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Abstract

Cognitive control guides non-habitual, goal directed behaviors allowing us to flexibly adapt to 

ongoing demands. Previous work has suggested that multiple cognitive control processes exist 

that can be classed according to their action on present-oriented/external information versus 

future-oriented/internal information. These processes can be mapped onto the lateral prefrontal 

cortex (LPFC) such that increasingly rostral areas are involved in increasingly future-oriented/

internal control processes. Whether and how such processes are organized to support goal-directed 

behavior remains unclear. On the one hand, the LPFC may flexibly adapt based upon demands. 

On the other hand, there may be a consistent control architecture such as a control hierarchy 

that generalizes across demands. Previous work using fMRI in humans during a comprehensive 

control task that engaged several control processes at once found that an area in mid-LPFC 

consistently exerted widespread influence throughout the LPFC. These data suggested that the 

mid-LPFC forms an apex of a putative control hierarchy. However, whether such an architecture 

generalizes across tasks remains to be tested. Here, we utilized a modified comprehensive control 

task designed to alter how control processes influence one another to test the generalizability 

of the LPFC control architecture. Univariate fMRI activations revealed distinct control-related 

activations relative to past work. Despite these changes, effective connectivity modeling revealed a 

directed architecture similar to previous findings with the mid-LPFC exerting the most widespread 

influences throughout LPFC. These results suggest that the fundamental control architecture of the 

LPFC is relatively fixed, and that different demands are accommodated through modulations of 

this fixed architecture.
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INTRODUCTION

Cognitive control is the ability to organize thought and behavior in accordance with internal 

goals (Miller and Cohen 2001). Cognitive control is utilized in our daily lives in many 

ways such as: scheduling multiple concurrent tasks, proactively preparing for the future, 

or breaking habitual responding in favor of more intentional behavior. These processes 

Corresponding Author: Derek Evan Nee, Florida State University, 1107 W Call St, Tallahassee, FL 32306-4301, nee@psy.fsu.edu. 

HHS Public Access
Author manuscript
Neurobiol Learn Mem. Author manuscript; available in PMC 2024 October 28.

Published in final edited form as:
Neurobiol Learn Mem. 2022 November ; 195: 107688. doi:10.1016/j.nlm.2022.107688.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



organize behavior to deal with complex problems as they arise. Understanding these 

fundamental functions is necessary to better elucidate how to optimize control and remediate 

control when it goes awry.

Cognitive control engages the frontoparietal network (FPN) (Cole and Schneider, 2007; 

Dosenbach et al., 2007; Vincent et al., 2008; Cole et al., 2013). Therein, the lateral prefrontal 

cortex (LPFC) is known to be essential in performing many higher-level cognitive abilities 

such as planning, attention, and working memory (Bechara et al., 1994; Miller & Cohen, 

2001; Tanji & Hoshi, 2001; Tanji & Hoshi, 2008). However, the potential organization of 

specific control processes within these regions and how they support higher-level cognition 

remains uncertain.

According to the Adaptive Coding Model, the FPN along with other areas are engaged 

in diverse situations to organize cognitive processes towards intelligent cognition (Duncan, 

2001; Duncan, 2010; Duncan et al., 2020). Under this framework, control processes do 

not have a systematic organization, but rather, flexibly adapt to current demands (Duncan, 

2013). By contrast, several studies have provided evidence that the processes underlying 

cognitive control are systematically organized (Koechlin et al., 2003; Nee & Brown, 2012; 

Bahlmann et al., 2014; Nee & D’Esposito, 2016), although specifying a proper organizing 

framework has been elusive (Koechlin & Summerfield, 2007; Badre, 2008; Badre & Nee, 

2018). Recently, we suggested that the FPN, and LPFC within it, are broadly organized such 

that somatomotor proximal areas act upon present-oriented, external representations while 

somatomotor distal areas act upon future-oriented, internal representations (Nee, 2021). 

Within this framework, we concern ourselves here with three different putative control 

processes: In the immediacy, learned stimulus-response pairings inform correct action 

selection. Selecting amongst them is referred to as sensorimotor control, and it governs 

the most concrete contributions to behavior that differentiate habitual responding from 

intentional control. These mappings can in turn be guided by current task sets and contextual 

rules. Contextual control incorporates the context to select and maintain task sets that inform 

proper stimulus-action selection. Finally, context-task set mappings may themselves flexibly 

change over different temporal epochs. Episodic control is the contribution of control 

associated sustaining a temporal episode to inform context-task set mappings (Koechlin 

et al., 2003; Koechlin and Summerfield, 2007). These processes are thus organized by 

both timescale (Fuster, 2001; Koechlin et al., 2003; Koechlin & Summerfield, 2007) and 

abstraction (Badre, 2008).

By definition, control denotes source-target relationships such that a systematic organization 

of control processes begets a systematic ordering of influences. For example, in the 

framework described above, episodic control can influence contextual control which, in 

turn, can influence sensorimotor control. This chain of influences has been formalized under 

the Cascade Model which posits a hierarchical ordering of LPFC areas and control processes 

(Koechlin et al., 2003; Koechlin & Summerfield, 2007). By contrast, a heterarchical 

organization with no single control process/brain area being generally dominant over others 

would be predicted by a framework that posits that control processes are not systematically 

organized, such as the Adaptive Coding Model (Duncan, 2010; Crittenden and Duncan, 

2014). Note that the Adaptive Coding Model does not rule out that the LPFC or control 

Pitts and Nee Page 2

Neurobiol Learn Mem. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



more generally acts hierarchically under certain demands, but rather, that distinct demands 

would entail distinct organizations such that no one organization would generally persist.

Pertinent to this debate, under accounts that subscribe to a putative hierarchical organization 

of the LPFC, the organization itself remains a point of contention. The Cascade Model 

predicts that the rostral-most part of the LPFC, the lateral frontal pole (FPl), sits atop the 

control hierarchy as the apex (Koechlin & Summerfield, 2007). Badre & D’Esposito (2009) 

reviewed evidence describing the anatomical plausibility of an FPl apex. These authors 

formalized that hierarchies can be operationally defined through dominance relationships 

such that an apex would be marked by asymmetrically greater influences upon other areas 

of the brain than it receives. Using this formalization, Nee & D’Esposito (2016) modeled 

effective connectivity (directed influences) in the LPFC during a comprehensive control 

task that factorially manipulated multiple forms of control. In contrast to the predictions 

of an FPl apex, they found that an area in the mid-LPFC showed the maximal outward 

asymmetries of influence that are consistent with an apex. Remarkably, the FPl was the least 

influential of the LPFC areas modeled. These observations were further bolstered by causal 

data using transcranial magnetic stimulation (Nee & D’Esposito, 2017), and are broadly 

consistent with anatomical projections in the monkey (Goulas et al., 2014). However, while 

the task of Nee & D’Esposito manipulated sensorimotor and contextual control, at the 

highest level, the task engaged what they referred to as temporal control. This was defined 

as the maintenance of internal representations to guide future cognition. Although temporal 

control and episodic control both concern themselves with the common requirement of 

sustaining representations for the future, only in episodic control do those representations act 

directly upon task sets (i.e. contextual control). On the other hand, temporal control requires 

no direct interaction among internalized representations and ongoing task sets. Hence, the 

lack of influence of the FPl upon the LPFC in the study by Nee & D’Esposito may have 

resulted from a failure to engage the proper control process. Moreover, if the engagement 

of episodic control causes FPl to act in an apical manner, this suggests that the control 

hierarchy flexibly shifts according to demands. Such data might be consistent with the 

idea that there is no one hierarchical control architecture, but rather, an adaptive control 

architecture that appears to be heterarchical when examined across diverse demands.

Here, we sought to investigate whether a single hierarchical control architecture generalizes 

across different tasks or whether control architectures flexibly shift according to demands. 

