected a
number of other parasites (described in [35]), but they were present at low prevalence (<10%) in adult females, and therefore we
were less able to analyse how they changed with age.

Samples were collected between August 2016 and April 2021. Where multiple samples were collected for a given individual
in a given sampling trip, we took the mean of the counts to leave a maximum of one count per individual per sampling trip. We
did so because there were relatively few within-season repeats, and they were restricted to the beginning of the study (n = 654
repeats). Our final dataset included Ns = 1449 measurements taken from Ni = 210 individuals; some assays were not completed
for all samples, leaving Ns = 1433 F. hepatica measurements and Ns = 1126 E. cervi and Dictyocaulus measurements taken from
Ni = 209 individuals. The numbers of samples per individual and per sampling trip are displayed in electronic supplementary
material, table S2.

(c) Behavioural metrics
We examined how an individual’s behaviour was associated with its parasite burden. Building from our prior findings that
individuals alter a suite of socio-spatial behaviours as they age, we selected a series of behaviours to test. All such behaviours
are expected to influence some element of exposure to parasites, involving either movement to different areas on the landscape
or interactions with other individuals. We used all census observations of each individual in each year, including adults and
juveniles. We chose to include juveniles in the social network as they are heavily infected with parasites [35] and could therefore
play an important role in infecting older individuals. The behavioural metrics include:

Social network metrics: We constructed social networks as previously described [10,34]. Social connections were judged by
field workers based on a spatially parameterized ‘gambit of the group’ approach, where individuals within a certain distance of
each other were taken to be socializing (refer [10,34] for details), as described above. First, we took the average group size for
each individual across the year. Next, for each year, we constructed networks based on these associations, which we corrected
for observation bias using the simple ratio index [39] such that each dyad’s connection was scaled between 0 (never seen
together) and 1 (never seen apart). We then calculated two network metrics: degree centrality (i.e. the number of individuals
an individual was seen with over the course of a year) and strength centrality (i.e. the summed weighted connections to all
individuals over the year).

Local population density: We calculated local density using a previously described pipeline for this population [10,34], using
all observations of each individual in each year, including both adults and juvenile individuals. This approach uses a kernel
density estimator, taking individuals’ annual centroids and fitting a two-dimensional smooth to the distribution of the data,
producing a two-dimensional spatial distribution of the population. Individuals are then assigned a local density value based
on their location on this kernel.
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Spatial behaviour metrics: we included several metrics that quantitatively described an individual’s spatial behaviour in the
study area, all of which have been shown to change with age [10]. These included: population centroid distance (the distance
from the overall mean location of the population, which increases with age); graze type (the proportion of sightings in which an
individual was seen on high-quality grazing, which decreases with age); and home range area (built based on each individual’s
density distribution, which decreases with age).

Time lag: We examined how annual behaviour metrics from deer year t influenced parasite infection in deer year t + 1. To
put this in terms of calendar years, we examined how an individual’s behaviour from 1 May in year t to 30 April in year t + 1
affected its parasite burden in August in year t + 1, November in year t + 1 and April in year t + 2.

Although a relatively coarse annual measure of behaviour, individual-level repeatability of annual social network positions
is high [34], as is repeatability of annual measures of spatial fidelity and home range size [9,40], and previous work has
shown these measures to be ecologically relevant for individuals [10,34]. Using the previous deer year’s social network also
allowed us to accommodate the time lag of the influence of social connections on parasite burden (e.g. including parasites’
time to development and maturation and egg production, which generally take months to stabilize) and allowed us to avoid
confounding produced by analysing an individual’s social connectedness in a given deer year with its concurrent and earlier
parasite infection status, and possible reverse causality emerging from, e.g., avoidance responses [41]. That is, including
behavioural measures taken in deer year t in models examining parasite infection through deer year t would involve including
behavioural observations from post parasite sampling; because behaviours often change in response to infection, and often with
protective consequences that decrease the risk of infection [42]; this could drive complex and counterintuitive relationships with
parasitism that we were not intending to test. Finally, behaviour of the deer in this population is highly seasonal [33], as is
parasite infection [35]; using sub-annual measures of infection that differed between seasons might risk strong confounding
between behaviour and infection. As such, we judge our annual measures to be a reliable and parsimonious indicator of social
and spatial behaviour with relevance to the risk of parasite transmission over the lifespan.

