
Article
The m-opioid receptor diffe
rentiates two distinct
human nociceptive populations relevant to
clinical pain
Graphical abstract
Highlights
d OPRM1 expression in the human DRG distinguishes two

broad nociceptive populations

d OPRM1-positive nociceptors show molecular resemblance

to rodent peptidergic neurons

d Most OPRM1-negative nociceptors express the murine

superficial skin marker MRGPRD

d The k-opioid receptor gene OPRK1 is mainly expressed in

satellite glial cells
Staedtler et al., 2024, Cell Reports Medicine 5, 101788
October 15, 2024 Published by Elsevier Inc.
https://doi.org/10.1016/j.xcrm.2024.101788
Authors

Ellen S. Staedtler, Matthew R. Sapio,

Diana M. King, Dragan Maric,

Andre Ghetti, Andrew J. Mannes,

Michael J. Iadarola

Correspondence
ellen.staedtler@nih.gov (E.S.S.),
michael.iadarola@nih.gov (M.J.I.)

In brief

Staedtler et al. describe a dichotomy of

human nociceptors into OPRM1-

expressing neurons that share molecular

features with rodent peptidergic neurons

associated with tissue damage pain and

OPRM1-negative neurons that mostly

resemble murine non-peptidergic

neurons expressing the superficial skin

marker MRGPRD. This division provides

a cellular-molecular framework for human

pain control.
ll

mailto:ellen.staedtler@nih.gov
mailto:michael.iadarola@nih.gov
https://doi.org/10.1016/j.xcrm.2024.101788
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrm.2024.101788&domain=pdf


OPEN ACCESS

ll
Article

The m-opioid receptor differentiates
two distinct human nociceptive
populations relevant to clinical pain
Ellen S. Staedtler,1,4,* Matthew R. Sapio,1 Diana M. King,1 Dragan Maric,2 Andre Ghetti,3 Andrew J. Mannes,1

and Michael J. Iadarola1,5,*
1Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
2National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, Bethesda, MD 20892, USA
3AnaBios Corporation, San Diego, CA 92109, USA
4Present address: National Center for Complementary and Integrative Health, Bethesda, MD 20892, USA
5Lead contact

*Correspondence: ellen.staedtler@nih.gov (E.S.S.), michael.iadarola@nih.gov (M.J.I.)

https://doi.org/10.1016/j.xcrm.2024.101788
SUMMARY
The shortfall in new analgesic agents is a major impediment to reducing reliance on opioid medications for
control of severe pain. In both animals and man, attenuating nociceptive transmission from primary afferent
neurons with a m-opioid receptor agonist yields highly effective analgesia. Consequently, deeper molecular
characterization of human nociceptive afferents expressing OPRM1, the m-opioid receptor gene, is a key
component for advancing analgesic drug discovery and understanding clinical pain control. A co-expression
matrix for the m-opioid receptor and a variety of nociceptive channels as well as d- and k-opioid receptors is
established by multiplex in situ hybridization. Our results indicate anOPRM1-positive population with strong
molecular resemblance to rodent peptidergic C-nociceptors associated with tissue damage pain and an
OPRM1-negative population sharing molecular characteristics of murine non-peptidergic C-nociceptors.
The empirical identification of two distinct human nociceptive populations that differ profoundly in their pre-
sumed responsiveness to opioids provides an actionable translational framework for human pain control.
INTRODUCTION

Opioids acting at the m-opioid receptor are mainstays of clinical

management of severe tissue damage pain.1–3 Their adverse

side effect profile and the risk for addiction, however, impose

limits on clinical use and drive the search for alternative analgesic

targets.4–7 A crucial element of opioid analgesia is the inhibition

of transmission from nociceptive primary afferent neurons to

second-order neurons in the dorsal spinal cord,8–10 making

these afferents critical targets for analgesic drug development.

Understanding, identifying, and molecularly distinguishing the

most relevant ‘‘pain control neuron’’ are essential steps for

focusing analgesic drug development efforts. The idea that a

clinically relevant opioid receptor-expressing population is pre-

sent in the dorsal root ganglion (DRG) is supported by human

experimental pain studies that model clinically relevant pain.

These models frequently apply sustained experimental noxious

stimulation to skin and deep tissues, and significant pain reduc-

tion can be achieved by systemic opioids in response to variety

of exogenous stimuli including noxious heat, cold, pressure,

pinch, and ischemia (Tables S1–S5).11–14 The variety of stimuli

suggests that, in humans, m-opioid receptors are expressed

by heterogeneous and/or multimodal nociceptive afferent

populations.
Cell Reports Me
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Clinically relevant sustained pain from tissue damage is trans-

mitted mainly by unmyelinated C-fibers,15,16 supporting the idea

that C-nociceptors are the major targets of m-receptor agonists.

Based on rodent studies, C-nociceptors have been divided into

twomajor populations, with only one of them having the capacity

to transmit sustained pain from tissue damage.17–21 This popula-

tion has been classically termed ‘‘peptidergic’’ nociceptors

due to their production of algogenic peptides such as CGRP

(calcitonin gene-related peptide) and substance P. They also ex-

press the heat- and inflammation-activated ion channel TRPV1

(transient receptor potential vanilloid receptor 1), the m-opioid

receptor, and the neurotrophic receptor TrkA (tropomyosin

receptor kinase A)17,22–25 and innervate both skin and deep

tissues.23,26–28 By contrast, the second murine population,

termed ‘‘non-peptidergic’’ C-nociceptors, express low levels of -

neuropeptides and TRPV1, the d-opioid receptor, and the neuro-

trophic receptor GFRA2.19,21,29–31 The most prevalent non-pep-

tidergic population NP1 is marked by the expression of

the itch-related receptor MRGPRD (Mas-related G-protein-

coupled receptor D)21 and innervates exclusively the murine su-

perficial epidermis.32 The functional relevance of this division is

supported by mouse optogenetic studies that demonstrate

guarding behaviors, which are indicative of a sustained pain-

like experience, upon stimulation of peptidergic neurons. By
dicine 5, 101788, October 15, 2024 Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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contrast, stimulation of non-peptidergic MRGPRD+ neurons

causes reflexive paw withdrawal33,34 consistent with a proposal

that these neurons form a ‘‘biowarning’’ system that mediates

spinal reflex withdrawal prior to tissue damage.35,36 Importantly,

these neurons also contribute to pathological pain states such as

neuropathic pain.37–39

Sequencing studies of human somatosensory afferent tran-

scriptomes have revealed several nociceptive clusters that

mostly follow organizational principles of murine DRG neurons,

yet a precise delineation into the aforementioned main popula-

tions, including an unambiguous expression of low-expressed

G-protein-coupled receptors, such as opioid receptors or

MRGPRD, has not been achieved.40–42 Observations in humans

report a high degree of responsiveness to opioids in cases of se-

vere sustained pain, but minimal responsiveness to opioids to

short-lasting, threshold-level pain,1 and reduced responsive-

ness to neuropathic pain (Table S6).43–45 This suggests that

the basic division of nociceptors is also functionally true in hu-

mans. Thus, the aim of the present investigation is to identify

the population of DRG nociceptive neurons with the greatest

relevance to clinical pain control. Specifically, we hypothesize

that this population of human C-fiber neurons is represented

by neurons that express the nociresponsive ion channel

TRPV1 in conjunction with the m-opioid receptor. Therefore,

this population is sensitive to both opioid agonists and a variety

of nociceptive stimuli, making it relevant to tissue damage pain

and opioid analgesia. For the empirical identification of this pop-

ulation, we designed a comprehensive set of gene probes for

multiplex fluorescence in situ hybridization. This investigation

of human nociceptors provides insight into analgesic target vali-

dation which is a crucial component for achieving successful

translation. Specifically, confirming the expression of putative

analgesic targets in the most relevant nociceptive population ex-

pressing TRPV1 and OPRM1 is required for peripherally driven

analgesia.

RESULTS

We investigated human DRG neurons from four tissue donors for

the expression of TRPV1 and OPRM1. Data from a variety of

probe pairs were integrated to obtain a comprehensive picture
Figure 1. OPRM1-positive and OPRM1-negative human nociceptors e

(A) Overall schematic of experimental design for 4-Plex in situ hybridization studie

receptor (m-opioid, OPRM1) and a series of genes coding for algesic and analge

(B) Scanned image of a complete section from human L3 DRG hybridized for the h

(magenta), d-opioid (OPRD1) (yellow), and k-opioid receptor (OPRK1) (orange). N

which tends to obscure the signal from the other genes at this magnification.