We implemented a modified version of the comprehensive control task employed by Nee 

& D’Esposito (2016) by replacing temporal control with episodic control. Critically, this 

manipulation shifts the influence of control processes among one another providing an 

opportunity to alter the hierarchical organization of cognitive control. We hypothesized that 

the inclusion of episodic control may allow the FPl to act in an apical manner. Moreover, 

such a shift would also provide evidence for the Adaptive Coding Model by demonstrating 

that no one hierarchical organization of the LPFC exists, but rather, the organization adapts 

to diverse demands. However, if the mid-LPFC remains apical, it would suggest that the 

LPFC has a general hierarchical control architecture. Moreover, such a result would suggest 

that the mid-LPFC, as a general apex of cognitive control, would make for an important 

target for interventions seeking to broadly modulate control processing in diverse situations.
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METHODS

Participants

Data from thirty subjects were collected. Technical issues corrupted the data of 4 

participants, and 1 participant was excluded for excessive movement (>0.25 mm root mean 

squared frame-wise displacement (RMS FD); mean RMS FD of remaining sample = 0.1062 

mm). The analyzed sample included twenty-five right-handed native English speaking 

Florida State University students (average age= 19.48, 18 female). The sample size was 

based upon past studies (Nee & D’Esposito, 2016; 2017) which showed power sufficiency 

evidenced by empirically validated replicability at the chosen sample size (Nee, 2019). All 

reported participants completed an initial screening which included demonstrating the ability 

to understand and perform the task to satisfactory levels. Informed consent was obtained in 

concordance with the Office for Human Subjects Protection (OHSP) & FSU Institutional 

Review Board (IRB).

Procedure and Paradigm

The paradigm was written in MATLAB R2021a (Mathworks, Inc.) with Psychophysics 

Toolbox Version 3 (Brainard, 1997; Pelli, 1997; Kleiner et al, 2007). The task was a 

modified version of the paradigm used by Nee & D’Esposito (2016; 2017) designed to alter 

the interdependency among control processes. Each trial consisted of the presentation of a 

letter in one of five locations on a 5-pointed star (Fig 1A). Letters were drawn from the 

word “T-A-B-L-E-T”. Each letter was surrounded by a colored frame of a given shape. For 

all trials in each block, either the letters (verbal trials) or spatial locations (spatial trials) 

were relevant, indicated by the color of the frame around the letter (Fig 1B). Participants 

responded to each stimulus with a yes/no keypress. The correct response depended upon 

the task being performed. On sequence-start trials, participants responded regarding whether 

the stimulus began the sequence (“T” for verbal trials; top of the star for spatial trials). 

On sequence-back trials, participants responded regarding whether the current stimulus 

followed the previous stimulus in the sequence (e.g., “B” following “A” for the verbal trials; 

left point following lower right point on spatial trials). Diamond-shaped frames cued the 

sequence-start task, while square-shaped frames cued the sequence-back task (Fig 1C).

Sequence-start and sequence-back formed the task sets in the current study. We define a 

task set as a finite mapping of input-output associations, such that outputs can be specified 

abstractly (e.g. “yes”/”no”) rather than concretely (e.g. left index/right index). Similarly, 

inputs can be specified categorically (e.g. start/non-start) rather than concretely tied to a 

particular stimulus (e.g. “T”, top left, etc.). By this definition, the same task sets can be 

flexibly deployed to both verbal and spatial trials.

All blocks began with a sequence-start trial followed by 1-2 sequence-back trials (baseline 

1). Baseline blocks continued with an additional 6-8 sequence-back trials. These blocks 

placed consistent demands on sensorimotor control to select the appropriate response based 

upon the stimulus. Other blocks were split into three phases: baseline 1, subtask, and 

baseline 2, wherein the subtask phase added additional control demands. The transition from 
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baseline 1 to subtask was indicated by a subtask cue (Fig 1D,E), alerting participants to the 

forthcoming demands:

On switch blocks, a subtask cue (triangle frames) indicated to the participant that they 

would need to randomly switch between sequence-start (diamond frames) and sequence-

back (square frames) tasks. Compared to baseline blocks, switch blocks required contextual 
control to use the context (frame shape) to select the appropriate task set (sequence-start vs 

sequence-back).

On delay blocks, the subtask cue indicated a task set mapping that was specific to the block 

(e.g. circle -> sequence-back, plus -> sequence-start or the converse). These blocks engaged 

episodic control to maintain context-task set mappings specific to the block (i.e. episode). To 

minimize ongoing contextual control demands, the subtask phase on delay blocks consisted 

solely of sequence-back trials cued by square frames. Only a single critical trial required the 

use of the task set mapping (return trial), which was followed by a return to sequence-back 

trials (baseline 2).

Finally, dual blocks combined the requirements of the switch and delay conditions. As 

in switch blocks, participants switched between sequence-start and sequence-back tasks 

thereby engaging contextual control. As in the delay blocks, the subtask cue indicated an 

episode-specific task set mapping thereby engaging episodic control. Critically, only on 

dual blocks, all trials in the subtask phase included either circle- or plus-shaped frames. 

This required participants to use the sustained task set mapping to select and execute the 

appropriate task throughout the subtask phase. In this way, dual blocks required contextual 
control informed by episodic control.

Switch, delay, and dual blocks ended with 1-2 trials of sequence-back (baseline 2). 

Focusing on the subtask phases, baseline blocks contained low contextual control and low 

episodic control, delay blocks contained low contextual control and high episodic control, 

switch blocks contained high contextual control and low episodic control, and dual blocks 

contained high contextual control and high episodic control.

Collectively, the paradigm was designed as a 2x2x2 factorial with factors of stimulus domain 

(spatial, verbal), contextual control (low, high), and episodic control (low, high). Each 

stimulus was presented for 500 ms separated by a uniformly jittered interstimulus intervals 

of 2600-3400 ms in steps of 400 ms. At the end of each block, feedback that showed the 

number of correct trials compared to the total trials of the block was presented for 500 

ms followed by an interblock interval of 2600 or 3400 ms. After a run was finished, a 

percentage accuracy was given for the current run, for the previous run, and for the total 

amount of runs completed thus far. A short break was administered before the next run 

began. Participants were asked to always maintain fixation on a cross within the center of the 

screen and were visually monitored using an EyeLink 1000 eye tracker (SR Research Ltd.) 

for adherence to these instructions, and for vigilance. The experimental session consisted of 

6 runs of 144 trials each for a total of 864 trials per subject. The mappings of frame colors, 

frame shapes, and response keys were all counterbalanced at the participant level. Given the 

complexity of the paradigm, experimental sessions were preceded by a learning and practice 
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session (average time between sessions= 5.12 days). Only participants who demonstrated 

the ability to understand the instructions and perform the task completed the experimental 

session.

Many of the details of the present paradigm are comparable to the paradigm of Nee and 

D’Esposito (2016; 2017). The most substantial differences owe to the control demands in 

the delay and dual conditions. Previously, the delay and dual conditions required participants 

to retain an item (e.g. a letter for verbal trials) throughout the subtask phase which then 

informed a sequence-back decision on the return trial (e.g. does the present letter follow the 

retained letter in the sequence). By contrast, the delay and dual conditions of the present 

paradigm require the retention of a cue-task set mapping which informs task set selection on 

the return trial. In this way, our previous paradigm placed demands on what we referred to as 

“temporal control”, while the present paradigm places demands on episodic control. In both 

cases, the control demands operate over epochs of several seconds such that each demand is 

more temporally abstract than control demands that operate over shorter intervals. Hence, if 

control demands are purely a function of time (i.e. temporal abstraction), one might expect 

episodic and temporal control to engage the same neural systems. If, by contrast, control 

varies as a function of the representation being acted upon (i.e. selecting a task set versus 

determining sequential order), one would expect different neural systems to be engaged by 

each form of control. Notably, the term “temporal control” was used previously as a term 

agnostic to whether or not the form of control would be different from other forms of control 

that operate across sustained temporal epochs (Nee and D’Esposito, 2016).

Image Acquisition

Images were acquired on a Siemens 3T Prisma with a 32-channel head coil located in the 

Magnetic Resonance Imaging facility within Florida State University’s College of Medicine. 

The participant viewed stimuli while in the scanner by way of a head coil attached mirror 

reflecting onto a projection screen at the bore of the magnet. Responses were collected by 

way of a 4-button MR compatible button box (Current Designs, Inc.) using the index finger 

of each hand.

