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Abstract

Blood oxygen level dependent (BOLD) MRI time series with maternal hyperoxia can assess 

placental oxygenation and function. Measuring precise BOLD changes in the placenta requires 

accurate temporal placental segmentation and is confounded by fetal and maternal motion, 

contractions, and hyperoxia-induced intensity changes. Current BOLD placenta segmentation 
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methods warp a manually annotated subject-specific template to the entire time series. However, 

as the placenta is a thin, elongated, and highly non-rigid organ subject to large deformations 

and obfuscated edges, existing work cannot accurately segment the placental shape, especially 

near boundaries. In this work, we propose a machine learning segmentation framework for 

placental BOLD MRI and apply it to segmenting each volume in a time series. We use a 

placental-boundary weighted loss formulation and perform a comprehensive evaluation across 

several popular segmentation objectives. Our model is trained and tested on a cohort of 91 

subjects containing healthy fetuses, fetuses with fetal growth restriction, and mothers with high 

BMI. Biomedically, our model performs reliably in segmenting volumes in both normoxic and 

hyperoxic points in the BOLD time series. We further find that boundary-weighting increases 

placental segmentation performance by 8.3% and 6.0% Dice coefficient for the cross-entropy and 

signed distance transform objectives, respectively.
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1. Introduction

Biomedical motivation.

The placenta delivers oxygen and nutrients to support fetal growth. Placental dysfunction 

causes pregnancy complications that affect fetal development, leading to a critical need 

to assess placental function in vivo. Blood oxygen level dependent (BOLD) MRI images 

oxygen transport within the placenta (Sørensen et al., 2013; Abaci Turk et al., 2019) and has 

emerged as a promising tool to non-invasively study placental function. Temporal analysis 

of BOLD MRI with maternal oxygen administration can identify contractions (Abaci Turk 

et al., 2020; Sinding et al., 2016), biomarkers of fetal growth restriction (Luo et al., 2017; 

Sørensen et al., 2015), predict placental age (Pietsch et al., 2021), and can study congenital 

heart disease (You et al., 2020; Steinweg et al., 2021).

Challenges and current approaches.

Despite its importance for many downstream clinical research tasks, placental segmentation 

is often performed manually and can take a significant amount of time, even for a 

trained expert. For temporal BOLD MRI studies, manual segmentation is rendered more 

challenging due to the sheer number of MRI scans acquired and rapid signal changes 

due to common experimental designs. For example, maternal oxygenation experiments 

acquire several hundred whole-uterus MRI scans to observe signal changes in three stages: 

normoxia (baseline), hyperoxia, and return to normoxia. During the hyperoxic stage, BOLD 

signals increase rapidly, giving the placenta a hyperintense appearance. Further, placental 

shape undergoes large deformation caused by maternal breathing, contractions, and fetal 

movements which are typically stronger during hyperoxia (You et al., 2015), as illustrated in 

Figure 1.

Current practice analyzes BOLD signals with respect to a template volume. Deformable 

registration of all volumes in the time series to the template is performed to enable 
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spatiotemporal analysis (Abaci Turk et al., 2017; You et al., 2015; Chi et al., 2023). 

However, template-to-volume registration within the uterus can lead to large errors, 

necessitating outlier detection and possibly rejecting a significant number of volumes 

(Abaci Turk et al., 2017; You et al., 2015). These registration difficulties arise from the 

placenta, fetus, and mother being subject to highly disparate deformation models along the 

temporal sequence. For example, the fetus undergoes piecewise-rigid motion whereas the 

placenta deforms highly non-rigidly, thus precluding the direct use of standard registration 

frameworks such as ANTs (Tustison et al., 2020) and VoxelMorph (Balakrishnan et al., 

2019) on temporal whole-uterus images.

Contributions.

To address these challenges, we propose a deep network framework to automatically 

segment the placenta in BOLD MRI time series. Our model is trained on volumes 

obtained during the normoxic and hyperoxic phases from each patient so as to capture 

placental shape and appearance variability during maternal oxygenation. As the placenta 

is a thin and elongated organ, we use a boundary-weighted formulation (parameterized 

by thresholded signed distance function approximations) of several popular region and/or 

shape-based segmentation objectives which yield significant gains in both placental 

segmentation accuracy and surface overlap over their non-boundary-weighted equivalents. 