(d) Models
Our dataset included 1449 measures of parasite counts in 210 individual deer, spread across 5 deer years and 15 collecting
seasons. To identify age-related changes in parasite burden and determine how they might arise, we fitted a selection of
generalized linear mixed models (GLMMs) using the integrated nested Laplace approximation (INLA) in R [43]. INLA is a
deterministic Bayesian algorithm that allows fitting of spatially distributed random effects (stochastic partial differentiation
equation (SPDE) effects, see below) to account for spatial autocorrelation in the response variable [44]. All models were fitted
with uninformative default priors. Models were checked by simulating from the model posteriors, and inspecting the predicted
against the observed values and examining them for uneven patterns. We calculated p-values from the posteriors using the
‘inla.pmarginal’ function, providing the probability of generating a result that overlapped with zero from the distribution. For
all models, continuous predictors were scaled to have a mean of 0 and a standard deviation of 1 before analysis. The model sets
we used were as follows.

Base models: First, we fitted models to understand individual age trajectories of parasitism in the population. We examined
each parasite count as a response variable with a negative binomial specification, given their strongly overdispersed distribu-
tion. We fitted explanatory variables including year (factor with five levels: deer years? 2016–2020); season (factor with three
levels: summer, autumn and spring); reproductive status (factor with three levels: none, summer and winter); age (continuous
covariate, range 3–24, mean 7.9). We ran these models both without and with a random effect of individual identity, to
examine how controlling for among-individual variation impacted our estimates of age effects. Using individual identity in
this way can help to distinguish within-individual ageing processes versus between-individual demographic processes [24];
fitting an ID effect and seeing the disappearance of an age effect would imply that age was only associated with infection at the
between-individual level.

Social models: Second, to identify the effects of a given behaviour on infection—and the effects of incorporating the said
effect on age–infection relationships—we ran a series of models, each of which added a behavioural metric to the base model.
We then investigated the mean estimate and 95% credible interval of this behavioural metric effect, and examined the impact
that its inclusion had on the age effect estimate to ask whether behaviour could be responsible. We fitted behavioural metrics
in a piecewise fashion—rather than adding them all at the same time—because the age-related changes tend to manifest as
correlated socio-spatial behaviour syndromes [10]. We excluded counts from the autumn, because their low values precluded
fitting as explanatory variables in our models. Adding all at the same time would risk substantial collinearity, and fitting them
one at a time allowed us to test our hypotheses effectively.

Spatial models: For each model, to identify whether our results were affected by spatial autocorrelation, we added a spatially
distributed SPDE effect [44–46] in INLA. This effect uses each individual’s average annual easting and northing to model how
spatial proximity drove individuals to have similar parasite counts, according to Matern covariance. Fitting this effect had
three purposes: (i) by comparing the fit of the spatial model with the base model, we could identify whether the parasite
counts were significantly spatially autocorrelated; (ii) by comparing the model estimates we could identify whether this spatial
autocorrelation was affecting our conclusions; and (iii) by plotting the effect in space we could identify spatial hotspot and
coldspot of infection [46]. To assess model fit, we used deviance information criterion (DIC), with a cutoff of −2ΔDIC to
distinguish between competitive models.

