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This paper investigates the fixed-time cluster formation tracking (CFT) problem for networked 
perturbed robotic systems (NPRSs) under directed graph information interaction, considering 
parametric uncertainties, external perturbations, and actuator input deadzone. To address this 
complex problem, a novel hierarchical fixed-time neural adaptive control algorithm is proposed based 
on a hierarchical fixed-time framework and a neural adaptive control strategy. The objective of this 
study is to achieve accurate CFT of NPRSs within a fixed time. Specifically, we design a distributed 
observer algorithm to estimate the states of the virtual leader within a fixed time accurately. By 
using these observers, a neural adaptive fixed-time controller is developed in the local control layer 
to ensure rapid and reliable system performance. Through the use of the Lyapunov argument, we 
derive sufficient conditions on the control parameters to guarantee the fixed-time stability of NPRSs. 
The theoretical results are eventually validated through numerical simulations, demonstrating the 
effectiveness and robustness of the proposed approach.
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Recently, there has been a growing interest in distributed cooperative control of multi-agent systems due to 
its various advantages over traditional centralized approaches. These advantages include increased flexibility, 
decentralization, and stronger robustness1. As a result, this field has given rise to numerous research topics, 
such as consensus2,3, tracking4,5, distributed formation control6,7, containment8, and flocking9. However, most 
existing literature in this area focuses on systems with single- or double-integrator dynamics and Lipschitz-type 
dynamics. Although these dynamics are suitable for many applications, the use of such models may not be 
sufficiently rigorous for networked robotic systems, which are typical examples of multi-agent systems. Instead, 
employing Euler–Lagrange dynamics provides a more accurate representation of real-world robotic systems 
and their interactions. This distinction highlights the need for more specialized and precise control strategies of 
networked robotic systems.Therefore, many researchers have been directing their effort toward the collaborative 
control of networked robotic systems with Euler–Lagrange dynamics10–12. However, the existence of actuator 
input deadzone, parametric uncertainties, and external perturbations is inevitable in networked perturbed 
robotic systems (NPRSs). These deadzone characteristics often arise in practical robotic systems due to factors 
such as friction, backlash, and mechanical wear, which introduce nonlinearities and can significantly impair 
system performance13,14. In addition, NPRSs exhibit inherent characteristics, such as nonlinearity, susceptibility 
to uncertainties, and inter-joint couplings, further complicating their analysis and control. To address these 
difficulties, several control algorithms have been developed, including adaptive control15, fuzzy control16, robust 
control17, and sliding mode control18. In particular, sliding mode control has gained significant attention due to 
its potential for achieving finite convergence19–21/fixed-time convergence22–27and robustness in the presence of 
uncertainties. While finite-time stability ensures convergence within a time frame that depends on the system’s 
initial conditions, fixed-time stability guarantees convergence regardless of these initial conditions. This key 
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difference enhances system predictability and performance reliability, making fixed-time stability particularly 
useful in time-critical applications. Significantly, under the framework of finite-time control for switched 
nonlinear systems with multiple objective constraints, an adaptive finite-time controller based on a multi-
dimensional Taylor network is proposed, ensuring constraint compliance and avoiding singularity21. Polyakov 
et al. have utilized theorems on Lyapunov functions for fixed-time stability analysis to design nonlinear control 
laws for the robust stabilization of a chain of integrators24. Based on the framework of input-output linearization, 
the challenge of fixed-time stabilization for nonlinear systems with a full relative degree has been addressed by 
developing homogeneous feedback laws27. However, achieving fixed-time stability for NPRSs remains an open 
problem.

Moreover, constructing appropriate equivalent terms to approximate the lumped uncertainty terms of a system 
is particularly challenging. These uncertainty terms include actuator input deadzone, external perturbations, 
and parametric uncertainties. Recently, interest in utilizing radial basis function (RBF) neural networks for 
approximating unknown nonlinear functions has been increasing28,29. In the context of multi-agent systems, the 
neural network approach presumes that the uncertainties within the system can be accurately approximated by 
a neural network with adequate capacity and training data. It also presupposes that the dynamics of the multi-
agent system can be accurately represented by the neural network to capture the nonlinear characteristics of these 
uncertainties. Under the neural network-based control strategy, the challenge of fixed-time formation control 
in nonlinear multi-agent systems has been addressed30. Within the framework of backstepping and utilizing 
predefined-time stability, the predefined-time adaptive neural tracking control problem for nonlinear multi-
agent systems is investigated in31. Hierarchical control strategies, in particular, offer considerable advantages for 
managing multi-agent systems by enhancing robustness and scalability32,33. By breaking down a global problem 
into smaller sub-problems, hierarchical framework reduce computational complexity and enhance overall 
system stability and coordination. Building on this interest, we propose a novel hierarchical fixed-time neural 
adaptive (HFNA) control algorithm that combines the fixed-time algorithm that uses a hierarchical framework 
with an RBF neural network. This innovative approach aims to enhance steady-state performance compared 
with that of conventional methods.

Meanwhile, existing research on cooperative control has focused on cooperative tracking25 and formation 
tracking34–38, where all robots converge to a single stable state or formation. Specifically, Cheng et al. have 
investigated single time-varying formation control for heterogeneous multi-agent systems, addressing actuator 
faults, uncertainties, and perturbations34. Under an adaptive fuzzy control approach combined with a periodic 
adaptive event-triggered control scheme, single fixed-time formation control for multi-agent systems facing 
actuator failures is achieved35. Based on a low-complexity control framework ensuring prescribed performance, 
single formation tracking for networked underactuated surface vessels in a fully quantized environment has 
been addressed in38. However, these results are not directly applicable to scenarios wherein networked robotic 
systems are required to perform multiple tasks simultaneously. This motivation has led to research on group 
consensus39 and multi-tracking40. However, most of the aforementioned studies primarily address state 
coordination problems in networked robotic systems. By contrast, the current study focuses on the cluster 
formation tracking (CFT) problem, which involves coordinating the output of subnetworks in an NPRS to form 
multiple desired formations in local coordinates. Each chosen reference point follows a predefined trajectory in 
global coordinates while maintaining the formation. In the CFT control task scenario of NPRSs, as shown in 
Fig. 1, it becomes indispensable to study the fixed-time problem in CFT of NPRSs. This is particularly important 
when considering actuator input deadzone, external perturbations, and parametric uncertainties, as it addresses 
a fundamental challenge in the control of networked robotic systems.

Motivated by the aforementioned discussions, this paper introduces the HFNA control algorithm, specifically 
crafted to address the intricate challenges of fixed-time CFT in NPRSs. By focusing on key issues such as 
parametric uncertainties, external perturbations, and actuator input deadzone, the HFNA algorithm aims to 

Fig. 1.  Cluster formation tracking control scenario of NPRS.
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enhance the robustness and effectiveness of multi-robot coordination. The following are the main contributions 
of this paper.