Functional T2*-weighted images were acquired using an EPI sequence with 35 descending 

slides and 3.4x3.4x3.8mm voxels (TR= 2000ms; echo time= 25ms; flip angle= 70; 

field of view= 220). Four dummy scans preceded each functional scan to allow for 

image stabilization. Phase and magnitude images were collected to estimate the magnetic 

inhomogeneity. High- resolution T1-weighted MPRAGE images were collected for spatial 

normalization (384x384x256 matrix of 0.667mm3 isotropic voxels; TR= 1840ms; echo 

time= 2.9ms; flip angle= 9).

Image Preprocessing

Preprocessing was performed using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/) unless 

otherwise specified. Raw data were converted from DICOM to NIfTI format. Origins 

for all images were manually set to the anterior commissure. Functional data were then 

spike-corrected to reduce the impact of artifacts and outliers using AFNI’s 3dDespike 

routine (http://afni.nimh.nih.gov/afni). Images were corrected for differences in slice timing 
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on a per-run basis using sinc-interpolation. Head motion was corrected using a rigid 

body transformation. Images were unwarped by utilizing the FieldMap toolbox, which 

also corrected motion-by-susceptibility distortions (Andersson et al.,2001). Functional data 

were then coregistered to the T1 structural scan from which tissue probability maps were 

calculated (Ashburner and Friston, 1997). The tissue probability maps were then used to 

warp the individual to the MNI152 brain template. As part of the spatial normalization the 

data were resampled to 2 mm3 isotropic. 4-mm full-width/half-maximum isotropic Gaussian 

smoothing was applied to all spatially normalized functional images.

Univariate Image Analysis

All analyses were performed using SPM12 and MATLAB R2021a. Each participant’s data 

was fit with a general linear model that included separate regressors for each control 

condition (baseline, switch, delay, and dual) crossed by each stimulus type (spatial, verbal). 

These eight regressors spanned the subtask phase forming the regressors of main interest. 

Since baseline blocks did not have a separate subtask phase, a middle phase of the block 

was modeled that was matched to the other blocks in durations. Transient regressors 

of non-interest separately modeled the initial trial in each block, the subtask cue that 

signaled each subtask, and the return trial. Sustained regressors of non-interest modeled 

the baseline 1 and baseline 2 phases. Additional transient regressors for left and right 

button presses crossed with task (sequence-start, sequence back), and errors were also 

included to remove variance of non-interest from the sustained regressors. Each regressor 

was convolved with a canonical hemodynamic response function. 14 motion regressors (6 

linear, 6 squared linear, 1 framewise displacement, 1 squared framewise displacement) were 

included to account for artifacts caused by motion. Moreover, any frame with 0.5 mm or 

greater framewise displacement was censored. A high-pass filter of 192s was included to 

remove low frequency trends, and AR(1) modeling was included to correct for temporal 

autocorrelation.

Separate contrasts were performed at the first level for the main effect of contextual 

control (dual+switch > delay+baseline) and the main of episodic control (dual+delay > 

switch+baseline). These contrasts were then submitted to respective second-level one sample 

t-tests. Whole-brain maps were thresholded at p < 0.001 at the voxel level with cluster 

extent (89 for contextual, 115 for episodic control) providing family-wise error correction 

according to Gaussian random field theory as implemented in SPM12. Since the algorithm 

depends upon the smoothness of the data (residuals) which varied as a function of second-

level models, different extents were calculated for different effects. As estimated by SPM12, 

the smoothness of the episodic control data was 8.4 x 8.6 x 8.5 mm and the smoothness of 

the contextual control data was 8.1 x 8.3 x 8.1 mm.

Dynamic Causal Modeling

In order to investigate directional influences (effective connectivity) among LPFC areas, we 

turned to dynamic causal modeling (DCM) (Friston et al. 2003) implemented in DCM12 

within SPM12. DCM provides a biophysically plausible generative model of the time 

series of regions-of-interest (ROIs). Here, we performed bilinear DCM that models each 

region’s time series as a function of A) fixed effective connectivity among brain regions, 
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B) modulations of effective connectivity as a function of experimental manipulations, and 

C) exogenous perturbations (stimulus inputs). Interactions among brain regions is modeled 

at the neuronal level with a hemodynamic model specifying the transfer function from 

neuronal to hemodynamic activity (see Stephan et al., 2010; Zeidman et al., 2019 for 

accessible reviews).

Following Nee & D’Esposito (2016; 2017), our model consisted of 6 regions spanning the 

rostral-caudal and dorsal-ventral axes of the LPFC: the lateral frontal pole (FPl), middle 

frontal gyrus (MFG), inferior frontal sulcus (IFS), caudal middle frontal gyrus (cMFG), 

superior frontal sulcus (SFS), and inferior frontal junction (IFJ) (Fig 2A). All ROIs were 

selected from the left hemisphere. This decision was motivated by meta-analyses of the 

hierarchical control literature which has demonstrated a strong left lateralization for the 

control processes under study (Nee et al., 2014; Badre and Nee, 2018), and that the verbal-

ventral/spatial-dorsal distinction is present only in the left hemisphere. Given the variability 

of LPFC togography (Braga and Buckner, 2017) and corresponding correlates of cognitive 

control (Smith et al., 2021), ROIs were localized within each individual. Following our 

past work, caudal ROIs were defined using stimulus domain contrasts: the spatial > verbal 

contrast for SFS and the verbal > spatial contrast for the IFJ. Middle ROIs (cMFG and IFS) 

were isolated by utilizing the contextual control contrast (dual+switch > delay+baseline). 

Rostral ROIs (FPl and MFG) were identified using the dual > baseline contrast. The 

dual > baseline contrast was chosen over the episodic control contrast (dual+delay > 

switch+baseline) given that the delay condition did not uniquely activate any LPFC area 

more than other control conditions thereby diluting the main effect contrast. An initial 

search for each peak began near the previous peaks of Nee & D’Esposito (2016) (FPl: 

[−44,48,4]; MFG: [−38,28,44]; IFS: [−52,20,28]; cMFG: [−34,10,60]; SFS: [−22,0,54]; IFJ: 

[−38,6,26]). Peaks were defined as local maxima as indicated by SPM12 in the vicinity 

of the previously reported group means and visually inspected to adhere to gyral/sulcal 

anatomy. Peaks were originally searched for at a threshold of p<0.001 (69.33% of clusters), 

and if no cluster was found, the threshold was progressively lowered until a suitable peak 

was identified (0.01 – 14.67% of clusters, 0.05 – 7.33% of clusters, 0.1 – 1.33% of clusters, 

0.5 – 7.33% of clusters). If no peak could be identified, the ROI was centered at the 

group average (4.67% of clusters). Each region was then defined as a 6 mm radius sphere 

centered upon each activation peak. Suprathreshold data from each sphere was extracted and 

corrected for confounds in the same manner as the univariate analyses (whitened, high-pass 

filtered, motion regressed, and high movement frames censored). As previously reported, the 

different contrasts are not equally powered (Nee, 2019), which can result in differences in 

the number of voxels for different ROIs after thresholding. Accordingly, we observed that 

some ROIs had more voxels than others F(1,24)= 2.88, p= 0.0173). However, this effect was 

driven by contrast definition as no pair of areas defined by the same contrast had different 

numbers of voxels (all p > 0.2). A corollary is that there was no difference between our 

critical areas of interest: MFG and FPl (t(24) = −1.27, p = 0.22). Moreover, these ROIs are 

ultimately reduced to summaries as described below.

Each regional time series was summarized using the first eigenvariate of voxels comprising 

the region thereby forming the ROI time series for DCM. To ensure that these summaries 

properly reflected the signals in the ROI, amount of voxel-wise variance explained by the 
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first eigenvariate was examined. These were generally high (mean for each area > 70%; 

range 70.6-78.6%), but did vary as a function of region (F(1,24)= 3.34, p= 0.0074). This 

variability was related to the size of ROIs described above as there was a tendency for 

the first eigenvariate to explain less variance for larger ROIs (r = −0.15, p = 0.05 after 

residualizing out subject effects). Critically, there was no difference between MFG and FPl 

(t(24)= −1.09, p= 0.29). Ultimately, the ROI selection procedures, which were designed to 

tailor ROIs to the individual and capture as much signal of interest while removing noise, 

did not result in observable signal differences in the MFG and FPl that could influence their 

ability to drive signals in other areas.