Our model demonstrates consistency in the predicted segmentation label maps on a large 

dataset of unseen BOLD MRI and generalizes to a broad range of gestational ages and 

pregnancy conditions, thus enabling improved non-invasive pregnancy studies via maternal 

oxygenation. Finally, to demonstrate the feasibility of our method for clinical research, we 

illustrate an application based on relative BOLD signal increases.

This paper extends our preliminary analysis of placental segmentation (Abulnaga et al., 

2022b) first presented at the International Workshop on Perinatal, Preterm and Paediatric 

Image Analysis held in conjunction with the International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI) in 2022. We expand on it by 

providing more motivation for the work in Section 1 and relevant context for boundary-

weighted and shape-aware segmentation losses in Section 2. In our methods in Section 3, we 

provide additional details, illustrations, and justification for the chosen additive boundary-

weighted loss formulation. We then experiment with several additional shape-aware and 

boundary-weighted loss functions in our experiments (Section 4) alongside introducing 

qualitative measures of temporal segmentation performance and providing failure cases. 

Lastly, we provide a substantially expanded discussion of our work in Section 5 which 

overviews its place in the shape-aware segmentation literature and its utility for clinical 

research.

2. Related Work

Placenta segmentation in structural MRI.

Machine learning segmentation models for the placenta have been previously proposed 

and include both semi-automatic (Wang et al., 2015) and automatic (Alansary et al., 2016; 

Torrents-Barrena et al., 2019a; Pietsch et al., 2021; Specktor-Fadida et al., 2021) approaches. 
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While semi-automatic methods have achieved success in predicting segmentation label 

maps with high accuracy, these approaches are infeasible for segmenting BOLD MRI time 

series due to the large number of volumes that would require manual annotation. The 

majority of automatic methods focus on segmentation in structural images as opposed 

to BOLD MRI as in this work. For example, Alansary et al. (2016) proposed a model 

for segmenting T2-weighted (T2w) images based on a 3D CNN followed by a dense 

CRF for segmentation refinement and validated it on a singleton cohort that included 

patients with fetal growth restriction (FGR). Torrents-Barrena et al. (2019a) developed 

a segmentation framework based on super-resolution and a support vector machine and 

validated it using a singleton and twin cohort of T2w MRI. Specktor-Fadida et al. (2021) 

focused on transferring segmentation networks across MRI sequences using a self-training 

model yielding successful segmentation of steady-state precession MRI sequences. For a 

detailed treatment of fetal MRI segmentation, we refer the reader to the survey by Torrents-

Barrena et al. (2019b).

Placenta segmentation in BOLD MRI.

BOLD MR images of the placenta differ greatly from anatomical images, as BOLD 

images have lower in-plane resolution and the contrast between the placental boundary 

and surrounding anatomy is less pronounced. Anatomical images may also benefit from 

super-resolution approaches to increase SNR in the acquired image (Uus et al., 2020). 

Pietsch et al. (2021) are the first to consider placental segmentation in functional MRI. 

They proposed a 2D patch-based U-Net model for functional image segmentation and 

demonstrated a successful application of age prediction using the estimated T2* values. 

They focused on a cohort of singleton subjects and demonstrated successful applications to 

abnormal pregnancy conditions including preeclampsia. In contrast to their approach that 

segments derived T2* maps, we evaluate our segmentation model on BOLD MRI time 

series. Furthermore, our 3D model operates on the entire volume rather than patches, thereby 

helping to better resolve the boundaries of the placenta.

Boundary-weighted segmentation objectives.

Popular supervised segmentation losses such as cross-entropy underperform in the presence 

of highly imbalanced classes common in radiology volumes. As the interface between 

organs can be obfuscated by motion-related artifacts and/or isointense appearance, strongly 

penalizing incorrect predictions near the boundary has been demonstrated to improve 

segmentation performance across several biomedical applications (Ma et al., 2021). For 

example, Kervadec et al. (2021) and Zhang et al. (2020) implemented distance metrics 

on organ contour predictions in addition to region-based losses such as soft Dice to 

improve performance. In parallel, several works regress ground truth distance transforms 

which are strongly weighted near the organ boundary (Hoopes et al., 2022). As illustrative 

examples, Huang et al. (2021) regressed ground truth distance maps that are normalized 

using the Heaviside function to penalize near-boundary misclassifications, while Karimi 

and Salcudean (2019) proposed a soft-Hausdorff distance loss parameterized by distance 

transforms. Lastly, the boundary weighting formulation we use is most similar to that of 