•	 In contrast with prior research on the finite-time stability of NPRSs, where error states typically reach the 
origin within a finite time that is dependent on the initial condition19–21, we propose a novel HFNA control 
algorithm that achieves fixed-time stability independent of the initial condition, ensuring a controllable con-
vergence time, which enhances the predictability and reliability of the system’s performance.

•	 The proposed HFNA control algorithm provides a comprehensive framework for fixed-time CFT under di-
rected graphs, addressing key challenges in existing studies34,36,38,41 by systematically managing parametric 
uncertainties, external perturbations, and actuator input deadzone.

•	 Different from the conventional fixed-time control algorithms for networked robotic systems26,27, the HFNA 
control algorithm effectively addresses lumped uncertainty terms while exhibiting minimal chattering by 
utilizing RBF neural networks to approximate the lumped uncertainty.The remaining sections are organized 
in the following sequence. Section Preliminaries provides preliminaries on graph theory, stability theory, neu-
ral networks, function approximation, systems, and problems. Section Major results describes the designed 
HFNA control algorithm with the corresponding convergence analysis. Section Simulations presents the sim-
ulation results. Eventually, a concise summary of conclusions is provided in Section Conclusion.

Notations: Let Rd be the d-dimensional Euclidean space. Rd×d represents a d× d real matrix. ⊗ denotes the 
Kronecker product. 1d refers to a d-dimensional vector with elements equal to 1. The symbols max{·} and min{·} 
denote maximum and minimum magnitudes, respectively. ∥·∥p represents the p-norm. Moreover, the column 
vectors a · b = col(a1b1, a1b1, . . . , a1b1), ∀a = col(a1, a1, . . . , ad) ∈ Rd, and b = col(b1, b2, . . . , bn) ∈ Rd. For the 
provided ς = col(ς1, ς2, . . . , ςN) and ρ > 0, it follows that sig(ς)ρ = col(sgn(ς1)|ς1|ρ, sgn(ς2)|ς2|ρ, . . . , sgn(ςN)|ςN |ρ) 
and diag(ς) = diag(ς1, ς2, . . . , ςN).

Preliminaries
Graph theory
In this paper, we consider a NPRS comprising N robots. The communication topology in NPRS is crucial, as 
it defines how robots exchange information. This topology forms the foundation for both the formulation of 
the control problem and the control design. To represent these interactions, we introduce a directed graph 
G = {V ,E ,A }, where V  denotes the set of vertices representing the robots, E ⊂ V × V  is the edge 
set, and A = [aij] ∈ RN×N  is the adjacency matrix. eij ∈ E  represents the direct information flow from 
robot j to robot i. More precisely, we establish aij > 0 to represent cooperation between robot i and robot j; 
aij < 0 to indicate competition; otherwise, aij = 0 signifies no interaction. In addition, the directed graph 
G  is acyclic, i.e., aii = 0. Ni = {j ∈ V | eij ∈ E } denotes the neighbor set of robot i. The Laplacian matrix 
L = [lij] ∈ RN×N  of G  is defined such that lij = −aij  and lii =

∑
j∈Ni

aij for i ̸= j ∈ V . Moreover, G  can 
be partitioned into K  subnetworks denoted by Gk = {Vk,Ek,Ak} with each comprising nk robots, where 
k ∈ {1, 2, . . . ,K }, Vk ∩ Vm = ∅ for all k ̸= m ∈ {1, 2, . . . ,K }, 

∑K
k=1 Vk = V  and 

∑K
k=1 nk = N . Specifically, 

Vk = {1 +
∑k

i=1 ni−1, . . . ,
∑k

i=1 ni} is utilized to describe the nodes of the kth subnetwork with n0 = 0. Besides, 
each subnetwork has K  corresponding virtual leaders. The interactions among robots and virtual leaders are 
captured by the diagonal weighted matrix B = diag (b1, b2, . . . , bN). When the ith robot is able to receive 
information from its virtual leader, we have bi > 0; otherwise, bi = 0. Let Bk represent the diagonal weighted 
matrix associated with Gk. Then, B = diag (B1,B2, . . . ,BK ).

Assumption 1  The directed graph G  can be partitioned into a sequence {V1,V2, . . . ,VK } such that no cycles 
occur within this partition. Within each subnetwork, the information of the virtual leader is accessible to all 
individuals globally.

Assumption 2  For any given i ∈ Vk and k ̸= m ∈ {1, 2, . . . ,K }, the sum of the connection weights between 
robot i and the robots in subnetwork m is equal to zero to ensure that the interaction in subnetwork m is bal-
anced in terms of its influence on NPRS, i.e., 

∑ς̃k
j=ςk

lij = 0, where ςk = 1 +
∑k

i=1 ni−1 and ς̃k =
∑k

i=1 ni.

Remark 1  Unlike previous work on single formation34,36–38, which may not explicitly enforce an acyclic struc-
ture within a partition, Assumption 1 ensures that information from the virtual leader is accessible to all in-
dividuals globally within each subnetwork. Assumption 2 means that the sum of connection weights between 
robot i and robots in subnetwork m equals zero, not requiring the sum of weights within each subnetwork to be 
zero. Negative edge weights represent inhibitory constraints on interactions among robots. They are included 
to illustrate scenarios where interactions within a subnetwork offset each other, resulting in a neutral effect on a 
specific robot’s behavior.

Finite- and fixed-time stability
Imagine a differential system in the following manner:

	 ż = f (z, t), z(0) = z0,� (1)

where z ∈ Rd represents the system state, f (·) denotes a nonlinear function, and z0 ∈ Rd is the initial state.
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Definition 1  10 System (1) is considered to exhibit finite-time stability if it satisfies the conditions of Lyapunov 
stability and there exists a settling time function T (z0) such that |Φz(t, z0)| = 0 for t ∈ [T (z0),+∞]. Unlike 
autonomous systems, the Lyapunov function V(z, t) and the stability conditions explicitly depend on time, in-
corporating additional terms to reflect this time dependency.

Definition 2  22 System (1) is characterized as fixed-time stability if it satisfies the conditions of finite-time sta-
bility and a settling time function T (z0) that is bounded by a constant exists. In simpler terms, there exists a 
maximum settling time T max > 0 such that f (z(t)) = 0, ∀t ≥ T max and ∀T (z0) ≤ T max, z0 ∈ Rd.