DCM is a model comparison technique. We compared ten models each with different 

assumptions of how experimental manipulations modulated effective connectivity, and the 

locus of exogenous perturbations. The fixed connectivity architecture was kept constant 

across models and was based upon considerations of anatomical connections and functional 

connectivity as detailed previously (Nee & D’Esposito, 2016;2017). All models also 

assumed that letter/spatial inputs entered the system at the caudal-most areas, consistent with 

the dense connections of these areas to posterior areas involved in stimulus representation 

(Petrides, 2005). Spatial and verbal inputs were chosen to enter via the dorsal SFS and 

ventral IFJ, respectively due to the well-documented dorsal-ventral split between spatial and 

verbal information (Goldman-Rakic, 1987, Romanski, 2004) and validated via the stimulus 

domain contrasts. From this common architecture, we compared five different models of 

modulations of effective connectivity:

1. A Null Model wherein experimental manipulations did not alter effective 

connectivity (Fig 2B)

2. A Cascade Model wherein episodic control modulated effective connectivity 

from rostral-to-mid areas, and contextual control modulated effective 

connectivity from mid-to-caudal areas (Koechlin et al., 2003; Koechlin and 

Summerfield, 2007). In other words, cognitive control related modulations 

of effective connectivity cause a rostral-to-caudal cascade of influences upon 

action. (Fig 2C)

3. A Modified Cascade Model that added caudal-to-mid stimulus domain 

modulations to 2). Although the original Cascade Model is a domain-general 

model of cognitive control, it had not been applied across distinct stimulus 

domains. Given prior work indicating that models that include stimulus domain 

modulations were preferred (Nee & D’Esposito, 2016), we examined whether 

simply adding stimulus domain modulations to the Cascade Model would 

provide a superior model fit. (Fig 2D)

4. The model described by Nee & D’Esposito (2016) (N&D2016). In this 

model, rostral-to-caudal cognitive control-related influences and caudal-to-rostral 

stimulus domain-related influences converge in middle areas. (Fig 2E)

5. The model described by Nee & D’Esposito (2017) (N&D2017). A variant of 4) 

which adds bidirectional modulations of connectivity among MFG and SFS. (Fig 

2F)
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In addition to the five models of modulations, we varied how cue inputs perturbed the 

system. Previously, it was assumed that cues entered the system through the MFG consistent 

with its role in representing task rules (Nee & Brown, 2012; Bunge et al., 2005; Genovesio 

et al., 2005; Wallis et al., 2001). This choice was bolstered by examinations of univariate 

activations and preliminary DCM (Nee & D’Esposito, 2016). However, based on theoretical 

ideas that the FPl may provide a relay for internally generated schematic representations 

(Badre & Nee, 2018), which might include higher-order task rules (Nee & Brown, 2012), 

we formally tested whether models wherein cues entered via the FPl provided superior fits. 

Hence, the five models described above were crossed with two models of cue inputs (cue -> 

MFG, cue -> FPl) (Fig 2F) creating a space of ten models.

Random-effects Bayesian model selection (BMS) was used to adjudicate among proposed 

models (Stephan et al., 2009). First, the models were grouped into two families as a function 

of the presumed locus of cue inputs, and the model families were compared (Penny et al., 

2010). Next, the five models within the winning family were directly compared, and also 

compared as three families (null, Cascade, N&D). A parametric empirical bayes (PEB) 

model was constructed from the pooled parameters of each subject’s runs for the winning 

model (Zeidman et al., 2019). PEB allowed us to account for the variance of parameters 

between runs and subjects and weight connections according to their reliability. These PEB 

models were then carried to the next level where an additional PEB model upon the subject 

level models was performed to create a group level model. Inference on connections was 

performed via one-sample t-tests. Connections with a p-value less than 0.05 after stepwise 

false-discovery rate (FDR) correction were considered to be significant.

To formally compare the present results with those observed previously, the DCM PEB 

procedures were repeated on the Nee & D’Esposito (2016; 2017) datasets, using processing 

reported in Nee (2021). The major difference from prior reports is that a reduced smoothing 

kernel (4 mm) was included as part of preprocessing, matching the present preprocessing 

pipeline. Differences in connections comparing the present dataset with Nee & D’Esposito 

(2016), and Nee & D’Esposito (2017) were examined using the PEB framework. Differences 

that replicate across studies are reported.

Hierarchical Strength

To examine asymmetries of influence that are indicative of hierarchical rank (Badre & 

D’Esposito, 2009) we calculated hierarchical strength. Hierarchical strength was defined 

as the magnitude of participant’s efferent connections to a region minus the magnitude 

of their afferent connections. To determine magnitude, each subject-level connection was 

multiplied by the sign of the group mean. Connections within the same level of the 

rostro-caudal hierarchy were excluded (e.g. SFS to IFJ) as these connections were thought 

to be hierarchically equivalent with the potential to dilute rostral-caudal patterns (Nee 

& D’Esposito, 2016; 2017). An area that is more apical than others would show the 

highest positive value on this metric. Notably, these procedures differ slightly from our past 

work (Nee & D’Esposito, 2016) which rectified effective connectivity. However, stronger 

magnitude negative influences suggested that negative signs should be taken seriously, hence 
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the change in procedures which matches procedures we have used more recently (Nee, 

2021).

RESULTS

Behavioral Results

We began by verifying that the paradigm produces dissociable behavioral signatures of 

cognitive control. 2x2x2 ANOVAs with factors of episodic control, contextual control, and 

stimulus domain were performed on error rates (ER) and reaction times (RT) of correct trials 

(Fig 3). We focus on subtask trials wherein the cognitive control demands were manipulated.

These analysis revealed significant main effects of episodic control (ER: F(1,24)= 34.01; 

p<0.001; RT: F(1,24)= 31.24, p<0.001) and contextual control (ER: F(1,24)= 65.4; p<0.001; 

RT: F(1,24)= 46.07, p<0.001). The interaction between episodic and contextual control 

was significant in ER (F(1,24)= 5.62; p=0.0261), but not RT (F(1,24)= 0.14, p=0.7113). 

A significant effect of stimulus domain was found in both ER and RT (ER: F(1,24)= 

9.41; p=0.0053; RT: F(1,24)= 9.5, p=0.0051) with overall poorer performance for verbal 

trials. However, stimulus domain did not significantly interact with either form of control 

(ER: contextual * stimulus domain F(1,24)= 0.08, p= 0.7735, episodic * stimulus domain 

F(1,24)= 0.23, p= 0.6373; RT: contextual * stimulus domain F(1,24)= 0.06, p= 0.8128, 

episodic * stimulus domain F(1,24)= 3.18, p= 0.0871).

Additional ANOVAs were performed on error rates, and reaction times of correct return 

trials (Fig S1). These analyses revealed significant main effects of episodic control in both 

error rate and response time (ER: F(1,24)= 62.43; p<0.001; RT: F(1,24)= 19.66, p<0.001) 

and contextual control only in reaction time (ER: F(1,24)= 0.13; p=0.7209; RT: F(1,24)= 

6.75, p=0.0158). The main effects of control were qualified by an interaction between 

episodic and contextual control which was significant in ER (F(1,24)= 19.38; p<0.001), 

and RT (F(1,24)= 9.16, p=0.0058). In contrast to the subtask trials in which the interaction 

among control processes was over-additive in ER, the interactions on return trials were 

under-additive. The most likely cause of this pattern is that the consistent integration of 

episodic control and contextual control during the subtask phase of the dual condition (i.e. 

using the subtask cue to select the task set) facilitated that same process on return trials. 

This facilitation was absent in the delay condition wherein episodic control did not inform 

contextual control until the return trial itself. A significant effect of stimulus domain was 

found in RT but not ER (ER: F(1,24)= 0.75; p=0.3951; RT: F(1,24)= 10.94, p=0.003) with 

slower reaction times for verbal trials. Stimulus domain interacted with contextual control 

in RT, but no other interactions with stimulus domain were observed (ER: contextual * 

stimulus domain F(1,24)=6.86, p= 0.0151, episodic * stimulus domain F(1,24)= 0.01, p= 

0.906; RT: contextual * stimulus domain F(1,24)= 1.19, p= 0.2861, episodic * stimulus 

domain F(1,24)= 0.01, p= 0.939). Given the superior power of the subtask trials by virtue 

of trial yield, we focus on this phase for future analyses as we have done elsewhere (Nee & 

D’Esposito, 2016; 2017; D’Mello et al., 2020; Nee, 2021).
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The behavioral data verify that the experimental paradigm introduces multiple forms of 

control as designed. To understand their neural underpinnings, we next examined the fMRI 

data.