Survival models: Often, ageing models incorporate fixed effects of longevity to examine selective disappearance of certain
individuals [24]. We were unable to do this with our dataset, as it spanned 5 years running to the present; because many
individuals were yet to die, we did not have known longevity values for many of the data points, which reduced our models’
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power in this context. As such, to provide an approximate answer to this question, we fitted binomial survival models following
the previous methodology [37] to examine whether parasites were likely to be causing annual mortality in adult females (i.e.
the same dataset we were testing for age–infection associations), and therefore might be producing observed age–infection
relationships. With observations from each individual : deer year combination as the unit of investigation, we fitted overwinter
survival (0/1) as a response variable, with explanatory variables including: deer year; reproductive status; age; and a random
effect of individual identity, all as described above. We sequentially added each parasite count (log(X + 1)-transformed) as an
explanatory variable, one at a time, to investigate whether they correlated with subsequent survival. In our dataset, there was an
89.1% annual survival rate across the 6 years of sampling; of our 208 individuals in the survival models, 83 (40%) died. We note
that this is a relatively crude way of assessing selective disappearance effects that was necessitated by our dataset; depending
on the effects shown by the mortality assessments, we may or may not be able to infer an effect of selective disappearance using
such an analysis. However, this approach to detecting survival effects has high statistical power and has been used previously
to detect strong survival effects of parasitism [37], which is the central hypothesized cause of selective disappearance in this
context; this article expands on this analysis by including more data, confirming the patterns using an expanded dataset and
differently parameterized models, and by testing multiple pathogens.

3. Results
We found substantial contrasting age–infection relationships for three out of four parasites: there were small positive associa-
tions between age and strongyle count (figure 1a; mean effect estimate: 0.138, lower 95% credibility estimate: 0.014, upper 95%
credibility estimate: 0.261, p = 0.029), and moderate negative associations between age and liver fluke F. hepatica (figure 1b; 0.372,
−0.605, −0.141, p = 0.002) and tissue worm (E. cervi) count (figure 1c; −0.251, −0.364, −0.14, p < 0.001). Dictyocaulus lungworms,
meanwhile, showed no relationship with age (figure 1d; p > 0.05). All effect estimates and 95% credibility intervals are derived
from the mean of the posterior effect distribution; we report estimates here and in the model effects plots in units of standard
deviations, but to aid interpretation in the scale of the lifespan, in figures 1 and 2 they are reported and displayed in units of age
in years or degree centrality, respectively.

Spatial autocorrelation effects substantially improved the models for flukes and tissue worms (electronic supplementary
material, table S1; ΔDIC < −3), but not for strongyles or lungworms (electronic supplementary material, table S1; ΔDIC >
−2). These findings demonstrate that there was notable heterogeneity in parasite infection (electronic supplementary material,
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figure S2), but controlling for this effect did not impact our age estimates (figure 3a; electronic supplementary material, figure
S1), demonstrating that changes in spatial location were unlikely to be responsible for our observed age effects. There were
moderate density effects evident in the base models for E. cervi and F. hepatica, but these effects were removed when spatial
autocorrelation was controlled for (electronic supplementary material, figure S1). The spatial distributions of these parasites
largely agreed with earlier observations [46], with greater F. hepatica count in the south–middle of the study area and greater E.
cervi count in a slow gradient moving towards the north, particularly the northeast (electronic supplementary material, figure
S2).

In our behavioural models, we uncovered a moderate positive effect of degree centrality on strongyle infection (0.171,
0.052, 0.289, p = 0.005; see figure 2 for these represented on the data scale rather than in units of standard deviations). There
were a number of effects that were initially significant in our non-spatial models but their effects were removed when spatial
autocorrelation was accounted for (electronic supplementary material, figure S3), indicating that these behaviours were not
possible to extricate from spatial heterogeneity in the parasite’s distribution. There was likewise a moderate effect of annual
density on F. hepatica infection, which persisted when spatial autocorrelation was controlled for (−0.415, −0.796, −0.019, p = 0.04;
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electronic supplementary material, figure S3). In all cases, accounting for behaviours in the models had very little impact on the
age estimates (electronic supplementary material, figure S3), demonstrating that age-related changes in parasitism were largely
independent of behavioural effects.