Lemma 1  22 Given a system described as system (1), if a continuous positive-definite function V(z) satisfies the 
condition

	
∂V

∂z
f (z, t) ≤ −σV

ℓ1
γ1 (z)− ηV

ℓ2
γ2 (z),

where σ > 0, η > 0, ℓ1, γ1, ℓ2, and γ2 are positive odd integers that satisfy ℓ1 > γ1 and ℓ2 < γ2. In such case, the 
origin of the system is a globally fixed-time stable equilibrium, with the settling time function T  limited by 

	
T ≤ Tmax =

1

σ

γ1
ℓ1 − γ1

+
1

η

γ2
γ2 − ℓ2

.

Furthermore, if θ ∆
= [γ2(ℓ1 − γ1)]/[γ1(γ2 − ℓ2)] ≤ 1, we can obtain a less conservative estimate of the time func-

tionT as

	
T ≤ Tmax =

γ2
γ2 − ℓ2

(
1

√
ση

tan−1

√
σ

η
+

1

σθ

)
.

Neural network principle
As depicted in Fig. 2, the RBF neural network is typically characterized by the neural structure that consists of 
an input layer, a hidden layer, and an output layer. The primary purposes of these layers are as follows: the input 
layer is responsible for receiving external information, the hidden layer performs nonlinear transformations, and 
the output layer provides the final output information. RBF neural networks are a suitable choice in this scenario 
due to their capability to estimate unknown nonlinear functions effectively23. Therefore, we employ RBF neural 
networks to estimate a nonlinear function g(·) : Rb → Rd.

The RBF neural network approximates the function g(z) as follows:

	 g(z) ≈ ĝ(z) = KTφ(z) + ε,

where the weight matrix K ∈ Rm×d consists of the weights of m neurons, and the input data vector is denoted as 
z ∈ Rb. The approximation error of a RBF neural network is represented by ε ∈ Rd. To derive this, consider the 
basis function φ = [φj(z)]m×1 ∈ Rm, defined as:

	
φj(z) = exp

[
− 1

2ιj
∥z − ρj∥

]
, ∀j ∈ {1, 2, . . . ,m},

Fig. 2.  RBF neural network.
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where ρj ∈ Rb is the center of the jth neuron and ιj represents the width of this neuron. A practical rule for 
choosing the width ιj for each neuron based on the distance between the centers can be expressed as:

	
ιj =

1

m

m∑
k=1

∥ρj − ρk∥.

The width of a neuron remains a positive constant when the neuron is a hidden neuron. This ensures that each 
neuron’s receptive field overlaps with its neighbors, providing smooth transitions and improved approximation 
capabilities.

The RBF network’s output is a linear combination of these basis functions weighted by the matrix K. This can be 
expressed as:

	
ĝ(z) =

m∑
j=1

Kjφj(z),

where Kj ∈ Rb is the weight vector associated with the jth neuron.

By minimizing the approximation error ε between the actual function g(z) and the observed function ĝ(z), the 
weights K are adjusted to ensure that the RBF neural network can approximate g(z) as accurately as possible. This 
is typically done through a learning algorithm such as gradient descent.

System statement
In this scenario, we examine an example that involves a NPRS that consists of N robots. The dynamics and 
kinematics of the ith robot can be represented by

	 Hi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) + di(t) = ψ(τi),� (2)

where the position, velocity, and acceleration vectors of the robot are denoted as qi, q̇i, and q̈i ∈ Rd, respectively. 
Hi(qi) ∈ Rd×d represents the robotic inertia matrix. Ci(qi, q̇i) ∈ Rd×d denotes the Coriolis centrifugal matrix. 
Gi(qi) represents the gravitational torque. di(t) represents external perturbations that affect the robot. τi ∈ Rd 
includes the calculated control signals. ψ(τi) ∈ Rd is the deadzone function of the input torque, i.e.,

	

ψ(τi) =




uh(τi − δh1d), ∥τi∥ ≥ δh,

0, δl < ∥τi∥ < δh,

ul(τi − δl1d), ∥τi∥ ≤ δl,

where the constants δl and δh represent the bounds of the deadzone. In addition, ul(·) and uh(·) refer to the 
uncertain deadzone functions. Furthermore, to account for parametric uncertainties, the unknown ψ(τi) can 
be decomposed into two components: ψ(τi)

∆
= τi −∆τi, where ∆τi denotes an unknown continuous error 

function. Accounting for the presence of parametric uncertainties, the dynamical terms take the form of

	

Hi(qi) = Hi0(qi) + ∆Hi(qi),

Ci(qi, q̇i) = Ci0(qi, q̇i) + ∆Ci(qi, q̇i),

Gi(qi) = Gi0(qi) + ∆Gi(qi),

where the terms Hi0(qi), Ci0(qi, q̇i), and Gi0(qi) are known and provided by the user, directly usable for 
control design. By contrast, ∆Hi(qi), ∆Ci(qi, q̇i), and ∆Gi(qi) are uncertain terms that arise due to inevitable 
measurement errors in practical applications. Consequently, System (2) can be reformulated as follows:

	 Hi0(qi)q̈i + Ci0(qi, q̇i)q̇i +Gi0(qi) = τi + Fi(t),� (3)

where the consideration of lumped uncertainty terms Fi(t) = −∆Hi(qi)q̈i −∆Ci(qi, q̇i)q̇i −∆Gi(qi)
−di(t)−∆τi encompasses the effects of parametric perturbations ∆Hi(qi), ∆Ci(qi, q̇i), and ∆Gi(qi), as well 
as external disturbances di(t), and actuator input deadzone ∆τi. Utilizing RBF neural networks, Fi(t) can be 
represented as follows:

	 Fi(t) = KT
i φi(zi) + εi,� (4)

where Ki ∈ Rm×d represents the weight matrix associated with m neurons. The input vector is denoted as 
zi ∈ Rb. Furthermore, εi ∈ Rd represents the neural network approximation error, assumed to be bounded, 
i.e., ∥εi∥ ≤ ϖi, ϖi is a positive constant. In this case, φi(zi) = [φij(zi)]m×1 represents the Gaussian function 
associated with the RBF neural network, and

	
φij(zi) = exp

[
− 1

2ιj
∥zi − ρj∥

]
, ∀j ∈ {1, 2, . . . ,m}.
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ρj ∈ Rb represents the center of the jth neuron, while ιj denotes the width of the same neuron.

Subsequently, NPRS (3) can be reformulated as follows:

	 Hi0(qi)q̈i + Ci0(qi, q̇i)q̇i +Gi0(qi)=τi+KT
i φi(zi)+εi.� (5)

Notably, the following salient properties distinctly characterize the model of NPRS (2).

Property 1  The inertia matrix Hi(qi) is known to possess the properties of symmetry and positive definiteness.

Property 2  The matrix Ḣi(qi)− 2Ci(qi, q̇i) exhibits the property of skew-symmetry.