Whole-Brain Results

Next, we examined effects of control on brain activations. Previous work has demonstrated 

that increasingly abstract control demands engage progressively rostral areas of the LPFC 

(Koechlin et al, 2003; Badre and D’Esposito, 2007; Nee & Brown, 2013; Bahlmann et al., 

2014; Nee & D’Esposito, 2016; see Badre and Nee, 2018 for a review). However, this is not 

always the case (Reynolds et al., 2012; Pischedda et al., 2017), and the situations that give 

rise to control gradients or lack thereof remain presently unclear. To examine whether the 

present paradigm produced clearly differentiable neural correlates of control, we examined 

the orthogonal main effect contrasts of contextual control and episodic control. Contextual 

control and episodic control engaged widespread, highly overlapping areas of the LPFC with 

no clear differentiation along the rostral-caudal axis (Fig 4, top). Although the contextual 

control contrast resembled our previous findings in a related paradigm (Nee & D’Esposito, 

2016; 2017), the episodic control contrast much more clearly resembled the contextual 

control contrast than the more abstract temporal control contrast as previously defined (Fig 

4, bottom).

To quantify these observations, we computed voxel-wise correlations among the 

unthresholded t-maps using the contextual control and episodic control contrasts of 

the present study, and the contextual control and temporal control contrasts of Nee & 

D’Esposito (2016). As expected, the contextual control contrast in the present study was 

more similar to the contextual control contrast in Nee & D’Esposito (r = 0.68) than the 

temporal control contrast (r = 0.45; difference Z = 232.20, p < 0.000001). This same 

pattern was observed when comparing the episodic control contrast to the contextual control 

contrast of Nee & D’Esposito (r = 0.63) and the temporal control contrast of Nee & 

D’Esposito (r = 0.32; difference Z = 274.03, p < 0.000001). Moreover, while the contextual 

control and episodic control contrasts in the present study were highly similar (r = 0.81), 

the contextual control and temporal control contrasts of Nee & D’Esposito were much more 

dissimilar (r = 0.32; difference Z = 541.76, p < 0.000001). Notably, the lack of correlation 

with the temporal control contrast is not due to noisiness in the contrast map – comparing 

the temporal control contrast of Nee & D’Esposito (2016) to the same contrast of Nee & 

D’Esposito (2017) revealed high similarity (r = 0.74), while the temporal control contrast 

of Nee & D’Esposito (2016) was dissimilar to the contextual control contrast of Nee & 

D’Esposito (2017) (r = 0.38; difference Z = 378.65, p < 0.000001).

Collectively, these data indicate that what is captured by episodic control in the present study 

shares marked similarity to contextual control both here and previously observed. However, 

these gross observations may overlook subtle differentiations among these processes at a 

regional level. So, we turned to ROI analyses next.
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Regions of Interest Analysis

6 mm radius spherical ROIs were centered around peaks reported by Nee & D’Esposito 

(2016) providing an unbiased estimate of effect sizes. We examined contrast estimates 

in six ROIs spanning the rostral-caudal and dorsal-ventral axes: the lateral frontal pole 

(FPl), middle frontal gyrus (MFG), inferior frontal sulcus (IFS), caudal middle frontal 

gyrus (cMFG), superior frontal sulcus (SFS), and inferior frontal junction (IFJ). An 

ANOVA including factors of stimulus type (verbal, spatial), episodic control (high, low), 

contextual control (high, low), and region of interest (SFS, IFJ, cMFG, IFS, MFG, FPl) 

revealed significant main effects of all of factors (stimulus type: F(1,24)= 4.59, p=0.0424; 

contextual control: F(1,24)= 94.5, p<0.001; episodic control: F(1,24)= 21.89, p<0.001; 

region: F(1,24)= 2.37, p=0.0432), as well as interactions among control demands (episodic 

control*contextual control: F(1,24)= 6.46, p=0.0179). The interaction was driven by an 

overall tendency for control effects to be under-additive. However, each experimental main 

effect interacted with region (stimulus domain*region: F(1,24)= 36.49, p<0.001; episodic 

control*region: F(1,24)= 4.52, p<0.001; contextual control*region: F(1,24)= 6.98, p<0.001) 

suggesting some heterogeneity of activations throughout the LPFC.

To further investigate this heterogeneity, subsequent ANOVAs were performed within 

each ROI. All p-values are reported after Bonferroni correction for multiple comparisons. 

Replicating our previous reports (Nee & D’Esposito, 2016; 2017) middle and caudal 

ROIs tended to be sensitive to stimulus domain (IFS: F(1,24)= 17.24, pcorrected= 0.0021; 

SFS: F(1,24)= 35.88, pcorrected<0.001; IFJ: F(1,24)= 41.96, pcorrected<0.001), but rostral 

areas were not (MFG: F(1,24)= 1.17, pcorrected=1.00 FPl: F(1,24)= 0.96, pcorrected=1.00). 

Such data are mostly consistent with the idea that middle and caudal areas have domain 

preferences, while rostral areas act domain-generally. Ventral mid (IFS) and caudal (IFJ) 

areas were activated more during verbal than spatial trials, while dorsal caudal SFS showed 

the opposite. Interestingly, whereas we previously observed a spatial preference in dorsal 

mid cMFG, an opposite trend was observed here, which did not survive correction (cMFG: 

F(1,24)= 4.81, pcorrected= 0.2268. The reasons for this reversal are unclear. Nevertheless, 

stimulus domain preferences replicated our previous work in 5 of the 6 ROIs suggesting 

reasonable comparability.

Turning next to control-related activations, each ROI showed a significant effect 

of contextual control (SFS: F(1,24)= 17.75, pcorrected=0.0018; IFJ: F(1,24)= 42.75, 

pcorrected<0.001, cMFG: F(1,24)= 31.36, pcorrected<0.001, IFS: F(1,24)= 32.65, 

pcorrected<0.001, MFG: F(1,24)= 17.04, pcorrected=0.0024, FPl: F(1,24)= 56.74, 

pcorrected<0.001). Effects of episodic control were somewhat weaker, but significant in 

all areas except the MFG and SFS (SFS: F(1,24)= 8.23, pcorrected=0.0510; IFJ: F(1,24)= 

12.43, pcorrected= 0.0102, cMFG: F(1,24)= 13.81, pcorrected= 0.0066, IFS: F(1,24)= 18.41, 

pcorrected= 0.0018, MFG: F(1,24)= 2.08, pcorrected=0.97, FPl: F(1,24)= 16.14, pcorrected= 

0.0030). These effects were qualified by under-additive interaction between episodic and 

contextual control observed in the MFG and SFS (MFG: F(1,24)= 12.57, pcorrected= 0.0096; 

SFS: F(1,24)= 11.05, pcorrected= 0.0168; Fig 5).
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Finally, no area demonstrated an interaction between stimulus domain and control that 

passed correction suggesting that control and stimulus domain were largely orthogonal 

factors in the present dataset.

Collectively, the effects of control did not show a clear ordering as a function of spatial 

topography. Although there was some tendency for control-related activations to increase 

in increasingly rostral areas, general reductions in MFG deviated from that pattern (Fig 

6). Nevertheless, control-related activations tended to peak in FPl, which showed stronger 

contextual control (F(1,24)= 58.17, pcorrected<0.001) and episodic control (F(1,24)= 12.05, 

pcorrected=0.002) related activations relative to MFG. The strong activations in FPl may 

reflect a role in driving widespread LPFC activations, consistent with an apical role (Badre 

and D’Esposito, 2009; Koechlin and Summerfield, 2007). However, such a role cannot be 

inferred from activations alone. To further investigate the strength and direction of how these 

regions communicate, we modeled directed interactions (effective connectivity) with DCM.