(C) Enlargement showing the multiple neuronal signals. Representative neurons

(D) Percentage of 1,280 DRG neurons expressing each individual transcript. Not

(E) Percentage of DRG neurons expressing the most common transcript combin

standard deviation (SD), and individual values from four independent tissue dono

(F) Single-neuron example demonstrating the expression ofOPRK1 in satellite glia

as a technical replicate, the custom probe (red). The large fluorescent patch, ‘‘L,

(G) The preponderance of neurons that are surrounded by OPRK1 (k-opioid rece

(H) Individual channel and multi-channel microscopy images of representative ne

size distribution. Scale bar, 25 mm.

(I) Percentages of nociceptors showing low, medium, or high expression levels

donors.
of the expression of potential analgesic targets (Figure 1A). If

we include all experiments and all neurons into the counting

analysis, 56.3% ± 2.1% of neurons were characterized as

TRPV1+OPRM1+ (Figure S3). We identified a second population

of TRPV1+ and OPRM1-negative neurons. Both populations ex-

press multiple algesic markers and neurotrophic receptors that

provisionally characterize them as nociceptive. A third prominent

population of large-diameter neurons did not express any of the

algesic markers and was classified as non-nociceptive. These

definitions based on transcription can be further substantiated

by functional investigations. Additionally, according to their

neuronal diameters, 88.7% of TRPV1+OPRM1+ nociceptors

could be classified as small- to medium-diameter neurons (see

STAR Methods, Figure S7), which is consistent with a nocicep-

tive population.

OPRM1-positive and OPRM1-negative human
nociceptors express OPRD1 while OPRK1 is expressed
in satellite glial cells
Both the d- and k-opioid receptors (encoded by OPRD1 and

OPRK1, respectively) represent potential alternative analgesic

targets due to inhibitory effects on neurotransmitter release at

synapses in the dorsal horn.2 Whether they are expressed by

TRPV1+OPRM1+ nociceptors associated with rodent sustained

pain had not been elucidated. We evaluated pooled data of 4 tis-

sue donors (n = 1,280 neurons). TRPV1was expressed in 81% ±

2.1%, OPRM1 in 56.3% ± 5.9%, OPRD1 in 51.1% ± 6.5%, and

OPRK1 in 1.6% ± 1% of human DRG neurons (Figure 1D). The

abundance of neurons expressing TRPV1 in the human DRG is

shown in the whole DRG section (Figure 1B). When considering

the co-expression patterns of all four markers, we observed four

prevalent populations (Figures 1E; Table S7), which we charac-

terized for cell size and expression levels of transcripts. Two of

them were TRPV1+OPRM1+ nociceptive populations, one was

a TRPV1+OPRM1-negative nociceptive population, and one

a non-nociceptive population. The most abundant TRPV1+

OPRM1+ population (labeled i, detected in 30.9% ± 6.2% of

the analyzed neurons) did not express transcripts for any addi-

tional opioid receptor subtype, while population iii (21.7% ±

1.8%) expressed OPRD1 in addition to TRPV1 and OPRM1.

The OPRM1-negative population (ii) showed positivity for
xpress OPRD1 while OPRK1 is expressed in satellite glial cells

s. The major nociceptive ion channel TRPV1 is paired with the major analgesic

sic mediators.

eat- and inflammation-activated channel TRPV1 (green), the m-opioid (OPRM1)

ote the strong expression and high prevalence of neuronal TRPV1 expression

are labeled i–iv and are characterized further in (H).

e the comparatively low neuronal expression of OPRK1.

ations, which defines populations i–iv. Bar graphs in (D) and (E) show mean,

rs.

l cells surrounding the neuron, as detected by the standard probe (yellow) and,

’’ is lipofuscin. See also Figures S4 and S5.

ptor) expressing satellite cells.

urons for each population (i–iv, as in C) and the corresponding populations’ cell

for TRPV1 and each opioid receptor transcript averaged across the 4 tissue
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TRPV1 andOPRD1 (23.6% ± 5.3%). A presumably non-nocicep-

tive population did not express any of the four transcripts (iv,

13.1% ± 0.7%). These four main populations represented

89.3% ± 1.5% of sampled neurons. Microscopic images of a

representative neuron of each of the four major populations

and the cell diameter distributions of each population are shown

in Figure 1H. TRPV1+OPRM1+ (i) and TRPV1+OPRM1+OPRD1+

(iii) populations consisted of a heterogeneous group of mostly

small- and medium-diameter neurons (x = 45.8 ± 12.7 mm [i],

x = 50 ± 15.6 mm [iii]). In contrast, OPRM1-negative nociceptors

were medium sized with a uniform, homogeneous cell size distri-

bution (x = 51.2 ± 8.7 mm). Neurons that did not express any

marker weremedium to large in size (x = 69.7 ± 15.4 mm). In order

to evaluate the potential of the d-opioid receptor as a pharma-

ceutical target for pain relief, including the potential for m-d-het-

erodimers,46 we evaluated the expression level of each tran-

script in a given population. For this aim, we determined

thresholds for each marker in each donor section for low, mod-

erate, and high expression levels. While OPRM1 was expressed

similarly both in a low and in amoderate fashion,OPRD1 showed

mostly low expression levels, especially in population iii (91%)

(Figure 1I). To summarize, the gene encoding the d-opioid recep-

tor was expressed at low levels in a subpopulation of the relevant

TRPV1+OPRM1+ population.

The k-opioid receptor gene is mainly expressed in
satellite glial cells
Transcripts for OPRK1 within sensory neurons were a scarce

observation (1.6% of sampled neurons, Figures 1D and S4).

Instead, we observed ubiquitous expression of OPRK1 in non-

neuronal cells, mostly in subpopulations of satellite glial cells

(SGCs) surrounding somatosensory neurons (Figures 1C, 1H,

and S5). This was not an expected finding based on our previous

investigations in rat47 and the existing literature.48–50 To validate

our result, we designed a second probe againstOPRK1 targeting

a different region of the transcript (see STAR Methods section).

Co-staining with both probes showed overlapping or closely

juxtaposed puncta (Figures 1F and S5). The quantitative results

reported in this manuscript are based on the custom-made

OPRK1 probe.We quantified that 98.5% ± 0.9% of all character-

ized neurons (n = 1280) showed OPRK1 transcripts in surround-

ing SGCs, indicating OPRK1 is likely a ubiquitous transcript in

SGCs (Figure 1G). These data indicate that OPRK1 is primarily

a non-neuronal receptor in the human DRG.

OPRL1 is expressed by proprioceptors and a
subpopulation of OPRM1-positive nociceptors
The nociceptin opioid-like receptor (encoded by OPRL1) is a re-

ceptor with a wide anatomic distribution in the body, peripheral

nervous system (PNS), and CNS that can support a broad spec-

trum of behavioral and physiological actions.51,52 We previously

demonstrated its expression in rat nociceptive and propriocep-

tive primary afferent neurons.47 Its expression by nociceptive af-

ferents relevant for human pain has not been evaluated. We

analyzed human DRGs co-labeled for TRPV1, OPRM1, OPRL1,

and the proprioceptive marker osteopontin (SPP1).21,53 We

analyzed 1,277 neurons and observed TRPV1 in 87.5% ±

2.6%, OPRM1 in 58.8% ± 3.1%, OPRL1 in 48.9% ± 6.3%, and
4 Cell Reports Medicine 5, 101788, October 15, 2024
SPP1 in 15.6% ± 3.1% of neurons (Figure 2B). Analysis of co-

expression patterns of all transcripts indicated four prevalent

populations (Figure 2C; Table S8) that were representative of

89.6% ± 3.02% of sampled neurons. These included two

TRPV1+OPRM1+ nociceptive populations, a TRPV1+OPRM1-

negative nociceptive population, and a non-nociceptive popula-

tion. The largest population consisted of TRPV1+OPRM1+

OPRL1+ nociceptors (i, 31% ± 6.7%), which showed a broad

cell size distribution (x = 51.8 ± 12.9 mm). The second group (ii,

25.1% ± 6.6%) consisted of small-diameter TRPV1+OPRM1+

neurons (x = 39.6 ± 10.2 mm) that did not express OPRL1.

OPRM1-negative TRPV1+ neurons (iii, 23.8% ± 2.1%) did not

expressOPRL1 and were characterized by a homogeneous me-

dium-sized cell diameter distribution (x = 50.2% ± 8.5) as

described before. A relatively small population expressed both

SPP1 and OPRL1 (iv, 9.7% ± 1.5%) and consisted of medium-

to large-diameter neurons (x = 73.5 ± 15.5 mm) (Figure 2D),

indicating that the majority of the previously identified non-noci-

ceptive population expresses both SPP1 and OPRL1. Charac-

terization of OPRL1 expression levels revealed low levels in

95% of the TRPV1+OPRM1+OPRL1+ population (i). The low

OPRL1 expression was in contrast to OPRM1 expression levels,

which could be classified as moderate in 57% of the same pop-

ulation (Figure 2E). To summarize, OPRL1 was expressed at low

expression levels only in a subpopulation of the relevant

TRPV1+OPRM1+ population.