Furthermore, with regard to the kth subnetwork, the dynamics of the virtual leader’s trajectory are given by

	

{
ẋ0,k = v0,k,

v̇0,k = a0,k,

where x0,k, v0,k, and a0,k ∈ Rd represent the position, velocity, and acceleration vectors of the kth virtual leader, 
respectively, ∀k ∈ K . Here, we present a justifiable assumption that concerns the virtual leaders.

Assumption 3  Acceleration a0,k is bounded by a nonnegative constant δ0,k, such that ∥a0,k∥ ≤ δ0,k.

Remark 2  RBF networks are particularly advantageous for our application due to their universal approximation 
capabilities, enabling accurate approximation of continuous functions with sufficient neurons in the hidden 
layer. This makes them effective for modeling and compensating for system nonlinearities and uncertainties. Ad-
ditionally, RBF networks are well-suited for capturing complex, nonlinear disturbances that are challenging for 
observer techniques. Their effectiveness in similar applications has been demonstrated in previous studies23,28,29, 
further supporting our choice.

Remark 3  The NPRS (2) can be extended to form a mobile manipulator when integrated with a mobile platform. 
This system comprises a nonholonomic mobile base and a holonomic manipulator. Specifically, consider a two-
wheel-driven mobile platform operating under non-slip conditions. When factoring in parametric uncertain-
ties, the system’s dynamics can be written as:

	

{
Hi022q̈ia + Ci022q̇ia +Gi0a + fia = τia,

Hi011q̈ib + Ci011q̇ib +Gi0b + Uib = Bibτib − AT
ibϑi,

where qi = col(qia, qib), τi = col(τia, τib), di = col(dia, dib), Hi = [Hi11, Hi12;Hi21, Hi22],
Ci = [Ci11, Ci12;Ci21, Ci22], fia = ∆Hi22q̈ia +∆Ci22q̇ia +∆Gia + dia +Hi21q̈ib + Ci21q̇ib, 
Uib = ∆Hi11q̈ib +∆Ci11q̇ib +∆Gib + dib +Hi12q̈ia + Ci12q̇ia with Aib denoting the constraint matrix, Bib as the 
transformation matrix, and ϑi representing the Lagrange multiplier.

Problem formulation
The primary focus is to investigate the fixed-time CFT problem of NPRSs described below. The following form 
of problem definition is provided using the principle of fixed-time stability.

Definition 3  The achievement of the fixed-time CFT problem of NPRSs is determined by the existence of a 
settling time Tmax, which remains independent of the initial condition, such that

	




limt→Tmax ∥qi(t)− ri − x0,k(t)∥ = 0,

limt→Tmax ∥q̇i(t)− v0,k(t)∥ = 0,

∥qi(t)− ri − x0,k(t)∥ = 0, ∀t ∈ [Tmax,∞),

∥q̇i(t)− v0,k(t)∥ = 0, ∀t ∈ [Tmax,∞),

where qi(t) and q̇i(t) ∈ Rd are the robot’s position and velocity defined in formula (2), and ri ∈ Rd denotes the 
ith robot’s formation offset.

Remark 4  In the practical application of CFT for the NPRS, uncertain factors, such as device precision, actuator 
limitations, and variations in operating conditions, inevitably result in negative effects, such as reduced control 
accuracy and difficulties in determining the time when the system becomes stable. Consequently, considering 
actuator input deadzone, parametric uncertainties, and external perturbations, becomes of paramount impor-
tance.
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Major results
This section introduces a new HFNA control algorithm tailored to address the CFT problem for NPRSs while 
ensuring fixed-time convergence capability. Additionally, the effectiveness of the algorithm is verified by the 
following stability analysis.

HFNA control algorithm
In this subsection, we present the HFNA control algorithm for NPRSs. Before proceeding further, we define 
êi = qi − ri − x̂i, ˙̂ei = q̇i − v̂i, and ¨̂ei = q̈i − âi, where x̂i, v̂i, and âi are the observations of qi, q̇i, and q̈i, 
respectively. Moreover, we design a fixed-time sliding vector as follows:

	
ŝi = êi +

(
ℏ−1
i · ˙̂ei

)n4/m4

, ℏi = σ0ê
m3/n3−m4/n4
i + η01d,

where ŝi ∈ Rd, m3, n3, m4, and n4 are positive odd integers that satisfy m3 > n3, m4 < n4 < 2m4, and 
m3/n3 −m4/n4 > 0. σ0 and η0 are positive constants.

In this manner, let ξ̂i = col(x̂i, v̂i, âi) ∈ R3d and γ0,k = col(x0,k, v0,k, a0,k) ∈ R3d. In the presence of actuator input 
deadzone, parametric uncertainties and external perturbations, the HFNA control algorithm is formulated in 
the following manner:

	




τi = τi,1 + τi,2
τi,1 = Ci0q̇i +Gi0 − K̂T

i φi − ϖ̂i − βisig(ŝi)

τi,2 = Hi0âi −Hi0q̇i −Hi0(Γi · ˙̂e2i · ℏ−1
i )

− m4

n4
Hi0ℏi · (ℏ−1

i · ˙̂ei)
m4−n4
m4 · ( ˙̂ei + δi)

˙̂
Ki = α1φiŝ

T
i ,

˙̂ϖi = α2 ∥ŝi∥ ,

� (6)

	




˙̂
ξi =




j∈Ni

aij + bi




−1

j∈Ni

aij
˙̂
ξj + biγ̇0,k

− (P ⊗ Id) sig(

j∈Ni

aij(ξ̂i − ξ̂j) + bi(ξ̂i − γ0,k))
m1
n1

− (Q⊗ Id) sig(

j∈Ni

aij(ξ̂i − ξ̂j) + bi(ξ̂i − γ0,k))
m2
n2




P = diag(σ1, σ2, σ3), Q = diag(η1, η2, η3),

� (7)

where δi = σ4ŝ
m3/n3
i + η4ŝ

m4/n4
i , Γi = −σ0[(m3/n3)− (m4/n4)]ê

(m3/n3)−(m4/n4)−1
i , σ4, and η4 are positive 

constants, and βi is given as a scalar gain. α1, and α2 > 0, φi is given by the expression in (4). The hierarchical 
framework of the proposed HFNA control algorithm is illustrated in Fig. 3, providing a clear depiction of its 
structure.

Remark 5  The control algorithm given in (6) demonstrates considerable physical significance. To elaborate fur-
ther, τi,1 represents the robust control term for addressing the challenges posed by actuator input deadzone, par-
ametric uncertainties, and external perturbations. τi,2 corresponds to an equivalent control designed for NPRSs 
to process known information. Additionally, the update laws ˙̂Ki=α1φiŝ

T
i  and ˙̂ϖi=α2|ŝi| in the neural adaptive 

control serve as effective approximations for dealing with the complexities introduced by the actuator input 
deadzone, parametric uncertainties, and external perturbations.