Evaluating Models of Directed Influence

In previous work, Koechlin et al. (2003) used structural equation modeling on the time series 

of LPFC regions to provide evidence that episodic control increases effective connectivity 

from rostral-to-mid areas, while contextual control increases effective connectivity from 

mid-to-caudal areas, thereby producing a rostral-to-caudal cascade as a function of control 

demands. This Cascade Model was later updated to include the FPl at its apex (Koechlin and 

Summerfield, 2007). However, estimating effective connectivity directly on hemodynamic 

signals is problematic since what appears to be effective connectivity may arise due to 

hemodynamic confounds (David et al. 2008). Hence, accounting for the translation of 

neuronal signals to hemodynamic signals is preferred. Nee & D’Esposito (2016) used DCM 

to do just that and found that rostral-to-mid control influences and caudal-to-mid stimulus 

domain influences converged in mid-lateral areas. Amidst these convergent influences, the 

MFG showed the strongest outward directed influences suggesting that it may form the 

apex of hierarchical control. Nee & D’Esposito (2017) provided a modified model with 

many of the same properties. However, while both studies of Nee & D’Esposito included 

contextual control, neither included episodic control. Therefore, it remains unclear whether a 

mid-lateral convergence with MFG apex is a general control architecture, or whether control 

is better represented as a rostral-to-caudal cascade under other circumstances.

To adjudicate among these possibilities, we compared ten different models of LPFC 

function. Each model contained the same underlying fixed connectivity structure but varied 

in its conditional modulations and inputs. These models included 1) a null model with no 

modulations of effective connectivity by experimental manipulations, 2) a Cascade Model 

wherein episodic control modulated rostral-to-mid connectivity, and contextual control 

modulated mid-to-caudal connectivity, 3) a modified Cascade Model that added caudal-to-

mid modulations as a function of stimulus domain. This model would provide a hybrid 

between the Cascade Model as original proposed, and the convergence observed in the 

models of Nee & D’Esposito. 4) The model of Nee & D’Esposito (2016) and 5) the model 

of Nee & D’Esposito (2017). In addition to varying modulations of effective connectivity 

by experimental manipulations, we entertained two sources of task inputs into the LPFC. 
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The first set of models posited that task inputs arrive at the MFG as assumed by Nee & 

D’Esposito (2016; 2017) and consistent with its role in representing task rules (Nee & 

Brown, 2012; Bunge et al., 2005; Genovesio et al., 2005; Wallis et al., 2001). A second set 

of models posited that task inputs arrive at the FPl potentially accounting for the increased 

control-related signals observed there as detailed in the ROI analyses above.

We employed a nested strategy to select amongst models. First, the five models with MFG 

task inputs were grouped as a family, and the five models with FPl task inputs were grouped 

as a family (Penny et al., 2010). Random-effects Bayesian model selection (BMS) was used 

to select among these families. Models that contained MFG cue inputs were superior to 

models that contained FPl cue inputs (exceedance probabilities: MFG family= 0.7261; FPl 

family= 0.2739) consistent with the assumptions of Nee & D’Esposito (2016).

Next, we grouped the remaining models by theoretical classes. Models were either grouped 

by their adherence to the null model (model 1), Cascade Model (models 2 and 3), or Nee & 

D’Esposito models (models 4 and 5). The Nee & D’Esposito family greatly outperformed 

the other families (exceedance probabilities: null= 0, cascade= 0.0004, Nee & D’Esposito= 

0.9996). Directly comparing the five models revealed that model 5 (Nee & D’Esposito 

2017’s model) was overwhelmingly chosen in favor of the other four models (exceedance 

probabilities: model 5= 0.9971). We then utilized Parametric Empirical Bayes (PEB) at 

the subject and group levels to aggregate our parameter estimates while accounting for inter-

subject variability. Inference on connections revealed that the MFG was the source of the 

strongest magnitude modulations of effective connectivity (Fig 7A). Moreover, examining 

fixed connectivity (Fig 7B) revealed a tendency for the MFG to send out more influences 

that it receives, consistent with an apical role.

To quantify this pattern, we contrasted the average magnitude of outward versus inward 

influences on fixed connectivity for each region. We refer to this quantity as hierarchical 

strength. Replicating previous work (Nee & D’Esposito, 2016; 2017), hierarchical strength 

peaked in the MFG (t(24)= 3.4781, pcorrected = 0.0117). The hierarchical strength of FPl 

was non-significantly negative (FPl: t(24)= −1.6195, pcorrected=0.7104) inconsistent with an 

apical role. Although non-significant, the sign of this effect was consistent with previous 

work (Nee & D’Esposito, 2016; 2017) (Fig 8). Collectively, these data replicate the findings 

of Nee & D’Esposito (2016; 2017).

Next, we directly compared the same model applied to the datasets of Nee & D’Esposito 

(2016; 2017). Changes in procedures lead to modest changes in parameters relative to 

those previously reported (Fig S2). When comparing across studies, fixed connectivity was 

remarkably consistent. The only significant difference observed across studies was that the 

fixed connection from the MFG upon the IFS was greater in the current dataset when 

compared to both the 2016 and 2017 samples (2016: t(47)= 6.105, pcorrected<0.001; 2017: 

t(48)= 6.481, pcorrected<0.001). Such data suggest that the general architecture of the LPFC 

is largely consistent across demands.

Examining changes in modulations, the only differences observed across studies involved 

modulations by the highest-level control process (episodic/temporal control) which were 
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reduced in the present dataset (relative to 2016: MFG to SFS, t(47)= 3.311, pcorrected= 0.020 

and SFS to MFG, t(48)= 2.673, pcorrected= 0.038; relative to 2017: MFG to SFS, t(47)= 

4.271, pcorrected< 0.001 and SFS to MFG, t(48)= 3.007, pcorrected= 0.007). These differences 

substantiate that temporal control and episodic control are distinct control processes, which 

modulate effective connectivity within the LPFC in dissociable ways. Such data suggest 

that the LPFC adapts to distinct control demands via task-specific modulations of a general 

architecture.

DISCUSSION

In the current study, we used a modified comprehensive control paradigm to test the 

generalizability of previous models of LPFC function. Relative to our past work (Nee & 

D’Esposito 2016; 2017), we altered the highest-level control process, and the dependency 

of lower-level control processes on higher-level control processes. These modifications 

allowed us to test whether our previously observed control architecture generalizes across 

diverse demands, or whether control architectures adapt according to task demands (Duncan, 

2001; Duncan, 2010; Duncan et al., 2020). Behavioral and univariate fMRI data showed 

significant effects of our main factors indicating that our modified paradigm successfully 

elicited our processes of interest. However, activation patterns of our highest-level control 

process, episodic control, did not resemble our previous highest level control process, 

temporal control (Nee & D’Esposito 2016; 2017), and instead resembled contextual control. 

Nevertheless, contrasting control architectures using DCM provided evidence that our 

previously observed control architecture generalizes. Moreover, by comparing asymmetries 

of influence that denote hierarchical rank, we replicated the finding of an apical site in 

the mid-LPFC. This directed architecture was modulated by control demands with control 

demands that were common across studies (e.g. contextual control) leading to similar 

modulations across studies, while control demands that differed across studies (e.g. temporal 

vs episodic control) lead to distinct modulations. Such data indicate that the LPFC flexibly 

reconfigures to adapt to control demands. Collectively, these data indicate that the control 

architecture of the LPFC is both general and adaptive.

The present data speak to tensions regarding the fundamental organization of the LPFC. 

Although a number of studies have suggested that the LPFC is organized by abstraction 

of control demands (Koechlin et al., 2003; Nee & Brown, 2012; Bahlmann et al., 2014; 

Nee & D’Esposito, 2016; see Badre & Nee, 2018 for a review), others have failed to find 

a systematic organization (Reynolds et al., 2012; Crittenden and Duncan, 2014; Pischedda 

et al., 2017). Here, despite finding robust behavioral and neural signatures, we found no 

systematic differences between two cognitive control processes that putatively differ by 

abstraction: contextual control and episodic control. This contrasts starkly with our previous 

observations contrasting contextual control and temporal control that did lead to systematic 

differences. Interestingly, both temporal control in previous work and episodic control in 

the current paradigm operate over equivalent timeframes and can thus be considered to be 

equivalent as a function of temporal abstraction (Fuster, 2001; Badre, 2008; Badre and Nee, 

2018). Therefore, the rostral-caudal axis of control across the PFC does not seem to be 

solely informed by temporal abstraction (see also Reynolds et al., 2012; Nee et al., 2014). 