We found that strongyle count was strongly associated with reduced overwinter survival probability (figure 3b; electronic
supplementary material, figure S4; −0.98, −1.47, −0.55, p < 0.001), agreeing with previous findings [37]. This finding remained
significant when spatial autocorrelation was controlled for (electronic supplementary material, figure S2). There were only
weak negative non-significant trends with the other parasites (figure 3b; electronic supplementary material, figure S2; p > 0.05).
Additionally, fitting random effects of individual identity substantially improved model fit (ΔDIC < −10; electronic supplemen-
tary material, table S1) but without notably affecting the age effect estimates (figure 3a). Taken together, these findings provide
little evidence for a role of selective disappearance in driving our observations, except for potentially obscuring the age–strongyle
trend. That is, our estimate for the age effect on the strongyle counts is a composite that likely includes a contrasting effect of
selective disappearance, and is therefore likely an underestimate.

4. Discussion
We uncovered substantial and contrasting age-related changes in parasite count across different parasites in a long-lived wild
mammal, which were not explained through considering behavioural or demographic factors. Ageing red deer experienced a
small increase in strongyle nematode counts, which contrasted with stronger age-related decreases in liver fluke (F. hepatica) and
tissue worm (E. cervi) counts. These findings add to a sparse body of longitudinal individual-based evidence for age-related
changes in parasite count in wild animals [20,21,26,27,30,47]. Accounting for and quantifying spatial autocorrelation and fitting
socio-spatial behavioural metrics in our models had no detectable effects on our age estimates, suggesting that these changes
were unlikely to be driven by previously documented behavioural ageing patterns and resulting changes in exposure rate [10].
Similarly, there was no evidence that selective disappearance of certain individuals was driving our observed trends, given
that survival costs were limited to strongyle infection and were insufficient to produce our observed trends. As such, these
observations do not suggest that behavioural ageing drives age-related changes in parasite infection in this system, and instead
imply that divergent age-related trends may arise for different parasites through changes in intrinsic (e.g. physiological or
immunological) traits.

Our observation that greater social connectedness predicted greater strongyle count agrees with the conventional wisdom
that infectious disease is a primary cost of sociality [48,49], but this trend was in the opposite direction to the direction we
expected if social behaviour was playing a role in driving age–infection relationships. That is, if individuals’ ageing behaviour
were driving the effect, because social connectedness decreases with age [10], we would expect strongyle count to likewise
decrease with age. Instead, these findings are more suggestive of the reverse: ageing individuals may reduce their exposure
to parasites as they decrease their social connectedness, which could ultimately minimize the effects of a waning immune
system for strongyles. Indeed, this mechanism has been theorized several times [7,10], and recently received strong support via
behavioural simulations [50]. If behavioural ageing is linked to reducing exposure owing to immunosenescence, because the
strength of natural selection is expected to wane in later life [51,52], it is unlikely that this is an adaptive response specifically
brought on by immunosenescence; instead, a relationship between behavioural ageing and infection could emerge through
more general behavioural compensation for a weak immune response that evolved in earlier life and persists as the animal
senesces. Such behavioural compensation is relatively common [53,54]: for example, Stephenson [55] demonstrated that guppies
(Poecilia reticulata) show stronger conspecific avoidance when they are more susceptible to infection. Although it has yet to be
shown that immunosenescence and social ageing are linked directly, our observations are consistent with a similar underlying
process for strongyles. Conversely, although we noted a negative correlation between density and F. hepatica infection, and
individuals tend to move to areas of lower density as they age [10], there was nevertheless a decrease in F. hepatica count with
age. Therefore, behaviour was likewise countering age-related changes—but in the reverse pattern, by potentially driving greater
exposure to F. hepatica—which were nevertheless counteracted by other phenotypic changes. Taken together, these findings
indicate that behaviour likely plays a plastic or buffering role in mediating the relationship between phenotypes, age and
infection as an individual ages.