Remark 6  The proposed HFNA control algorithm consists of a local control layer (i.e., (6)) and a distributed ob-
server layer (i.e., (7)). Its hierarchical architecture decomposes the control task into multiple levels, allowing each 
layer to handle specific aspects of the control problem. This structured decomposition enables smoother transi-
tions between control actions, minimizing abrupt control signal changes, which helps reduce the high-frequency 
switching that typically leads to chattering in conventional sliding mode control. Furthermore, the adaptive 
neural network components continuously adjust control parameters in response to real-time system dynamics. 
This adaptability enables more precise and gradual modifications, mitigating the need for aggressive switching 
and further reducing chattering. Together, the hierarchical design and adaptive neural network enhance the 
robustness of the control strategy against parametric uncertainty and external perturbations, ensuring stable 
and reliable performance.

Analysis for the distributed observer
In this subsection, we validate the performance of the proposed distributed observer algorithm in addressing 
the fixed-time CFT problem.
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Theorem 1  Under the assumptions of Assumption 1-3, and with the proposed distributed observer algorithm (7), 
if the conditions are satisfied as

	 σmin > 0, ηmin > 0, � (8)

	 m1 > n1, m2 < n2, � (9)

where σmin = min{σ1, σ2, σ3}, and ηmin = min{η1, η2, η3}. Then, the states of the virtual leaders are effectively 
observed within a fixed time t ≤ Te, i.e.,limt→Te∥ξ̃i∥ = 0, and ∥ξ̃i∥ = 0, whent > Te, ∀i ∈ V .

Proof  First, the distributed observer tracking error vectors for i, j ∈ V  are defined as follows:

	




x̃i = x̂i − x0,k,

ṽi = v̂i − v0,k,

ãi = âi − a0,k.

Let ξ̃i = col(x̃i, ṽi, ãi) ∈ R3d, the compact representations of x̃i , ṽi, and ãi are as follows:

	




x̃ = col(x̃1, x̃2, . . . , x̃N)

ṽ = col(ṽ1, ṽ2, . . . , ṽN)

ã = col(ã1, ã2, . . . , ãN)

Thus, we can obtain the compact form ξ̃ = col(x̃, ṽ, ã). Furthermore, substituting the proposed HFNA control 
algorithm (6), (7) into (5) obtains the cascade closed-loop system as follows:

Fig. 4.  Directed graph G  representing the NPRS network.

 

Fig. 3.  Hierarchical control framework for NPRSs.
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



˙̂si = ˙̂ei +
n4

m4
(ℏ−1

i · ˙̂ei)
n4−m4
m4 (Γi · ˙̂e2i · ℏ−2

i + ℏ−1
i · ¨̂ei),

˙̃ξ = [(L +B)⊗ I3d]
−1{−P sig([(L +B)⊗ I3d]ξ̃)

m1
n1

−Qsig([(L +B)⊗ I3d]ξ̃)
m2
n2 +(B ⊗ I3d)γ̇0}−γ̇0,

� (10)

where γ0 = col (x0, v0, a0),

	

x0=col(x0,1, . . . , x0,1︸ ︷︷ ︸
n1

, x0,2, . . . , x0,2︸ ︷︷ ︸
n2

, . . . , x0,K , . . . , x0,K︸ ︷︷ ︸
nK

),

v0=col(v0,1, . . . , v0,1︸ ︷︷ ︸
n1

, v0,2, . . . , v0,2︸ ︷︷ ︸
n2

, . . . , v0,K , . . . , v0,K︸ ︷︷ ︸
nK

),

a0=col(a0,1, . . . , a0,1︸ ︷︷ ︸
n1

, a0,2, . . . , a0,2︸ ︷︷ ︸
n2

, . . . , a0,K , . . . , a0,K︸ ︷︷ ︸
nK

).

In the closed-loop system (10), given that ˙̃ξ is defined, taking linear transformations Φ̃ = [(L + B)⊗ I3d]ξ̃ 
yields

	

˙̃Φ = [(L + B)⊗ I3d]
˙̃ξ

=−P sig([(L +B)⊗ I3d]ξ̃)
m1
n1

−Qsig([(L +B)⊗ I3d]ξ̃)
m2
n2

+ (B ⊗ I3d)γ̇0 − [(L + B)⊗ I3d]γ̇0.

� (11)

It’s worth noting that (B ⊗ I3d)γ̇0 = [(L + B)⊗ I3d]γ̇0. Then, it can be derived that

	
˙̃Φ = −P sig(Φ̃)

m1
n1 −Qsig(Φ̃)

m2
n2 .� (12)

Consider the positive-definite Lyapunov function candidate defined as

	 V (Φ̃) = signT (Φ̃).� (13)

Further, taking the derivative of the function V (Φ̃), it can be derived that

	

V̇ (Φ̃) ≤− ∥P∥1∥Φ̃∥
m1
n1
1 − ∥Q∥1 ∥Φ̃∥

m2
n2
1

=− ∥P∥1 V
m1
n1 (Φ̃)− ∥Q∥1 V

m2
n2 (Φ̃).

� (14)

Thus, ξ̃i = 0 when fixed-time t ≥ Te and Te is bounded by

	
Te ≤ Temax=

1

σmin

n1

m1 − n1
+

1

ηmin

n2

n2 −m2
.� (15)

In addition, if θ1
∆
= [n2(m1 − n1)]/[n1(n2 −m2)] ≤ 1, a less conservative approximation can be derived as 

follows:

	
Te≤Temax=

n2

n2−m2

(
1

√
σminηmin

tan−1

√
σmin

ηmin
+

1

σminθ1

)
.

� □

Remark 7  The result from Theorem 1, limt→Te∥ξ̃i∥ = 0, and ∥ξ̃i∥ = 0, when t > Te, and ξ̃i = col(x̃i, ṽi, ãi) ∈ R3d, 
can be easily obtained limt→Te ∥x̃i∥ = 0, limt→Te ∥ṽi∥ = 0, limt→Te ∥ãi∥ = 0 and ∥x̃i∥ = 0, ∥ṽi∥ = 0, ∥ãi∥ = 0.

Analysis of fixed-time CFT
In this subsection, we demonstrate the effectiveness of the presented algorithm in solving the fixed-time CFT 
problem, building upon the result established in Theorem 1.