Such data indicate the need to properly operationalize abstraction so as to determine the 
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situations that do and do not produce systematic differences across the rostral-caudal axis of 

the LPFC (see more below).

Despite marked differences in activations patterns observed at the putative highest-level 

of control when contrasting the present study with our previous work, we found that the 

same model architecture favored previously (Nee & D’Esposito, 2017) was also favored 

here. Moreover, fixed effective connectivity, reflecting the general directed architecture of 

the LPFC, was remarkably consistent across our studies with the lone replicable difference 

being an increase in MFG influence over IFS here. Critically, we replicated the finding that, 

insofar as hierarchy is reflected in dominance relationships, an area of the mid-LPFC is the 

apex of a putative LPFC control hierarchy. The generalizability of the directed architecture 

of the LPFC is reminiscent of observations that functional connectivity remains relatively 

fixed across diverse demands (Cole et al., 2014; Gratton et al., 2018). Such data suggest that 

the LPFC has a control architecture that generalizes across diverse tasks with an apex in the 

mid-LPFC.

On the backdrop of this general directed architecture, we observed that the LPFC adapts 

to distinct control demands via modulations of effective connectivity. In both the present 

and our past tasks, these modulations tended to coalesce towards the middle of the LPFC 

(i.e. in cMFG and IFS) potentially reflecting the integration of information to facilitate 

context-appropriate behavior (Nee, 2021; see also Cole et al., 2013). While we observed 

similar contextual control related modulations here as in past work, modulations as a 

result of our “highest” control demands differed across studies. Here, we observed no 

significant modulations of effective connectivity as a result of episodic control. Coupled 

with the observation that episodic control activations were largely overlapping with those 

elicited by contextual control suggests that in the present paradigm, there appears to be 

nothing that distinguishes episodic control over-and-above contextual control. By contrast, 

both activations and effective connectivity modulations distinguished temporal control from 

contextual control in previous work (Nee & D’Esposito, 2016; 2017). Hence, distinct control 

demands are associated with distinct modulations of effective connectivity.

Although we found a common model architecture best described both the present dataset 

and our previous data (Nee & D’Esposito, 2017), it is notable that the tasks used in both 

studies have a number of similarities. The most marked difference among the tasks regarded 

replacing temporal control with episodic control, which coincidentally also produced 

differences in effective connectivity estimates. Hence, one might question whether the 

similarities among model architectures reflects the similarities in the tasks. Conversely, one 

might wonder whether a markedly different task would produce markedly different effective 

connectivity estimates. A satisfying answer to this question would require examining the 

same control processes in a different task. To provide comparability to the present work, 

such a task would need to have sufficient power and specificity at the individual level to 

properly identify the areas of interest along the rostral-caudal and dorsal-ventral axes of the 

LPFC. Given the non-triviality of this need, we chose not to stray too far from the original 

task design. Nevertheless, novel task designs warrant exploration to more fully determine the 

extent to which the LPFC architecture we have described generalizes.
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In the current dataset, episodic and contextual control shared largely overlapping activations. 

This is in contrast to distinctions between episodic and contextual control originally 

observed by Koechlin et al. (2003) and replicated by others (Bahlmann et al., 2014; 

Bahlman et al., 2015). It is notable that the contextual control activations observed here 

encompass both the episodic and contextual control areas observed by Koechlin and 

others. It is possible that by embedding contextual control demands as a subtask within 

a larger block, the subtask itself was regarded as an episode, thus engaging both episodic 

and contextual control. Nevertheless, a singular thread may run through both nominal 

contributions. Contextual control embodies the maintenance and selection of task sets while 

episodic control requires the maintenance of temporal information that informs task sets. 

Therefore, both main factors of control in the current paradigm share an emphasis on 

defining, selecting, and maintaining task sets. By contrast, temporal control as engaged by 

the paradigm of Nee & D’Esposito (2016; 2017) involved future-oriented planning that was 

not concerned with task sets. Future work that defines the representational nature of such 

plans as distinct from task sets may facilitate our ability to properly operationally define 

distinct forms of control.

Our definition of episodic control stems from the original terminology put forth by Koechlin 

et al. (2003). There, episodic control was defined as “the information conveyed by episodic 

signals (past events) and required for selecting task sets, when stimuli and contextual signals 

occur.” The delay condition involved sustaining episodic signals, while the dual condition 

involved both sustaining episodic signals and using them to select task sets (i.e. to inform 

contextual control). In both cases, similar activation patterns were observed extending from 

caudal to rostral LPFC. Episodic control is also necessary in sequential tasks when the 

appropriate task to select depends upon position in a sequence (Badre and Nee, 2018). 

LPFC areas, including rostral LPFC, have been demonstrated to show ramping dynamics 

during such tasks (Desrochers et al., 2015; Wen et al., 2020). However, although tasks that 

require the selection of appropriate task sets as a function of sequential position involve 

episodic control, they also involve sequence monitoring processes to track ordinal position. 

Interestingly, sequence monitoring without the need to select task sets produces ramping 

dynamics in the same areas (Desrochers et al., 2019). Moreover, holding an item in mind 

for future integration produces similar ramping activations in rostral LPFC (De Pisapia et 

al., 2007; De Pisapia and Braver, 2008; Nee et al., 2014). Collectively, these data suggest 

that while episodic control is sufficient to activate the rostral LPFC, episodic control is not 

necessary to activate the rostral LPFC, and the rostral LPFC is not exclusive to episodic 

control.

The functions of the rostral-most area of the LPFC, the FPl, remains an intriguing mystery. 

Koechlin and Summerfield (2007) suggested that the FPl is primarily concerned with 

branching control: holding an episode in a pending state (see also Koechlin et al., 1999). 

Several studies have suggested a possible role of the FPl in the integration of internal 

representations into ongoing cognitive operations (Braver & Bongiolatti, 2002; De Pisapia et 

al., 2007; Nee et al. 2014). The FPl has also been implicated in the processes of monitoring 

counterfactual outcomes for future decisions (Boorman et al. 2009; Boorman et al. 2011). 

Here, we observed additive activations in the FPl for episodic and contextual control. 

These activations may reflect a general load of future-oriented representations, which may 
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facilitate switching amongst tasks and episodes. Interestingly, both fixed and modulatory 

influences of the FPl were negative. The negative influences might facilitate selection 

potentially by driving down competition and/or by sharpening the tuning of representations 

(Higo et al., 2011; Miller et al., 2011; Lee & D’Esposito, 2012). Alternatively, such negative 

influences may help to segregate future-oriented cognition from ongoing demands (Nee, 

2021). Consistent with the latter, we have observed that disruption of the FPl by transcranial 

magnetic stimulation leads to errors during subtask phases involving temporal control 

(Nee & D’Esposito, 2017), potentially reflecting a premature intrusion of future-oriented 

cognition on current behavior. Collectively, these data suggest that the FPl is critical in 

organizing plans for the future.

Although the MFG did not show the strongest control-related activations among the areas 

examined, it is interesting to note that the under-additive activation pattern observed in 

this area matched the under-additive behavioral pattern observed on return trials. A similar 

pattern was also observed in the SFS, but not in the FPl. We speculate that the under-additive 

patterns in both activations and behavior reflect the improved integration of episodic control 

and contextual control through repeated use during the dual condition. However, why this 

leads to strong, additive control signals in the FPl and weaker, under-additive signals in 

the MFG and SFS remains unclear. Causal techniques that contrast the impact of direct 

perturbations of the MFG, FPl, and SFS may facilitate elucidating more specific, dissociable 

roles of these areas.

Here, as in past work, we have used functional activations to localize the area in mid-LPFC 

that appears apical. It may be possible to use anatomical landmarks in place of, or in 

addition to such procedures. It has been suggested that the area in mid-LPFC that we 

have referred to as “MFG” may correspond to a tertiary sulcus of the middle frontal 

gyrus: the posterior middle frontal sulcus (Miller et al., 2021). Individual variability in the 

location of such tertiary sulci may give rise to the observed variability in LPFC functional 

topography (Braga & Buckner, 2017; Gratton et al., 2018). Moreover, tertiary sulci are not 

well identified in group averaged atlases since their individual-level variability is not easily 

preserved in a group average (Miller et al., 2021). Future work examining the individual-

level correspondence between the posterior middle frontal sulcus and a LPFC apex could 

facilitate more widespread examination of the role of this putatively apical area across other 

tasks, and whether it is altered in neurocognitive dysfunction.