The genes encoding NaV1.8 and NaV1.9 show different
expression levels in OPRM1-positive and OPRM1-
negative nociceptors
Voltage-gated sodium channels (VGSCs) play a crucial role in

nociception as they are essential for the initiation and conduction

of action potentials from peripheral to central nerve termi-

nals.54,55 The isoforms NaV1.8 (SCN10A) and NaV1.9 (SCN11A)

are preferentially expressed in human nociceptive affer-

ents.40–42,56 In 1,310 analyzed neurons, we found TRPV1 to be

the most expressed of the four markers (87.7% ± 3.3%). More

than half of the neurons expressed OPRM1 (57.8% ± 4.1%),

consistent with results of earlier probe sets. SCN10A and

SCN11A were also expressed by a majority of DRG neurons

(83.3% ± 3.5% and 85.5% ± 3.4%, respectively) (Figure 3B).

Analysis of co-expression patterns of all four markers revealed

three prevalent populations (Figure 3C; Table S9), two nocicep-

tive and a non-nociceptive population. These three populations

represented 93.2% ± 1.5% of sampled neurons. A representa-

tive cell of each of the three most common neuronal populations

with the cell size distribution of that population is shown in

Figure 3E. The most abundant population (i) was TRPV1+

OPRM1+ nociceptors that expressed transcripts for both

VGSCs (53.6% ± 3.5%). This group contained awide distribution

of cell sizes consisting of mostly small- and medium-diameter

neurons (x = 50 ± 13 mm), (Figure 3D). The second population

(ii) consisted of OPRM1-negative TRPV1+ nociceptors that ex-

pressed both VGSCs (28.4% ± 0.9%) and showed a homoge-

neous cell size distribution (x = 52.5 ± 8.8 mm) as described

before. VGSCs showed different expression levels between the

two nociceptive populations. SCN10A (NaV1.8) was more highly

expressed in the OPRM1-positive population (median intensity



Figure 2. OPRL1 is expressed by proprioceptors and a subpopulation of OPRM1-positive nociceptors

(A) Representative section of human DRG showing positive transcripts for TRPV1, the m-opioid receptor (OPRM1), the opioid-related nociceptin receptor 1

(OPRL1), and osteopontin (SPP1), a marker for proprioceptive neurons. Lipofuscin is marked with an ‘‘L.’’

(B) Percentage of somatosensory neurons expressing each individual transcript.

(C) Percentage of 1,277 neurons expressing themost prevalent transcript combinations. Bar graphs in (B) and (C) showmean, SD, and individual values from four

independent donors.

(D)Multi-channel microscopy images of a representative individual neuron from each population and the population’s cell size distribution.OPRL1 is expressed at

a low level in the neurons illustrated in i and iv. The typical OPRL1 hybridization signal can be seen in (E).

(E) Single-channel images of neuron shown in (Di). Categorized expression levels for each transcript of the TRPV1+OPRM1+OPRL1+ population averaged across

4 independent tissue donors. Scale bars in (D) and (E) represent 25 mm.
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5.3 arbitrary units [a.u.] versus median intensity 4.1 a.u.) (Fig-

ure 3F), while SCN11A (NaV1.9) exhibited higher expression in

the OPRM1-negative population (median intensity 23.4 a.u.

versus median intensity 3.8 a.u.). This population also demon-

strated a higher expression of TRPV1 (median intensity 14.8

a.u. versus median intensity 7.8 a.u.). All differences were signif-

icant (Mann-Whitney U test, p < 0.001, respectively, after Bonfer-

roni correction). The third population (iii, 11.2% ± 3.6%) ex-

pressed none of the four markers and consisted of medium-/

large-diameter neurons (x = 70.4 ± 14.8 mm) (Figure 3E). Our re-

sults demonstrate that the genes encoding NaV1.8 and NaV1.9

are co-expressed in nociceptive neurons and that NaV1.8 tran-

scripts are enriched in the OPRM1-expressing population.
TAC1 (substance P) is selectively expressed in OPRM1-
positive nociceptors
Substance P (encoded by TAC1) is a neuropeptide and a marker

for peptidergic nociceptors transmitting sustained pain in ro-

dents.33,34,57 This peptide modulates nociceptive responsiveness

ofsecond-orderspinalcordneurons,58,59especiallyduring intense

noxious stimulation60 and can include activation of both TRPV1

and TRPA1.61 To investigate the expression of these genes in hu-

man nociceptors, we analyzedDRGsections for expression levels

of TRPV1, OPRM1, TRPA1, and TAC1. We analyzed 1,316 neu-

rons and observed TRPV1 in 83.3% ± 4.1%, OPRM1 in 61.5% ±

4.6%, TRPA1 in 37.2% ± 4.8%, and TAC1 in 31.2% ± 6.7% of

the analyzed neurons (Figure 4B). When we considered the
Cell Reports Medicine 5, 101788, October 15, 2024 5
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co-expression patterns of all fourmarkers, we detected six preva-

lent populations: three TRPV1+OPRM1+, two TRPV1+OPRM1-

negative nociceptive, and one non-nociceptive population (Fig-

ure 4C; Table S10). These six populations represented 89.7% ±

2.8% of the analyzed neurons. TRPV1+OPRM1+ neurons that

did not express TRPA1 nor TAC1were themost common popula-

tion (i, 22.9%±7.5%). Theyshowedabroadcell sizedistributionof

mostly small-/medium-sized neurons (x = 53.2 ± 14.5 mm). Within

the TRPV1+OPRM1+ populations, two expressed TAC1: a small-

diameter (x =34.6± 7.6mm)population that alsoexpressedTRPA1

(ii, 16.3% ± 4.0%) and a small-/medium-diameter population (x =

49.4 ± 10.3 mm) that did not express TRPA1 (v, 13.4% ± 5.4%).

We observed significantly higher expression levels for TAC1 and

TRPV1 in the TRPV1+OPRM1+TRPA1+TAC1+ (i) population

than in the TRPV1+OPRM1+TAC1+ (v) population (median inten-

sity for TRPV1 8.9 a.u. versus 4.1 a.u., for TAC1 50.4 a.u. vs. 20

a.u., p < 0.001, Mann-Whitney U test; see Figure 4F). OPRM1-

negative populations were characterized by expression of

TRPV1 and TRPA1 (iii, 14.1% ± 1.6%) or only TRPV1 (vi, 9.1% ±

1.4%). These neurons were medium sized with a homogeneous

cell size distribution (47.2 ± 7.8 mm [iv], x = 50.7 ± 8.7 mm [vi]) as

described before. Non-nociceptive neurons expressed none of

the four markers (iv, 14.0% ± 3.7%) and had medium/large cell

sizes (x = 66.4± 13.7mm) (Figures 4C and 4E). In terms of nocicep-

tion, theOPRM1+TRPV1+TRPA1+TAC1+ neurons are a subpop-

ulationof theaforementionedanalyzedTRPV1+OPRM1+SCN10A+

SCN11A+population andare likely associatedwith sustained tis-

sue damage pain.

OPRM1-positive nociceptors express TRPM8

Agonists of the m-opioid receptor are known to inhibit cold pain

induced by sustained stimulation,62–64 implicating expression

of cold-sensitive channels in OPRM1-expressing nociceptors.

The transient receptor potential cation channel subfamily M

(melastatin) member 8 (encoded by TRPM8) is activated by com-

pounds such as menthol, mediates cold sensations into the

noxious range, and is implicated in cold allodynia.65,66 TRPA1

has been reported to be expressed in human cold-sensing neu-

rons,42 and we examine the colocalization of these two tran-

scripts in this experiment. We analyzed 1,310 DRG neurons for

the expression of TRPV1, OPRM1, TRPA1, and TRPM8. We de-

tected TRPV1 in 82.3% ± 4.4%, OPRM1 in 58.3% ± 7.3%,

TRPA1 in 44.2% ± 4.6%, and TRPM8 in 39.7% ± 8.0% of neu-

rons (Figure S6B). When we considered the co-expression pat-

terns of all four markers, six prevalent populations were detected

(Figure S6C; Table S11), of which three were TRPV1+OPRM1+

nociceptive, two TRPV1+OPRM1-negative nociceptive, and
Figure 3. The genes encoding NaV1.8 and NaV1.9 show different expre

(A) Representative section of human DRG showing neurons positive for TRPV1,

(SCN10A) and NaV1.9 (SCN11A) transcripts. Representative neurons characteriz

(B) Enlarged field outlined in (A) showing each individual transcript. Overlap of all

with an ‘‘L.’’

(C) Percentage of 1,310 neurons expressing each individual transcript.