Theorem 2  By applying the proposed HFNA control algorithm (6)–(7) to the system (5), and under the condition 
that

	 βi ≥
∥∥K̃T

i φi + ϖ̃i

∥∥ , ∀i ∈ V ,� (16)

where K̃i = Ki − K̂i and ϖ̃i = ϖi − ϖ̂i, the fixed-time CFT problem (Definition3) in NPRSs is successfully solved.
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Proof  The theorem demonstrates that qi and q̇i can track their corresponding observer terms x̂i and v̂i within 
a fixed time. First, the distributed tracking errors are defined as êi = qi − ri − x̂i and ˙̂ei = q̇i − v̂i. The analysis 
then focuses on the convergence of the fixed-time sliding vector ŝi. To facilitate this analysis, a Lyapunov func-
tion candidate is introduced, followed by a detailed convergence analysis.

	
Vi(ŝi) =

1

2
ŝTi ŝi, ∀i ∈ V .� (17)

Consider that ˙̂si is defined in the closed-loop system (10), the derivative of Vi can be expressed as follows:

	

V̇i(ŝi) =ŝ
T
i
˙̂si

= ŝTi [
˙̂ei +

n4

m4
(ℏ−1

i · ˙̂ei)(n4/m4)−1(Γi · ˙̂e2i · ℏ−2
i

+ ℏ−1
i · ¨̂ei)],

= ŝTi { ˙̂ei +
n4

m4
(ℏ−1

i · ˙̂ei)(n4/m4)−1{Γi · ˙̂e2i · ℏ−2
i

+ ℏ−1
i · [Hi0

−1(τi +KT
i φi + εi

− Ci0q̇i −Gi0)− âi]}}

� (18)

where Γi = −σ0[(m3/n3)− (m4/n4)]ê
(m3/n3)−(m4/n4)−1
i . Then, (18) can be rewritten as

	

V̇i(ŝi) =
n4

m4
(ℏ−1

i · ˙̂ei)(n4/m4)−1ŝTi [Hi0
−1ℏ−1

i · (KT
i φi

+ εi − K̂T
i φi − ϖ̂i − βisig(ŝi))]− ŝTi δi

≤ ŝTi [Hi0
−1ℏ−1

i · (KT
i φi +ϖi − K̂T

i φi − ϖ̂i

− βisig(ŝi))]− ŝTi δi

≤ ŝTi [Hi0
−1ℏ−1

i · (K̃T
i φi + ϖ̃i − βisig(ŝi))]

− ŝTi δi,

� (19)

where ∥εi∥ ≤ ϖi is defined in (4). In accordance with (16), we obtain that

	

V̇i(ŝi) ≤ −ŝTi δi

≤ −ŝTi (σ4ŝ
m3/n3
i + η4ŝ

m4/n4
i )

≤ 0,

� (20)

where δi = σ4ŝ
m3/n3
i + η4ŝ

m4/n4
i  is defined in (6). The inequality above indicates that V̇i(ŝi) is negative definite, 

ensuring the convergence of ŝi for all i ∈ V . Alternatively, the selected Lyapunov function candidate is as follows 
for the neural adaptive laws:

	
Vi(K̃i, ϖ̃i) =

1

2
tr(K̃T

i α
−1
1 K̃i)+

1

2
α−1
2 ϖ̃2

i .� (21)

Given the positive constants α1 and α2, the function Vi(K̃i, ϖ̃i) is positive definite. Furthermore, we can deduce 
from (6), (16), and the previous analysis that K̃i, ϖ̃i ∈ L2 ∩ L∞ and ˙̃Ki, ˙̃ϖi ∈ L∞. The derivative of Vi(K̃i, ϖ̃i) 
is then expressed as follows:

	 V̇i(K̃i, ϖ̃i) = −tr(K̃T
i (φiŝ

T
i ))−ϖ̃i ∥ŝi∥ .� (22)

Thus, it follows that

	 V̈i(K̃i, ϖ̃i)=tr(α1ŝiφ
T
i (φiŝ

T
i ))+tr(K̃T

i (φ̇i
˙̂sTi )+α2∥ ˙̂si∥.� (23)

On the basis of the analysis of (19) and (20), which shows that ŝi ∈ L2 ∩ L∞, and considering the closed-loop 
dynamics (10), we can conclude that ˙̂si ∈ L∞. Additionally, the boundedness of φ̇i defined in (4) implies that 
V̈i(K̃i, ϖ̃i) ∈ L∞. By applying Barbalat’s lemma10 and combining it with the previous analysis, we further deduce 
that K̃i → 0 and ϖ̃i → 0 as t → ∞. This finding demonstrates the effectiveness of the neural adaptive law, 
allowing the use of smaller βi and reducing the chattering phenomenon.

With regard to (16), obtaining knowledge of ϖ̃i may be challenging in practical applications. In such 
scenarios, a practical solution is to choose a suitably large βi to ensure the stability condition. This solution 
results in the following reformulation of (19):
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V̇i(ŝi) ≤− ŝTi (σ4ŝ
m3/n3
i + η4ŝ

m4/n4
i )

≤− σ4ŝ
(m3+n3)/n3
i − η4ŝ

(m4+n4)/n4
i

≤− σ42
(m3+n3)/2n3Vi(ŝi)

(m3+n3)/2n3

− η42
(m4+n4)/2n4Vi(ŝi)

(m4+n4)/2n4.

� (24)

By utilizing Lemma 1 and the expression in (24), the distributed tracking errors êi = qi − ri − x̂i and ˙̂ei = q̇i − v̂i 
evidently reach the manifold ŝi within the fixed time t ≤ Tl,1. Then, Tl,1 is defined as follows:

	
Tl,1 ≤ Tlmax,1 =

2(n3−m3)/2n3

σ4

n3

m3 − n3
+

2(n4−m4)/2n4

η4

n4

n4 −m4
.� (25)

Drawing upon the preceding analysis and fixed-time sliding mode control theory22, a conclusion can be readily 
drawn that êi and ˙̂ei achieve convergence to the origin within the fixed time Tl ≤ Tlmax,1 + Tlmax,2. In particular, 
it follows from (25) that

	

Tl ≤Tlmax,1 + Tlmax,2

=Tlmax,1 +
1

σ0

n3

m3 − n3
+

1

η0

n4

n4 −m4

=
n3

m3 − n3

(
2(n3−m3)/2n3

σ4
+

1

σ0

)

+
n4

n4 −m4

(
2(n4−m4)/2n4

η4
+

1

η0

)
.

� (26)

In addition, if θ2
∆
= [n4(m3 − n3)]/[n3(n4 −m4)] ≤ 1, a less conservative bound can be obtained as

	

Tl ≤
n4

n4 −m4

(
1

√
σ0η0

tan−1

√
σ0
η0

+
1

σ0θ2

+
1

√
σ4η4

tan−1

√
σ4
η4

+
2−(n3+m3)/2n3

σ4θ2

)
.