It was also surprising that degree centrality—a social network metric—predicted strongyle count, rather than any spatial
behaviour metrics. This effect was relatively strong, and corresponded to roughly a doubling in strongyle count across the
range of degree centrality values (figure 2). This was perhaps unexpected as helminth parasites transmit indirectly, so we would
expect that incorporating spatial measures (rather than more direct measures of social contact) may be more representative
of indirect contact rates—and therefore of parasite counts [5]. For example, areas of higher density should be more intensely
used and therefore support greater larval concentrations on the pasture. Further, the spatial autocorrelation effects in the
models should account for age-related movements towards areas of variable transmission of certain parasites—for example, if
lower F. hepatica counts were driven by movements away from wetter areas tend to support transmission via their water snail
intermediate hosts [46]. Because social connections are parameterized according to spatiotemporal coincidence (i.e. they require
individuals to be in the same location at the same time), the measures derived from this metric could be more indicative of
between-individual helminth transmission, which could occur more on the timescale of days to months than years, even despite
the fact that both social and spatial behaviours were ultimately summarized at the annual level. Regardless of the ultimate
cause, these findings agree with the previous observation that social network position is both heavily intertwined with spatial
behaviour in this system and a biologically important stand-alone measure [10,34]. This finding adds notably to the literature on
spatial–social analysis in disease ecology, and accentuates the value of using both spatial and social metrics when quantifying
the drivers of infection status [5].
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Aside from behaviour, a variety of age-related changes could be responsible for divergent age trends among parasite taxa:
on the immune side, increasing strongyle counts could be driven by decreased resistance brought about by immunosenescence,
agreeing with previous observations in wild Soay sheep [21,56]. This observation disagrees with a previous finding that
strongylid infection decreases with age in African elephants, for example [31]; given that that investigation occurred at the
population level, it is possible that selective disappearance may have played a role in influencing this pattern in the elephants,
accentuating the benefit of longitudinal individual-based studies for testing age–infection questions like these. Meanwhile, the
decreasing F. hepatica and E. cervi counts could be indicative of acquired immunity over the lifespan, where older individuals
become gradually more resistant owing to repeated exposure. This agrees with conventional wisdom in livestock that many
ungulates can acquire an element of immunity to F. hepatica infection [57], but disagrees with observations of increased F.
hepatica prevalence in older age categories taken from wild studies [58].

It is unclear how and why age-related trends would diverge for strongyles compared to F. hepatica and E. cervi, and why
acquired immunity might play a greater role for the latter two rather than the former. Confirming a role for immunity would
require (i) measuring a suite of immune traits to examine how they change with age, and (ii) examining whether they correlate
with parasites and could therefore represent immune resistance (i.e. the ability to reduce parasite load) [59]. Given that the
strongyle counts were measured at the order level, and generally comprise a mixture of different species, one possibility is
that even within this parasite count there is age-related change in the community, with certain species dominating in early
years that are then replaced by higher-intensity infections with other species. Related to this, coinfecting parasites could interact
with each other, either facilitating or preventing each other establishing an infection in ways that contribute to the age-related
changes we observe [60]. For example, if strongyles and tissue worms compete indirectly by invoking the same immune
responses, age-related increases in strongyle intensity could result in a concurrent decrease in tissue worm count. Confirming
community-level changes like these would require more precise taxonomic identification of the constituent nematodes, e.g.
through DNA-based approaches [61,62]. A similar trend is less likely for the fluke and tissue worm counts, as these are more
likely to be counts of single homogenous species. Finally, another option—given that strongyles reside in the gut, unlike
the other two—is that these changes are mediated by gut-specific changes with age, for example in microbiota composition.
Ultimately, the fact that these reputedly similar macroparasites showed highly divergent trends with age is interesting, and
invites further investigation.

Overall, our results confirm that age-related changes in infection can vary substantially within the same system, and likely
depend on a complex combination of immune, behavioural, and demographic processes. Although we did not test specific
immunological drivers of the trends we observed, this study suggests that changes in exposure and demography through the
lifespan could play a complex role in age–infection interrelationships, and that changes in intrinsic (i.e. physiological) traits
might be relatively more important. Given the highly divergent age trajectories observed, this study confirms that ageing
individuals may not necessarily experience a greater overall parasite burden, but a different parasite community, which may
exert complex pressures on the age structure of the population. Understanding how and why parasite community structure
changes with host age—and the relative role of susceptibility and exposure in determining it—is likely to provide new insight
into parasite transmission and the ageing process in natural systems.
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