(D) Percentage of neurons expressing the most common transcript combination

independent donors.

(E) Multi-channel microscopy images of a representative individual neuron of eac

(F) Expression intensity of individual transcripts inOPRM1-positive (i) as compare

were significantly higher in the OPRM1-negative population. Median and interqu
one non-nociceptive population. Neurons of these six popula-

tions represented 86.9% ± 3.2% of the analyzed neurons. The

three TRPV1+OPRM1+ populations consisted of neurons that

also co-expressed TRPA1 and TRPM8 (i, 20.1% ± 4.9%), only

TRPM8 (iii, 15.5% ± 3.3%), or neither TRPA1 nor TRPM8

(v, 12.2% ± 3.1%). The TRPV1+OPRM1+TRPA1+TRPM8+ pop-

ulation consisted of small-diameter neurons (x = 39.8 ± 9.2 mm),

while the two latter populations showed a broad cell size distri-

bution including mostly small- and medium-diameter neurons

(x = 57.0 ± 12.7 mm [iii], x = 54.9 ± 13.9 mm [v]). OPRM1-negative

nociceptors were either TRPV1+TRPA1+ (ii) (16.8% ± 2.6%) or

only TRPV1+ (vi, 9.8% ± 4%). These two prevalent OPRM1-

negative nociceptive populations did not express TRPM8. Both

groups consisted of medium-sized neurons with homogeneous

cell size distributions (x = 53.2 ± 9.5 mm [ii], x = 52.5 ± 9.6 mm

[vi]) as described in previous paragraphs. Neurons expressing

none of the four markers (iv, 12.5% ± 2.4%) were medium- to

large-diameter neurons (71.3 ± 14 mm) (Figure S6D). Though

we observed a high degree of co-expression of TRPV1,

TRPA1, and TRPM8, pairwise analysis of linear correlations

between those markers in a pooled sample of all TRPV1+/

OPRM1+/TRPA1+/TRPM8+ neurons expressing these markers

revealed mostly anticorrelated gene expression of TRPV1 and

TRPM8 and TRPM8 and TRPA1, respectively (Figure S6E). A

subset of neurons showed significant expression of TRPV1

and TRPM8, indicating potential sensitivity to both heat and

cold (Figure S6E). Expression levels of TRPV1 and TRPA1

showed a more complex relationship with a subpopulation of

neurons showing high expression levels for both transcripts.

Our data demonstrate mostly anticorrelated expression of genes

coding for heat- and cold-sensing receptors in TRPV1+OPRM1+

nociceptors, which indicates primarily distinct sensory encoding

of noxious heat and cold. Our anatomic evidence supports that

TRPM8 is expressed in the TRPV1+OPRM1+ population.

Expression levels of P2RX3 differ between OPRM1-
positive and OPRM1-negative nociceptors
To address the polymodality of human nociceptors including me-

chanosensation and sensing of indicators of tissue damage such

as ATP, we performed an in situ experiment including probes for

transcripts of PIEZO2 and P2RX3 (encoding P2X3). PIEZO2 in

the somatosensory system plays an essential role in sensing

gentle touch, tactile pain, and proprioception.67–69 We detected

transcripts for TRPV1 in 80.4% ± 3.3%, OPRM1 in 57.6% ±

4.1%, PIEZO2 in 75.4% ± 2.9%, and P2RX3 in 77.3% ± 3.3%

of the analyzed neurons (n = 1,264 neurons) (Figure 5B). All molec-

ular markers showed a high degree of co-expression. With this
ssion levels in OPRM1-positive and OPRM1-negative nociceptors

the m-opioid receptor (OPRM1), and voltage-gated sodium channels NaV1.8

ed further in (E) and (F) are labeled with small Roman numerals.

four transcripts occurs in a substantial subpopulation (i). Lipofuscin is marked

s. Bar graphs in (C) and (D) show mean, SD, and individual values from four

h population and the population’s cell size distribution. Scale bars, 25 mm.

d toOPRM1-negative (ii) nociceptors. Transcript levels for TRPV1 and SCN11A

artile range indicated. p < 0.001, Mann-Whitney U test.
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probe set we detected five major populations (Figure 5C;

Table S12): three TRPV1+OPRM1+, one TRPV1+OPRM1-nega-

tive nociceptive, and a non-nociceptive population. Combined,

these five groups represented 87.7% ± 2.7% of the analyzed

neurons. AmongOPRM1-positive nociceptors, TRPV1+OPRM1+

PIEZO2+P2RX3+ neurons (i) were the most common (31.7% ±

7.2%) (Figure 5C), showing a broad cell size distribution (x =

51.3 ± 12.8 mm). A more homogeneous TRPV1+OPRM1+

P2RX3+ population (iii, 18.1% ± 2.3%) consisted of small-diam-

eter neurons (x = 38.1 ± 8.6 mm). TRPV1+OPRM1+ nociceptors

that did not express PIEZO2 nor P2RX3 represented only a small

population of small-diameter cells (v, 4.7% ± 2.4%, x = 34.6 ±

9.4 mm). OPRM1-negative TRPV1+ nociceptors expressed both

PIEZO2 andP2RX3 (ii) (23.3%± 2.9%) and showedagain a homo-

geneous cell size distribution peaking at a medium cell diameter

(x = 50.1 ± 8.6 mm). In this stain, we found only a minority of cells

to not express any of the markers (n = 10, Table S12); instead, we

observed a non-nociceptive population of medium-/large-diam-

eter neurons (x = 70.0 ± 14.3 mm) that expressed PIEZO2 (iv,

14.7% ± 2.2%), and presumably the proprioceptive marker

SPP1 in a previously described experiment (Figure 2D), which is

consistentwith the role of PIEZO2 in human proprioception68 (Fig-

ure 5E). P2X3 is a purinergic ATP-sensitive receptor selectively ex-

pressed in nociceptive afferents70,71 and a marker for rodent non-

peptidergic C-fibers.72,73 We noticed a differential expression

across neuronal populations. Specifically,P2RX3 showed highest

expression (median intensity 21.7 a.u.) in OPRM1-negative noci-

ceptors (ii) (Figure 5F). TRPV1+OPRM1+PIEZO2+P2RX3+ noci-

ceptors (i) showed significantly lessP2RX3 expression (median in-

tensity 8.8 a.u.), and TRPV1+OPRM1+P2RX3+ nociceptors (iii)

showed the lowest P2RX3 expression level (median intensity 3.9

a.u.). All differences were significant (Mann-Whitney U test,

p < 0.001, respectively, after Bonferroni correction). PIEZO2, on

the other hand, did not show differences in expression levels be-

tween OPRM1-positive and OPRM1-negative nociceptors (me-

dian intensity 4.8 a.u. [i], median intensity 5.3 a.u. [ii], p = 0.08,

Mann-Whitney U test) (Figure 5F). These data underscore the

prevalence of polymodal nociceptors in the human DRG and the

high expression of the non-peptidergic marker P2RX3 in

OPRM1-negative nociceptors.

Expression of transcripts for neurotrophic andMRGPRD
receptors differentiates OPRM1-positive and OPRM1-
negative human nociceptors
By labeling for growth factor receptors, we tested the hypothesis

that our results, which are indicative of a human nociceptor

classification into OPRM1-positive and OPRM1-negative cells,
Figure 4. TAC1 (substance P) is expressed in subpopulations of OPRM

(A) Representative section of human DRG showing neurons expressing transcri

TRPA1, and substance P precursor (TAC1).

(B) Percentage of 1,316 neurons expressing each individual transcript.

(C) Percentage of neurons expressing the most common transcript combination

independent donors.

(D) Enlarged field shown in (A) for each individual transcript.

(E) Multi-channel microscopy images of a representative individual neuron of ea

Lipofuscin is marked with an ‘‘L.’’

(F) Expression intensity for TAC1 and TRPV1 in populations ii and v. The quad+

polyresponsive to algesic mediators. Median and interquartile range indicated. p
follow the developmental principles of murine DRG neurons.