� (27)

The second step validates the successful resolution of the fixed-time CFT problem. Before proceeding, let 
ei = qi − ri − x0,k and ėi = q̇i − v0,k, where ei and ėi represent the position and velocity tracking errors of the 
robots, respectively. Applying the Triangle Inequality, it can be obtained that

	

lim
t→Tf

∥ei∥ = lim
t→Tf

∥(qi − ri − x̂i) + (x̂i − x0,k)∥

≤ lim
t→Tf

∥êi∥ + lim
t→Tf

∥x̃i∥

≤0,

lim
t→Tf

∥ėi∥ = lim
t→Tf

∥(q̇i − v̂i) + (v̂i − x0,k)∥

≤ lim
t→Tf

∥∥∥ ˙̂ei
∥∥∥ + lim

t→Tf

∥ṽi∥

≤0,

where Tf ≤ Te + Tl. Therefore, the problem defined in Definition 3 is effectively resolved, concluding the 
proof.�  □

Remark 8  We choose Tf ≤ Te + Tl to represent the total time required for system convergence, which includes 
the time Te associated with the distributed observer layer and the time Tl related to the local control layer. This 
approach ensures that the cumulative nature of the convergence times across different stages is fully considered, 
encompassing all phases of the convergence process. By contrast, using Tf ≤ max(Te,Tl) would imply that the 
convergence time is determined solely by the longer duration of either the distributed observer layer or the local 
control layer. This choice assumes that one stage completes immediately after the other, disregarding potential 
overlaps or the possibility of collaborative convergence between the stages.

Simulations
This section depicts the efficacy of the HFNA control algorithm outlined in Algorithm 1 through simulation. 
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Algorithm 1.  HFNA control

The NPRS comprises ten identical follower robots (2-DOF) and three virtual leaders (simplified leader 
representations). Moreover, the interactions of the NPRS are illustrated in Fig. 4. The Laplacian matrix L  can 
be computed as

	

L =




2 0 −2 0 0 0 0 0 0 0

−1 1 0 0 0 0 0 0 0 0

−2 0 2 −4 0 4 0 0 0 0

0 0 0 1 −1 0 0 0 0 0

0 0 0 0 3 0 −3 0 0 0

0 0 0 −2 0 3 −1 0 0 0

0 0 0 0 −3 0 3 −2 0 2

0 0 0 0 0 0 0 1 0 −1

0 0 0 0 0 0 0 −2 2 0

0 0 0 0 0 0 0 0 −1 1




.

Additionally, the physical parameters of the NPRS are selected in Table 1. The observations of the physical 
parameters of the NPRS are selected in Table 2. The dynamics descriptions is given by

Mass (kg) Length (m) COM (m)

m̂i=(m̂i1, m̂i2)
T l̂i1 = (l̂i1, l̂i2)

T χ̂i2=(χ̂i1, χ̂i2)
T

m̂i1 = 1.16 + 0.03i l̂i1=2.58 + 0.04i χ̂i1 = 1.24 + 0.02i

m̂i2 = 1.14 + 0.02i l̂i2=2.54 + 0.02i χ̂i2 = 1.12 + 0.01i

Table 2.  The observations of the physical parameters.

 

Mass (kg) Length (m) COM (m)

mi=(mi1,mi2)
T li1 = (li1, li2)

T χi2=(χi1, χi2)
T

mi1 = 1.26 + 0.03i li1=2.68 + 0.04i χi1 = 1.34 + 0.02i

mi2 = 1.04 + 0.02i li2=2.44 + 0.02i χi2 = 1.22 + 0.01i

Table 1.  Physical parameters of the robot.
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[
Hi11 Hi12

Hi21 Hi22

][
q̈i1
q̈i2

]
+

[
Ci11 Ci12

Ci21 Ci22

][
q̇i1
q̇i2

]

+

[
Gi1

Gi2

]
+

[
di1
di2

]
=

[
ψ(τi1)

ψ(τi2)

]
.

In more detail, Hi11 = λ̄i1 + 2λ̄i2 cos(q̇i2), Hi12 = Hi21 = λ̄i3 + 2λ̄i2 cos(q̇i2), Hi22 = λ̄i2, Ci11 = −λ̄i2 sin(q̇i2)q̇i2,
Ci12 = −λ̄i2 sin(q̇i2)(q̇i1 + q̇i2) Ci21 = −λ̄i2 sin(q̇i2)q̇i1, Ci22 = 0, Gi1 = gλ̄i4 cos(q̇i1) + gpi5 cos(q̇i1 + q̇i2),
Gi2 = gλ̄i5 cos(q̇i1 + q̇i2). We select the standard gravitational torque as g = 9.8 m/s2. Furthermore, 
the detailed description of the corresponding parameters is provided below. λ̄i1 to λ̄i5 are given as 
λ̄i1 = mi1χ

2
i1 +mi2(l

2
i1 + χ2

i2) + Ii1 + Ii2, λ̄i2 = mi2li1χi2, λ̄i3 = mi2χ
2
i2 + Ii2, λ̄i4 = mi1χi1 +mi2li1, 

λ̄i5 = mi2χi2, and Ii1 = 1
3mi1l

2
i1, Ii2 = 1

3mi2l
2
i2.

Under Assumption 3, the trajectory of the virtual leaders, labeled as L1, L2, and L3, are selected as

Fig. 6.  (a, b) Illustrate the evolution of the error term (qi − ri), representing the difference between the 
actual and reference trajectories. (c, d) display the evolution of the observed state x̂i, showing how the state 
observation evolves over time.

 

Fig. 5.  Trajectories of NHRS with a constant cluster formation configuration under different initial conditions. 
Note: The intersections of the trajectories in this figure do not occur simultaneously. The robots do not occupy 
the same position at the same time, hence avoiding any potential collisions.
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Fig. 8.  (a, b) Illustrate the velocity errors associated with cluster formation tracking, highlighting the 
discrepancies between the desired and actual velocities of the robots throughout the formation process.

 

Fig. 7.  (a, b) Show the overall position error ei, illustrating the deviation between the actual and desired 
positions. (c, d) describe the evolution of the state observation error x̃i in the distributed observer layer. 
Finally, (e, f) display the evolution of the position error êi in the local control layer.
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Fig. 11.  (a) Control input torque τi for coordinates 1 and 2 of the first robot without considering actuator 
input deadzone compensation. The comparison algorithm applied in the figure (a) is derived from reference23. 
(b) Control input torque τi for coordinates 1 and 2 of the first robot while considering actuator input deadzone 
compensation.

 

Fig. 10.  (a, b) illustrate the convergence of the RBF neural network approximation error εi during the 
approximation of Fi(t) for coordinates 1 and 2.