To some extent, that the mid-LPFC (MFG) was observed to have the greatest influence 

among modeled areas may be surprising in the present work. Previously (Nee and 

D’Esposito, 2016; 2017), we observed that both the FPl and MFG increased activation 

in each of the conditions requiring additional cognitive control demands above baseline 

(i.e. dual, delay, restart) with both areas showing particularly more pronounced activations 

in the delay condition (requiring temporal control) relative to other areas. That the MFG 

appeared apical indicated that among the MFG and FPl, the MFG was the main driver 

of activation dynamics. However, in the present work, univariate activations in the MFG 

did not appear to stand out relative to other areas. Even still, the MFG was observed 

to have the largest influence among the areas modeled. This underscores the importance 

of effective connectivity modeling techniques such as DCM. It is important to note that 
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statistical modeling of univariate signals treats areas as independent and does not indicate 

how interactions among areas gives rise to the observed time series. Despite marked 

differences in the univariate signals in the MFG here relative to past work, DCM uncovered 

a similar pattern of influences in both fixed connectivity and modulations of connectivity 

by contextual control. Notably, fixed connectivity is based upon activations that do not vary 

as a function of condition, hence that the MFG is not modulated as a function of condition 

as much as some of the other areas is not necessarily discordant with it having strong fixed 

connectivity. This fixed connectivity may provide a scaffold for the modeled modulations. 

Such data suggest that strong univariate signaling need not be yoked to strong effective 

connectivity modulations. Interestingly, that the MFG shows marked influences here despite 

weaker univariate signaling suggests that small perturbations of the MFG can potentially 

give rise to large changes throughout the LPFC.

A general apex of cognitive control could be the target of intervention efforts and additional 

research. Deficits in cognitive control are a major symptom in many clinical populations 

(Soloman et al., 2009; Lesh et al., 2011; Goschke, 2014). Our data suggest that the MFG’s 

widespread influence over control-related processing and behavior would mark it as a prime 

candidate for further directed investigation in control-deficit populations. However, there is 

evidence that suggests that the effects of noninvasive direct interventions in humans is varied 

across higher level cortex such as the PFC (Castrillon et al. 2020) and even across areas 

such as the primary motor cortex (M1) (Hamada et al. 2013). Further work investigating the 

specific effects of targeting the apical site suggested by this study is required in order to 

better understand how to best apply these findings.

Some limitations of the present work bear noting. DCM is a hypothesis-driven technique 

designed for model comparison. As such, model selection is only able to choose the best 

model from the options provided. While our model space was carefully constrained by 

previous research and neuroanatomical plausibility, it is by no means exhaustive. There 

is a distinct possibility that better fitting models of LPFC function are present within the 

vast number of potential combinations of conditional modulations. However, an exhaustive 

search of a model space this large is not computationally possible. Nevertheless, systematic 

exploration of other theoretically motivated models may reveal better fitting models for 

the current data set. These models should then be tested on past data to assess their own 

generalizability and elucidate more accurate models for future research.
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Fig 1: 
Experimental paradigm. A) The spatial sequence participants used during spatial blocks 

of trials. The sequence began and ended at the top position (1/6). An analogous verbal 

sequence consisted of the ordering of the letters in the word “tablet.” B) A potential color 

mapping indicating the attended domain within a block. The color of the frame surrounding 

the letter indicated whether locations (spatial; yellow) or letters (verbal; purple) were 

relevant for a given block. C) Frame shapes indicated the task: sequence back – determine 

whether the present stimulus follows the previous stimulus in the relevant sequence (square); 

sequence start – determine whether the present stimulus is the start of the relevant sequence. 
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D) Subtask cues indicated forthcoming control demands during a subtask phase. A switch 

condition cue (triangle) indicated that participants would switch among sequence start and 

sequence back tasks during the subtask. An episodic cue (trapezoid, pentagon) informed 

future shape-task mappings to be relevant at the end of the subtask phase (delay condition) 

or throughout the subtask phase (dual condition). E) Experimental trials by condition. Time 

unfolds left to right, backwards arrows indicate referents for sequence-back decisions, and 

forward arrows indicate the influence of cues upon task selection (episodic control). In 

the baseline condition, after an initial sequence start trial, all remaining trials required 

sequence-back. This required a constant engagement of sensorimotor control. The switch 

condition required switching between task sets during the subtask phase engaging contextual 

control. The delay condition required sustaining the shape-task mapping throughout the 

subtask phase to accurately respond to the return trial, thereby requiring episodic control. 

The dual condition required sustaining the shape-task mapping throughout the subtask 

phase (episodic control) and using it to select task sets (contextual control). Hence, in this 

condition, episodic control informs contextual control.
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Fig 2: 
ROIs and candidate models for DCM A) ROIs based upon Nee & D’Esposito 2016. B-F: 

Candidate models. The color of each arrow corresponds to the type of modulation (green = 

contextual control, red = episodic control, orange = spatial, purple = verbal). B) Null model 

without conditional modulations C) Theoretical Cascade model based upon predictions 

made in Koechlin et al., (2003) and Koechlin and Summerfield (2007). D) Cascade model 

with caudal to middle sensorimotor modulations. E) Nee & D’Esposito’s 2016 model. F) 

Nee & D’Esposito’s 2017 model. F) All 5 models were tested with cue inputs to MFG or 

FPl creating 10 total models.
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Fig 3: 
Behavioral data on subtask trials. Error rates for spatial (A) and verbal (B) subtask trials 

plotted on the top showing main effects of episodic control, contextual control, and their 

interaction, as well as a main effect of stimulus domain. Reaction times for spatial (C) and 

verbal (D) subtask trials plotted on the bottom showing main effects of episodic control 

and contextual control. Spatial trials plotted in orange/yellow, verbal trials plotted in purple/

lavender; darker colors denote high episodic control (orange; purple), lighter colors denote 

low episodic control (yellow; lavender).
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Fig 4: 
Whole-brain control-related activations. Top: Activations for contextual control (dual + 

switch > delay + baseline; green), episodic control (dual + delay > switch + baseline; red), 

and their overlap. No clear topographical differentiation was observed between the contrasts. 

Bottom: Corresponding activations in Nee & D’Esposito (2016) for contextual control 

(green), temporal control (red), and their overlap. Insets display replicated contrasts from 

Nee & D’Esposito (2017). In contrast to the present study, the more abstract control contrast 

elicited more rostral activations in the LPFC. Contrasts for the present study depicted at 

t-statistics between 2-6. The datasets of Nee & D’Esposito are shown at t-statistics between 

3.5-6.5 for visualization purposes.
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Fig 5: 
ROI analyses. Condition related activations in each ROI for high and low contextual and 

episodic control. Overall, effects of contextual control were present in all ROIs. Significant 

effects of episodic control were observed in all areas except SFS and MFG. Both the SFS 

and MFG displayed an under additive interaction.
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Fig 6: 
Activation pattern across each ROI. Episodic control (dual+delay > switch+baseline; red) 

and Contextual control (dual+switch > delay+baseline; green). Control related activations 

elicited by our control demands tended to increase from caudal to rostral areas. However, 

MFG deviated from this pattern by showing reduced activations compared to FPl. Solid 

lines between FPl and MFG show significant differences at p<0.001 for episodic (red) and 

contextual control (green).
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Fig 7: 
Group level PEB showing significant parameter estimates. A) Modulations in connectivity 

by condition (green= contextual control, orange= spatial, purple= verbal). No modulations 

during episodic control passed significance. B) Fixed connectivity (black) and inputs (blue) 

to the model.
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Fig 8: 
Summarization of hierarchical strength of each region. Hierarchical strength was defined by 

the magnitude of outgoing connections minus incoming connections. Hierarchical strength 

peaked in the MFG and was non-significantly negative in FPl. * pcorrected<0.05.
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