These studies describe a division among nociceptors according

to the expression of the neurotrophic receptors TrkA (encoded

byNTRK1) for large-diameter A-fiber and peptidergic C-fiber no-

ciceptors, and neurotrophic receptors such as GFRA2 for non-

peptidergic C-fiber nociceptors.19,20,74 We analyzed 1,298 neu-

rons and detected TRPV1 in 82.7% ± 4.5%, OPRM1 in 59.6% ±

6.5%, NTRK1 in 50.5% ± 3.5%, and GFRA2 in 30.8% ± 2.2% of

neurons (Figure 6C). Classification of neurons according to the

co-expression of all markers confirmed our hypothesis: we

detected a prevalent TRPV1+OPRM1+NTRK1+ population

(i, 41% ± 5.1%) and an OPRM1-negative TRPV1+GFRA2+ pop-

ulation (ii, 21.2% ± 2.6%). Only a small TRPV1+OPRM1+ popu-

lation did not express NTRK1 (iii, 10% ± 2.2%) (Figure 6D;

Table S13). The TRPV1+OPRM1+NTRK1+ population consisted

of mostly small- and medium-diameter neurons (x = 46.6 ±

13 mm), while the TRPV1+OPRM1+NTRK1-negative population

consisted mainly of small-diameter neurons (x = 42.6 ±

10.5 mm) (Figure 6E). The OPRM1-negative TRPV1+GFRA2+

population, as described for all other experiments, consisted of

medium-sized neurons (x = 52.4 ± 8.6 mm). A non-nociceptive

population (9.9% ± 3.8%) that did not express any of themarkers

of this experiment consisted of medium- to large-diameter neu-

rons (x = 70 ± 12.7 mm). These four main populations represented

82.1% ± 5.5% of the analyzed neurons. Only a small fraction of

neurons co-expressed both neurotrophic receptors (n = 61,

Table S13), which confirms a basic distinction of human noci-

ceptors into NTRK1-expressing ‘‘peptidergic’’ C-nociceptors

associated with sustained pain in rodents and GFRA2-express-

ing ‘‘non-peptidergic’’ nociceptors. These data reinforce our

observed dichotomy of the nociceptive neuronal population.

The largest group within the murine non-peptidergic GFRA2+

population consists of nociceptors that express the itch-related

receptor MRGPRD.21 In rodents these fibers do not innervate

deep tissues but do terminate selectively in the most superficial

skin layers.32 Since the human OPRM1-negative population

observed in our experiments shares many molecular features

with murine non-peptidergic neurons such as high expression

levels for P2RX3 and SCN11A,72,73,75–77 we hypothesized a hu-

man analog to the proposed skin threat detector molecularly

defined by co-expression of GFRA2 and MRGPRD.35 In

this experiment we found TRPV1 expressed in 86.7% ± 6.5%,

OPRM1 in 61.3% ± 6.1%, GFRA2 in 35.8% ± 7.7%, and

MRGPRD in 22.6% ± 7.2% of neurons (n = 1,271 neurons) (Fig-

ure 6G). We observed a division into two main nociceptive pop-

ulations: a large TRPV1+OPRM1+ population (i, 53.1% ± 5.8%),

encompassing a wide range of mostly small- to medium-sized
1-positive nociceptors

pts for TRPV1, the m-opioid receptor (OPRM1), the chemo-sensitive receptor

s. Bar graphs in (B) and (C) show mean, SD, and individual values from four

ch population and the population’s cell size distribution. Scale bars, 25 mm.

population ii shows significantly higher expression of TAC1 and TRPV1 and is

< 0.001, Mann-Whitney U test.
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Figure 5. Expression levels of P2RX3 differ between OPRM1-positive and OPRM1-negative nociceptors

(A) Representative section of human DRG showing neurons expressing transcripts for TRPV1, the m-opioid receptor (OPRM1), the mechano-sensitive receptor

PIEZO2, and the purinergic ATP receptor P2X3 (P2RX3).

(B) Percentage of 1,264 neurons expressing each individual transcript.

(C) Percentage of neurons expressing the most common transcript combinations. Group iv expresses PIEZO2 only and very likely represents a population of

proprioceptors as shown in Figure 2Div. Bar graphs in (B) and (C) show mean, SD, and individual values from four independent donors.

(D) Enlarged field shown in (A) for each individual transcript.

(E) Multi-channel microscopy images of a representative individual neuron of each population and the corresponding population’s cell size distribution. Scale

bars, 25 mm. Lipofuscin is marked with an ‘‘L.’’

(F) Expression intensities of P2RX3 and PIEZO2 in nociceptive populations. Both transcripts are expressed in OPRM1-positive and -negative nociceptors. While

the expression level of PIEZO2 is similar between both populations, P2RX3 shows the highest expression in OPRM1-negative nociceptors. Median and inter-

quartile range indicated. p < 0.001, Mann-Whitney U test, after Bonferroni correction.
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neurons (x = 47.1 ± 13 mm), and an OPRM1-negative TRPV1+

population co-expressing GFRA2 and MRGPRD (ii, 18.3% ±

7.4%) that consisted of medium-sized neurons with a homoge-
10 Cell Reports Medicine 5, 101788, October 15, 2024
neous cell size distribution (x = 53.9 ± 6.1 mm) (Figures 6H and

6I; Table S14). Of all OPRM1-negative neurons co-expressing

TRPV1 and GFRA2, 74.5% ± 17.2% % also expressed
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MRGPRD. To summarize, our data support the hypothesis of

a human ‘‘non-peptidergic’’ population expressing MRGPRD

and define further the molecular distinction between OPRM1-

positive and OPRM1-negative nociceptive populations that co-

exist in the human DRG.

DISCUSSION

The present study investigates human somatosensory afferent

neuronal populations relevant to nociception and opioid anal-

gesia. Based on multiplex combinatorial in situ hybridization ex-

periments, we were able to detect and define two main popula-

tions of C-nociceptors. The discriminator between these

populations is the expression or lack of expression of OPRM1.

They are further delineated by the expression of growth factor

receptor genes, which follows the development of murine

C-nociceptors. The first population expresses OPRM1 and the

gene coding for the nociresponsive channel TRPV1 and shares

molecular attributes of murine peptidergic C-nociceptors medi-

ating sustained pain. The second population expresses TRPV1

and other algogenic receptors but not OPRM1. These neurons

resemble murine non-peptidergic C-nociceptors. Our observa-

tions support the hypothesis of a human ‘‘tissue damage’’ noci-

ceptor that is responsive to clinically used opioids and would be

most relevant to analgesic drug development. Multiple experi-

mental opioid administration studies, plus decades of experi-

ence with intrathecally administered opioids in human patients,

indicate that the first, ‘‘peptidergic’’ population is critical

for transmitting clinically relevant nociceptive pain and that

this transmission can be controlled by opioids (Table S6).

The second, ‘‘non-peptidergic’’ population comprises mainly

MRGPRD-positive neurons that are hypothesized and has

been shown in mice to terminate superficially in the epidermis

and act as a ‘‘threat detector.’’32 This population does not ex-

press OPRM1 and therefore is unlikely to be responsive to opi-

oids. Importantly,MRGPRD+ neurons contribute to pathological

pain states including neuropathic pain in rodents.38,39 In hu-

mans, neuropathic pain is less responsive to intrathecal opioids

than nociceptive pain (Table S6) and less manageable with sys-

temic opioids,43,45 which supports our transcriptionally based

findings.
Figure 6. Expression of transcripts for neurotrophic and MRGPRD rec

nociceptors

(A) Representative section of human DRG showing neurons expressing transcrip

TrkA (NTRK1) and GFRA2.

(B) Enlarged window as shown in (A) for each marker individually.

(C) Percentage of 1,298 neurons expressing each individual transcript.

(D) Percentage of neurons expressing the most common transcript combinations

Bar graphs in (C) and (D) show mean, SD, and individual values from four indepe

(E) Multi-channel microscopy images of a representative individual neuron of eac

(F) Representative section of human DRG showing positive transcripts for TRPV

pruritogenic receptor MRGPRD.

(G) Percentage of neurons showing transcripts for each marker individually.

(H) Percentage of neurons expressing the most common molecular marker comb

each donor.

(I) Multi-channelmicroscopy images of a representative individual neuron of popul

(J) Individual transcripts of representative neurons shown in (I). Lipofuscin is m

expression of NTRK1 (TrkA), while OPRM1-negative nociceptors express transcr

MRGPRD, suggesting distinct populations of OPRM1+ ‘‘peptidergic’’ and OPRM
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OPRM1-positive nociceptors consist of a heterogeneous

group of mostly multimodal neurons expressing markers for

cold sensation (TRPM8), chemical sense (TRPA1), inflammation

and tissue damage (P2RX3), mechanosensation (PIEZO2), neu-

ropeptides (TAC1), and opioid receptors other than the m-opioid

receptor (OPRD1, OPRL1). OPRM1-negative nociceptors are

multimodal neurons expressing transcripts for TRPV1 and

PIEZO2, as well as the neurotrophic receptor GFRA2, the itch-

related receptor MRGPRD, and the d-opioid receptor (OPRD1),

as well as high expression levels of transcripts for P2X3 and

NaV1.9 (Figure 7). An additional finding in this study is that the

k-opioid receptor in humans is expressed in non-neuronalSGCs.