 

Fig. 9.  (a, b) Illustrate the neural adaptive parameters of the 1st subnetwork. (c, d) display the neural adaptive 
parameters of the 2nd subnetwork. (e, f) present the neural adaptive parameters of the 3rd subnetwork.
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


x0,1 = col(0.9 + 0.4 sin(0.4t), 1.0 + 0.4 cos(0.4t)),

v0,1 = col(0.42 cos(0.4t), −0.42 sin(0.4t)),

a0,1 = col(−0.43 sin(0.4t), −0.43 cos(0.4t)),


x0,2 = col(2.6 + 0.5 cos(0.5t), 1.4 + 0.5 sin(0.5t)),

v0,2 = col(−0.52 sin(0.5t), 0.52 cos(0.5t)),

a0,2 = col(−0.53 cos(0.5t), −0.53 sin(0.5t)),


x0,3 = col(1.6 + 0.3 sin(0.3t), 2.6 + 0.3 cos(0.3t)),

v0,3 = col(0.32 cos(0.3t), −0.32 sin(0.3t)),

a0,3 = col(−0.33 sin(0.3t), −0.33 cos(0.3t)).

Furthermore, we present the parameters used in the HFNA control algorithm (6)–(7). To ensure the establishment 
of (8) and (9), the following parameter values are used: σmin = 8 (σ1 = 8, σ2 = 9, σ3 = 10), ηmin = 8 (η1 = 8, 
η2 = 9, η3 = 10), m1 = 2, n1 = 1, m2 = 1, and n2 = 2. Besides, the parameters of the neural adaptive laws are 
specified as α1 = 0.1 and α2 = 1.01. The neural networks K̂T

i φi comprise 10 neurons, where the centers ρi are 
evenly distributed in the range [−2π, 2π], with widths ιi = 20. We choose σ0 = 1, η0 = 1, σ4 = 1, η4 = 1, m3 = 9,
n3 = 5, m4 = 7 and n4 = 9, βi = 50 to make (16) holds. Furthermore, the external perturbations is chosen as 
di(t) = −0.1col(cos t, sin t). Besides, the formation offsets are set to r1 = col(0, 2/9)m, r2 = col(−

√
3/9,−1/9)m,

r3 = col(
√
3/9,−1/9)m, r4 = col(−0.16, 0.15)m, r5 = col(0.15, 0.15)m, r6 = col(0.15,−0.15)m, 

r7 = col(−0.15,−0.15)m, r8 = col(0, 1/4)m, r9 = col(−
√
3/8,−1/8)m, r10 = col(

√
3/8,−1/8)m. Here, the 

input deadzone function of the robotic manipulator is denoted as

	

ψ(τi) =




τi − col(10, 10), ∥τi∥ ≥ 10,

0, −10 < ∥τi∥ < 10,

τi + col(10, 10), ∥τi∥ ≤ −10.

The initial states qi (0) and q̇i (0) are randomly assigned within the ranges of [−5, 5] and [−0.2, 0.2], respectively.

Remark 9  The comparative analysis provided in Table 3 offers a thorough evaluation of our proposed control 
algorithm in relation to several established methods20,33,34,37,38. This analysis emphasizes the advantages of our 
approach, particularly in key performance areas such as convergence time, hierarchical control, deadzone com-
pensation, uncertainty treatment, and formation task. By highlighting these aspects, we demonstrate the prac-
tical benefits of our method, ensuring a more comprehensive understanding of its effectiveness in addressing 
complex control challenges.

Simulation results are presented in Figs. 5, 6, 7, 8, 9, 10 and 11, depicting the fixed-time CFT trajectories of 
the NPRS on the XY plane for 10 robots (Fig. 5). The efficacy of the proposed HFNA control algorithm (6)–(7) 
in achieving excellent fixed-time CFT performance of the NPRS is evident from the outcomes. In detail, from 
(c)–(d) in Figs. 6 and 7, the position observers x̂i converge to x0,k for all i ∈ Vk, k ∈ 1, 2, 3 within the fixed time 
Te. Additionally, (a)–(b) in Figs. 6 and 7 reveal the attainment of fixed-time convergence of qi, i ∈ V , through 
the designed HFNA control algorithm. Using the parameters we set, the fixed settling time of the distributed 
observer layer t ≤ Te = 0.38s (based on (15)), and the fixed settling time of the local layer t ≤ Tl = 9.36 s 
(based on (26)). Therefore, the total fixed-time convergence is Tf ≤ Te + Tl = 9.74 s. Meanwhile, from Fig. 
7, ei for i ∈ V  are bounded within the range of [−0.1, 0.1] in a fixed time t ≈ 4.50 s < Tf . Similarly, Fig. 8 
demonstrates the tracking performance of the velocities. Additionally, Fig. 9 provides evidence of the stability 
of the neural adaptive parameters. Figure 10 illustrates the evolution of the RBF neural network approximation 
error. As shown, the neural network approximation error εi gradually converges to zero. This result demonstrates 
that the RBF network effectively approximates the lumped uncertainties, thereby ensuring the accuracy of the 
control algorithm and the stability of the overall system. In Fig. 11b, the control input torque τ1 for the 1st robot 
is bounded, minimizing the impact of minor input fluctuations and resulting in smoother control inputs as well 
as improved overall system performance. Overall, the simulation results validate the effectiveness and accuracy 
of the HFNA control algorithm.

References CT HC DC UT FT

Meng et al.20 Finite No No Fuzzy No

Shi and Hu33 Finite Yes No No No

Cheng et al.34 Fixed No No Observer Single

Ding et al.37 Practical fixed Yes No Observer Cluster

Yoo and Park38 Fixed No No No Single

Our Fixed Yes Yes RBF Cluster

Table 3.  Comparison of related literature. CT convergence time, HC hierarchical control, DC deadzone 
compensation, UT uncertainty treatment, FT formation task.
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Conclusion
The fixed-time CFT control problem in NPRSs was successfully addressed by considering actuator input 
deadzone, parametric uncertainties, and external perturbations. To address this challenging problem, a novel 
HFNA control algorithm, which comprised a distributed observer algorithm and a neural-adaptive fixed-time 
controller in the local control layer, was proposed. The simulation results demonstrated that the robots in a NPRS 
effectively achieved the fixed-time CFT control task, validating the feasibility of the HFNA control algorithm. 
Furthermore, the bipartite CFT control problem of NPRSs, which incorporates cooperative and antagonistic 
interconnections, can handle more complex control tasks. Consequently, our future work will be dedicated to 
exploring the CFT control for bipartite consensus and mobile manipulators.

Data availability
Simulation programmes are available from the corresponding author on reasonable request.
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