In situ hybridization is a high-fidelity technique that allows for

precise identification and localization of gene transcripts ex-

pressed in somatosensory neuronal perikarya over a range of

expression levels and captures genes with low level transcrip-

tion, such as opioid receptors and MRGPRD. An unambiguous

assignment of these transcripts to human nociceptive popula-

tions could not be achieved by sequencing methods due to rea-

sons of sensitivity40–42 or spatial resolution.41 Though our results

confirm basic organizational principles of human nociceptive af-

ferents of these studies, they formulate some significant differ-

ences (Figures S8–S16).

The feasibility of alternative opioid receptors as targets
to relieve sustained tissue damage pain
Preclinical data suggest that all opioid receptors including the

nociceptin receptor regulate transmission of nociceptive input

into the spinal cord,78–80 making them potential pharmacological

targets for peripheral pain control. Additionally, such efforts were

aimed at avoiding adverse side effects of m-opioid receptor ago-

nists. These considerations generated ongoing efforts to

develop agonists to opioid receptors other than the m-opioid re-

ceptor.81–84 Subsequently, the peripheral k-opioid agonist difeli-

kefalin was approved for itch, but to date positive results in

advanced clinical trials have not been forthcoming for pain

(Table S15). Our current results provide a molecular-biological

explanation for failures of past efforts and a pathway for future

endeavors. The critical parameters are adequate expression of

the gene in the correct cell population and that this population

is represented by a sufficient number of cells to have a
eptors differentiates OPRM1-positive and OPRM1-negative human

ts for TRPV1, the m-opioid receptor (OPRM1), and the neurotrophic receptors

. NTRK1 and GFRA2 differentiate OPRM1-positive and -negative nociceptors.

ndent donors.

h population and the population’s cell size distribution. Scale bars, 25 mm.

1, the m-opioid receptor (OPRM1), the neurotrophic receptor GFRA2, and the

inations. Bar graphs in (G) and (H) show mean, SD, and individual values from

ations (i) and (ii) and the corresponding cell size distributions. Scale bars, 25 mm.

arked with an ‘‘L.’’Most OPRM1-positive nociceptors are characterized by

ipts for the neurotrophic receptor GFRA2 and mostly the itch-related receptor

1� ‘‘non-peptidergic’’ neurons.



Figure 7. Expression of transcripts for ion

channels, neuropeptide, and receptors in

OPRM1-positive and OPRM1-negative C-no-

ciceptors

Transcripts expressed in OPRM1-positive (left) and

OPRM1-negative (right) C-nociceptors. Numbers

indicate fraction of nociceptors of main populations

that do express the individual transcript. Receptors/

transcripts in gray indicate genes with low expres-

sion levels in the two populations as determined by

in situ hybridization. OPRM1-positive nociceptors

(left) are highly polymodal and likely consist of

several subpopulations. In these neurons the

m-opioid receptor is the main opioid receptor with

little contribution from d-opioid or nociception re-

ceptors and nearly no contribution from the k-opioid

receptor (which we show in humans is expressed in

satellite glial cells, see Figure 1F). OPRM1-negative

neurons are polymodal and typically express TRPV1

and PIEZO2, indicating potential responsiveness to

thermal and mechanical stimulation. Most of them

express the murine superficial skin marker

MRGPRD. In this population the only opioid recep-

tor is the d-opioid receptor, which is expressed in

low levels.
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pharmacological impact. Sustained tissue damage pain involves

a broad population of nociceptors that support complex trans-

duction mechanisms.85,86 From this frame of reference,

OPRD1 and OPRL1 show low amounts of transcript in about

half of neurons relevant for analgesia, which implies that periph-

eral agonist monotherapy would have a marginal analgesic ef-

fect and would require a combinatorial approach to fully inhibit

relevant primary afferent populations. The fraction of human

DRG neurons expressing transcripts for opioid receptors

approximately matched previous in situ hybridization (ISH)

studies for OPRM1,87 and previous functional studies in human

DRG neurons for the m-opioid (MOR), d-opioid (DOR), and noci-

ception receptor (NOR) proteins.50 This was different for the

k-opioid receptor (KOR, encoded by OPRK1), which we de-

tected ubiquitously in SGCs and only marginally in neurons. In

contrast to this finding, functional studies implied neuronal

KOR expression. Though their signal could have been influenced

by satellite cell k-opioid receptors, this discrepancy cannot be

resolved without further investigation.49,50 Our data suggest

that the potential contribution of KOR tomodification of nocicep-

tion cannot be directly mediated by afferent neurons. To summa-

rize, the low expression levels and small fractions of relevant no-

ciceptors expressing DOR or NOR, plus non-neuronal

expression of KOR, make these receptors unlikely candidates

for successful peripheral analgesic monotherapy in the context

of sustained tissue damage pain.

Nociceptor-selective VGSCs and analgesic efficacy
Our experiments confirm the preferential expression of tran-

scripts for NaV1.8 (SCN10A) and NaV1.9 (SCN11A) in human no-

ciceptors.40–42,56 NaV1.8 has gained attention as a most likely

source for sustained firing related to tissue injury,88 and condi-

tional knockout of genes on NaV1.8-positive nociceptors has

become a surrogate for nociceptor-specific gene modifica-

tion.89,90 Additionally, interest in these channels comes from hu-
man mutations leading to insensitivity to pain.91–93 NaV1.8 inhib-

itors are being currently pursued as analgesics, with VX-548

having entered phase 3 clinical trials for post-surgical pain and

painful diabetic neuropathy.94 We detected significantly higher

amounts of SCN10A (NaV1.8) in OPRM1-positive than in

OPRM1-negative nociceptors. The other channel included in

our studies, NaV1.9, is a threshold channel that provides a ‘‘win-

dow current’’ which contributes to action potential initiation in

response to subthreshold stimuli.95–97 The most evident differ-

ence in expression among the two sodium channel transcripts

was the high expression of SCN11A (NaV1.9) in the OPRM1-

negative population, consistent with rodent non-peptidergic

C-fibers,75–77 and human transcriptomic studies.41,42 A high

level of excitability, potentially driven by high NaV1.9 expression

in OPRM1-negative nociceptors, supports their hypothesized

role as threat detectors and may support altered excitability in

pathological states, such as neuropathic pain.37,38 The develop-

ment of selective NaV1.9 antagonists is at its beginnings98 but

seems to be an attractive avenue in controlling pain which is

known to be poorly responsive to opioids, such as neuropathic

pain (Table S6).44,45

Substance P precursor (TAC1) expression in OPRM1-
positive nociceptors and implications for analgesic
efficacy
The neuropeptides CGRP and substance P are synthesized by

DRG neurons and are modulators of nociceptive transmission

at the afferent synapse in the spinal cord.58,59 These neuropep-

tides also represent molecular markers that identify murine pep-

tidergic C-nociceptors.21,33,34,99,100 In human DRG neurons,

CGRP is widely expressed,56 while substance P (encoded by

TAC1) displays a more restricted profile in a subpopulation of

small-diameter DRG neurons.101,102 Substance P is released

during sustained noxious stimulation.60 In line with our hypothe-

sis of a C-nociceptor population that mediates sustained pain
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and is responsive to m-opioid receptor agonists, TAC1 expres-

sion was selectively detected in two subpopulations of

OPRM1-positive nociceptors. One population is of particular in-

terest due to its high expression of TAC1 and co-expression with

TRPA1. The presence of TRPA1 in these cells is important

because this channel responds to inflammatory conditions, tis-

sue injury, and a wide spectrum of noxious chemicals,103,104

further reinforcing the suggested role of this subpopulation in

the transmission of tissue damage pain. Distinguishing the

combinatorial expression of nociresponsive geneswithin distinct

cell populations provides key information for evaluating periph-

eral analgesic strategies and their potential performance in

various clinical pain indications. In this regard, nociceptive input

of TAC1-expressing neurons is likely sufficient to cause pain;

however, blocking transmission from only this population is

apparently not sufficient to achieve effective analgesia.105,106

Our data show the presence of an additional population that pro-

vides insight into the underlying translational problem. This pop-

ulation (i.e., TAC1-negative, TRPV1+OPRM1+, Figure 4E) is

large and highly nociresponsive but transmits nociceptive infor-

mation in a substance P-independent fashion. The lack of anal-

gesic efficacy of substance P receptor antagonists is consistent

with our formulation of incomplete blockade of nociceptive

transmission.105,106

Transduction of hot and cold thermosensation
Electrophysiological studies classify most cold-sensitive neu-

rons as C-fiber neurons.107,108 Accordingly, we detected the

gene encoding the cold-responsive channel TRPM8 mainly in

small-diameter nociceptors, and specifically in OPRM1-positive

nociceptors, consistent with human experimental pain studies

demonstrating the effect of m-opioid receptor agonists on

sustained noxious cold stimulation.13,63,64 OPRM1-negative

C-nociceptors did not express this transcript. Human DRG neu-

rons have been molecularly and electrophysiologically grouped

into mostly distinct cold- or heat-sensitive populations.40–42,109

We detected a high degree of co-expression between tran-

scripts for TRPV1 and TRPM8. Further analysis revealed that

expression levels of transcripts for these two receptors are

mostly anticorrelated, as has been shown for rat DRG neurons.47

We also observed a fraction of cells that show moderate/high

expression levels of both TRPV1 and TRPM8, implying that

they can be activated by both heat and cold stimuli. This is sup-

ported by microelectrode recordings in humans that identified

heat-cold units with an average heat activation threshold typical

for TRPV1.110

The hypothesized cutaneous threat detector
A combinatorial evaluation of all experiments demonstrates two

major C-nociceptive populations: the first is a heterogeneous

TRPV1+OPRM1+ polymodal population. This population exists

alongside a relatively homogeneous TRPV1+OPRM1� popula-

tion that expressed GFRA2, MRGPRD, and high levels of both

SCN11A (NaV1.9) and P2RX3 (P2X3). Based on the molecular

profile of the TRPV1+OPRM1� population, we hypothesize a

role in first-line cutaneous threat detection. Expression of

MRGPRD in non-peptidergic rodent neurons marks nociceptors

that exclusively innervate the superficial epidermis.32 In humans,
14 Cell Reports Medicine 5, 101788, October 15, 2024
the specific topographical peripheral termination of these neu-

rons is unknown, but experimental pain studies using intrader-

mal injection of the MRGPRD-receptor agonist b-alanine, which

causes itch and burning pain, indicate peripheral nerve endings

in the skin.111 In contrast to OPRM1-positive nociceptors,

TRPV1+OPRM1� nociceptors consistently express PIEZO2,

implying responsivity to heat and mechanical stimuli. Many hu-

man mechano-heat polymodal skin C-nociceptors start re-

sponding early in the stimulus-response function to both heat

and mechanical stimulation,112 often with a rapid brief response

even to sustained noxious stimulation.113,114 This brief neuronal

response triggers withdrawal and escape behaviors that termi-

nate the stimulus suggesting that this population is likely the ma-

jor population for responding to brief painful stimulation. By

contrast, sustained stimulation evokes activity of a second,

slow-onset C-population in primates.115 The lack of effect of

m-opioid agonists on threshold-level ‘‘sudden and fleeting’’

skin stimulation is consistent with the absence of OPRM1 in

the population we hypothesize to be a threat detector.1,116

Recent studies revealed a role of ATP released from keratino-

cytes117,118 in response to mechanical stimulation that excites

peripheral nociceptive terminals.119 Thus, this purine release

stimulus may be quite superficial. The high expression of the

ATP-sensing receptor P2X3 in the TRPV1+OPRM1� population

is consistent with our hypothesis that this population represents

multimodal skin threat detectors.

Implications for analgesic drug development
Beyond providing a combinatorial picture of nociceptive pro-

cesses, the present dataset leads to several incisive formula-

tions for advancing developmental efforts for new analgesic

agents. Our objective is to provide a constructive critique and

a framework for progress to determine candidate targets that

exhibit more translational potential than others. Additionally,

the results highlight the need to query human DRG or spinal

cord early in the drug development process to better place ani-

mal studies into a stronger translational framework. The present

study delineates the most relevant DRG neuron for human clin-

ical analgesia, which we term the tissue damage nociceptor. In

particular, peripherally acting analgesics should be directed at

these critical cells. Another consideration that can affect periph-

erally acting analgesics is redundancy. These neurons contain

multiple transducers of algesic stimuli,120,121 and antagonism

of a single channel is unlikely to result in significant block of noci-

ceptive transmission. Indeed, redundancy was one of the major

factors undermining the analgesic actions of TRPV1 antagonists

despite clear evidence of target engagement.122 Going forward,

it may be a challenge to identify a simplified, single-molecule

approach to fully effective peripheral analgesia that provides

safety and specificity. However, the approaches outlined pro-

vide a template for first-stage evaluation.

Limitations of the study
A limitation of the current interpretation is that we rely on mRNA

message to predict functional or pharmacological activity. This

implies a correspondence between mRNA and functional recep-

tor protein. In the present study, we have not performed electro-

physiological studies in primary cultures of human DRG to elicit
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responses to TRPV1 stimulation that are differentially responsive

to opioids. Such a study implies that opioids would differentially

modulate TRPV1 responses in DRG neurons, although opioids

have been demonstrated to modulate depolarization elicited by

KCl in neurons in mouse in DRG primary cultures.50 In consid-

ering communication with post-synaptic spinal cord neurons,

we have not conducted recordings of Ca imaging in co-cultures

of human DRG and spinal cord to ascertain whether differential

actions can be measured on post-synaptic neurons. Such ex-

periments present technical difficulties with respect to sourcing

of viable human tissue.123 Nonetheless, the conclusion of

distinct functions of the two main OPRM1+ and OPRM1� pop-

ulations is supported by human clinical trials of opioids in tissue

damage and neuropathic pain conditions (see Table S6). Addi-

tional functional pharmacologic evidence potentially with in vivo

microneurography124,125 or imaging of spinal cord126–128 may

further validate these predictions.
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Biological samples

Human DRG Lumbar 3 AnaBios 210218DHA

Human DRG Lumbar 3 AnaBios 210221DHA

Human DRG Lumbar 3 AnaBios 210325DHA

Human DRG Lumbar 3 AnaBios 210405DHA

Critical commercial assays

RNAscope� 4-Plex Ancillary kit Advanced Cell Diagnostics Cat#323120

RNAscope� Wash Buffer Reagents Advanced Cell Diagnostics Cat#310091
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Protease Reagents
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RNAscope� Multiplex Fluorescent
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RNAscope� Multiplex TSA Buffer Advanced Cell Diagnostics CAT#322810
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(Opioid Receptor Kappa 1)

Advanced Cell Diagnostics Custom made (13 ZZ targeting

1276–2137 bp of NM_000912.5)
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Advanced Cell Diagnostics Cat#420101

(Continued on next page)
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Receptor Potential Cation Channel
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RNAscopeTM Probe- Hs-TRPM8

(Transient Receptor Potential Cation

Channel Subfamily M Member 8)

Advanced Cell Diagnostics Cat#543121

RNAscopeTM Probe- Hs-TRPV1 (Transient

Receptor Potential Cation Channel

Subfamily V Member 1)

Advanced Cell Diagnostics Cat#415381

Software and algorithms

Photoshop Adobe V25.0.0

Fiji ImageJ 14.0/1.54f

Prism9 Graphpad V9.4.1./9.5.1

Other

Axio Imager.Z2 microscope Zeiss N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Patients and ethics statements
Dorsal root ganglia (DRGs) were obtained from organ donors by AnaBios Corporation (San Diego, CA) in partnership with US organ

procurement organizations. Legal consent for tissue retrieval and use of that tissue for research in a commercial setting according to

US laws and regulations was warranted. The distribution of donor medical information complied with HIPAA regulations regarding

donor privacy. All transfers of donor organs to AnaBios are fully traceable and periodically reviewed by US Federal authorities.

Upon arriving at AnaBios, each set of DRGs was assigned a unique identifier number that was reproduced on all relevant medical

history files, data entry forms, and electronic records. We received only anonymized and coded donor tissue and demographic in-

formation with no way to link back to original identifiers. This study did not meet the regulatory definition of human subjects research

at NIH and hence did not require IRB approval.

L3 lumbar DRGs from four tissue donors (2 Females, 2 Males, gender as provided by AnaBios Corporation, mean age 22.5 ± 3.1

years, all Caucasian) were used for all analyses in the study. None of the donors suffered from a chronic pain condition or had indi-

cations of peripheral nerve damage. Detailed demographic information, cause of death, and tissue retrieval times are available in

Table S16.

Due to the small sample size and differences in the causes of death between Female and Male donors, the influence of gender on

the results of this study was not systematically assessed (but see Figure S3 for comparison of percentages of TRPV1+OPRM1+ no-

ciceptors between Females and Males). This is a limitation to our research’s generalizability.

METHOD DETAILS

Patients and dorsal root ganglia samples
Human dorsal root ganglia (DRG) were collected from four tissue donors and provided by AnaBios Corporation (San Diego, CA). At

the time of tissue harvest, DRGs were flash frozen and stored at �80�C until processing. Immersion fixation was performed by sub-

mergingwhole DRGs in room temperature 10%neutral buffered formalin, and then refrigerated for 16–24 h for fixation before embed-

ding in paraffin blocks at Histoserv, Inc. (Germantown,MD) and sectioning at 6 mm. For each in situ hybridization experiment, we used

one section per individual donor DRG and included all four sections in the analysis.

Fluorescent multiplex in situ hybridization and microscopic imaging
We performed 4-Plex fluorescent RNA in situ hybridizations using the RNAScope Multiplex Fluorescent V2 Assay (Advanced Cell

Diagnostics, Newark, CA) following the manufacturer’s instructions for formalin-fixed paraffin-embedded tissue. Target retrieval

was performed for 20 min at 100�C. The catalog numbers of the probes used in these experiments are listed in Table S17. After hy-

bridization, slides were imaged using an Axio Imager.Z2 scanning fluorescence microscope (Zeiss, Oberkochen, Germany) as

described previously. Filter sets (Semrock, Rochester NY) for detecting DAPI, Opal520, Opal570, Opal620, and Opal690 fluorescent

dyes (Opal Reagent Pack; Akoya Biosciences, Marlborough MA) were custom furnished as described previously47,129,130

(Table S18).
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Due to the unexpected staining results for OPRK1, a second in situ probe was designed to validate the results. In particular, the

original probe was designed against the 30 end of the transcript. In our redesign, we selected a non-overlapping region 50 to the orig-

inal location (base pairs 1276–2137 of NM_000912.5).

QUANTIFICATION AND STATISTICAL ANALYSIS

Visualization of merged composite images were constructed in Photoshop (v25.0.0, Adobe, San Jose, CA) and Fiji (ImageJ2.14.0/

1.54f) in order to analyze the co-expression of transcripts. Cells were identified using a combination of DAPI-labeling of nuclear

DNA and differential interference contrast (DIC) imaging. For quantification, cells were countedmanually from one section per human

tissue donor. In order to capture a representative subset of neurons, multiple windows (1mm3 1mm) located in different areas of the

DRG were sampled to reach a minimum of 300 neurons per section (range 309–349, mean 323.2 ± 13). Lipofuscin autofluorescence

was apparent in the 488 nm, 546 nm, and 594 nm channels, and was excluded from our analyses. This autofluorescence was iden-

tified by its simultaneous emission in multiple channels, including the 430 nm channel, which was included to capture autofluores-

cence. In the representative images, lipofuscin is marked with a capital ‘‘L’’ to distinguish it from real signal. We used the following

inclusion criteria for neurons in the quantification. Neurons used for quantification were intact, and in cases where there was substan-

tial lipofuscin, this tissue artifact occupied less than 50% of the cytoplasm. Cells were considered positive for expression of a mo-

lecular marker if they showed at least three cytoplasmic puncta. We estimated that three puncta per neuron would be a reasonable

threshold to determine whether a neuron actively transcribes the gene of interest. Other groups use a threshold of four puncta,49 but

we found that we would miss out on some very small diameter cells (20–30 mm diameter) with low expression levels of some noci-

ceptive markers. In general, neurons with an expression level of 3–5 puncta (mRNA) represented a small percentage of total quan-

tified neurons (see Figure S1), and a change of threshold would have little effect on quantitative measures and qualitative results. In

addition, the existence of non-specific signal in DRG tissue sections of all donors was excluded by performing in situ hybridization

with negative control probes. Our inclusion criteria of three puncta was definitely above background which allowed to be more in-

clusive. TRPV1 was usually co-expressed with typical markers for nociception, such as P2RX3, or with the analgesic marker

OPRM1 (see Tables S7–S14), which confirms its predominant expression in nociceptive neurons. Given that the sum of all

TRPV1+OPRM1+ and TRPV1+OPRM1-neurons for each ISH experiment generally matched known percentages of nociceptive neu-

rons in human56 and mouse19 dorsal root ganglia (Figures 1, 2, 3, 4, 5, and 6), we feel confident that we chose an adequate threshold

for positive gene expression.

For each mRNA target and each donor, we determined the percentage of neurons positive for a molecular marker by assessing

each neuron as positive or negative for the four mRNAs assessed in each 4-plex combination. This co-expression pattern was

used to establish neuronal populations. Each individual (human donor) was assessed for differences before pooling, although no in-

dividuals showed notable unique differences in expression patterns. Complete counts of neuronal populations for each experiment

can be found in Tables S7–S14. For each of the prevalent neuronal populations (>9% of all counted neurons) we analyzed cell size

alongside expression levels of transcripts. We focused on populations comprising 9% or more as this analysis is prone to identifying

multiple small subpopulations, and the less prevalent populations can be less reproducible or less biologically relevant.47 One excep-

tion to this general rule was that we did characterize some TRPV1+OPRM1+ subpopulations below 9% prevalence as this was a

major focus of the study. For cell size analysis, we included only cells that were sectioned through the center of the perikarya to

achieve a more accurate circumference.47,56 For calculation of cell size the neuronal cell borders were drawn based on the merged

composite of all of the fluorescence channels and DIC using the Fiji freehand selection tool. The neuronal diameter was extrapolated

from the area of the drawn region of interest (ROIsize) using the formula for the diameter of a circle (diameter = 2O (area/p)). Based on

existing human DRG literature and our results regarding the cell diameter distribution of TRPV1+GFRA2+MRGPRD+ nociceptors,

which represent a molecularly defined C-fiber population21 (see Figure S7), neurons with a diameter smaller than 50 mmwere consid-

ered small-diameter neurons, and those with a diameter larger than 65 mmwere considered as large-diameter cells that likely repre-

sent myelinated A-fibers (Figure 7).131,132 For quantification of signal intensity inside individual DRG neurons, ROIs were drawn in the

same manner as for ROIsize, but were altered to exclude areas of artifactual autofluorescence, such as that from lipofuscin. This pre-

vented accidental quantification of artifactual signal. We measured the mean gray scale of unmanipulated signal using Fiji (Im-

ageJ2.14.0/1.54f). Due to the TSA amplification, mRNAmarked by fluorophore dye visible as puncta can vary in brightness.We found

that the mean gray scale as provided by Fiji correlated well with the number of puncta, even when bright and dim puncta were

included in the counts (Figure S1). For quantitative graphs, each channel was checked visually for non-specific, ‘‘bleed’’ signal com-

ing from neighboring channels. Signal bleed was detected in some neurons (n = 10) from TRPV1 (488 nm) to OPRD1 (546 nm) in

experiment 1 (Figure 1).We corrected for this by subtracting the signal intensity of the 488 nm channel of a region of interest capturing

isolated background signal (ROIbleed) from the 546 nm channel in that individual neuron (Figure S2). In order to compare signal inten-

sities of different target genes (and/or detection channels), we determined threshold values for low, moderate, and high expression

levels (see Figures 1I and 2E). High expression levels were defined as values larger than 3 standard deviations of the sample mean.

For the distinction of low andmoderate expression levels we found that a visually based determination of a threshold value wasmost

reliable (manual scoring). Statistical testing was conducted using PrismGraphPad (Version 9.4.1. and 9.5.1.). Representative images

were adjusted for brightness and contrast for visibility. Bar graphs in all figures show percentages of neurons expressing individual

transcripts or combinations of transcripts for each human subject (mean ± standard deviation) (N = Human subjects; n = cells).
e3 Cell Reports Medicine 5, 101788, October 15, 2024


	The μ-opioid receptor differentiates two distinct human nociceptive populations relevant to clinical pain
	Introduction
	Results
	OPRM1-positive and OPRM1-negative human nociceptors express OPRD1 while OPRK1 is expressed in satellite glial cells
	The κ-opioid receptor gene is mainly expressed in satellite glial cells
	OPRL1 is expressed by proprioceptors and a subpopulation of OPRM1-positive nociceptors
	The genes encoding NaV1.8 and NaV1.9 show different expression levels in OPRM1-positive and OPRM1-negative nociceptors
	TAC1 (substance P) is selectively expressed in OPRM1-positive nociceptors
	OPRM1-positive nociceptors express TRPM8
	Expression levels of P2RX3 differ between OPRM1-positive and OPRM1-negative nociceptors
	Expression of transcripts for neurotrophic and MRGPRD receptors differentiates OPRM1-positive and OPRM1-negative human noci ...

	Discussion
	The feasibility of alternative opioid receptors as targets to relieve sustained tissue damage pain
	Nociceptor-selective VGSCs and analgesic efficacy
	Substance P precursor (TAC1) expression in OPRM1-positive nociceptors and implications for analgesic efficacy
	Transduction of hot and cold thermosensation
	The hypothesized cutaneous threat detector
	Implications for analgesic drug development
	Limitations of the study

	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Acknowledgments
	Author contributions
	Declaration of interests
	Supplemental information
	References
	STAR★Methods
	Key resources table
	Experimental model and study participant details
	Patients and ethics statements

	Method details
	Patients and dorsal root ganglia samples
	Fluorescent multiplex in situ hybridization and microscopic imaging

	Quantification and statistical analysis