Caliva et al. (2019), wherein a thresholded signed distance transform is used to upweigh 

boundary neighborhoods in region-based losses.
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3. Methods

We train a model Fθ:X Y parameterized by θ that takes volumes from a BOLD MRI 

time series X ∈ ℝH × W × D × T  and independently predicts a placental segmentation label 

map Y ∈ {0, 1}H × W × D × T  for each time point t ∈ 1, …T , where T  is the total number 

of time points at which MRI scans were acquired. For a given BOLD time series, we have 

a small number Nl of frames with ground truth labels (x, y), where x ∈ ℝH × W × D is an 

MRI scan and y ∈ {0, 1}H × W × D is the ground truth placenta label map. The model predicts 

segmentation label maps on each 3D volume in the time series independently.

3.1 Architecture and data considerations

We use a standard 3D U-Net (Ronneberger et al., 2015) with 4 blocks in the contracting 

and expanding paths each. Each block consists of two consecutive Conv-BatchNorm-ReLU 

blocks using filters of size 3 × 3 × 3. Each block is followed by max pooling (contraction 

path) or transpose convolution (expansion path). We employ batch normalization before 

ReLU activation. We augment the images using random affine transforms, flips, whole-

image brightness shifts, contrast changes, random noise, and elastic deformations, all using 

TorchIO (Pérez-García et al., 2021). Specific to segmentation with maternal oxygenation, we 

simulate the effects of maternal normoxia and hyperoxia with a constant intensity shift in the 

placenta. All augmentation decisions were made based on cross-validation performance.

To capture the MRI signal and placental shape changes resulting from maternal hyperoxia 

and fetal motion, we specifically train on several manually segmented volumes in the 

normoxic or hyperoxic phase. This allows the model to learn from the realistic variations 

that arise during maternal oxygenation.

3.2 Additive Boundary Loss

To emphasize placental boundary details during training, we construct an additive boundary-

weighting wδ which is compatible with any per-voxel segmentation loss function L ⋅ . Given 

a ground truth placental label map y, we denote its boundary as ∂y. We use a signed distance 

function fy x  that measures the signed distance, d x, ∂y , of voxel x ∈ ℝ3 to the boundary, 

where fy x > 0 when inside of the placenta and fy x < 0 when outside. The boundary 

weighting is additive for voxels within δ-distance of ∂y,

wδ(x) =
w1 if 0 ≤ fy(x) < δ,
w2 if −δ < fy(x) < 0,
0 otherwise.

(1)

The weighted loss Lw is then,

Lw(x) = L(x) wc(x) + wδ(x) ,

(2)
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where wc x  is a per-voxel class weighting. In practice, we set w2 > w1, to account for class 

weighting and to penalize outside voxels more heavily and learn to distinguish the placenta 

from its surrounding anatomy.

We note that several forms of boundary-weighted losses exist in the literature (Ma et al., 

2021) with ours being most similar to Caliva et al. (2019). Many of these use a decaying 

weight for voxels further from the boundary, while we use a constant weighting. For 

computational efficiency, rather than computing fy x  for all voxels x as in Caliva et al. 

(2019), we approximate the region of distance ±δ from ∂y using convolutional kernels. To 

find voxels x with fy x < δ, we estimate a 2δ-wide boundary by an average pooling filter 

on y with kernel size K and take the smoothed outputs to lie in the boundary. A larger 

K produces a wider boundary, penalizing more misclassified voxels. See Figure 2 for an 

illustration. Computing the boundary using a convolution operator is advantageous as it 

does not require computing the signed distance transform directly, which is computationally 

expensive and bottlenecks deep network training.

3.3 Implementation Details

We train using a learning rate η = 10−4 with linear decay for 5500 epochs and select the 

model with the best Dice score on the validation set. For the additive boundary loss, 

we set w1 = 1, w2 = 40, and K = 11. For training, we use a simple preprocessing pipeline. 

All images are normalized by scaling the 90th percentile intensity value to 1 without 

thresholding or clipping any values. We crop or pad all volumes in the dataset to have 

dimension 112 × 112 × 80 and train on the entire 3D volume. We use a batch size of 8 MRI 

volumes in training. We augment our data with random translations of up to 10 voxels, 

rotations up to 22∘, Gaussian noise sampled with μ = 0, σ = 0.25, elastic deformations with 

5 control points and a maximum displacement of 10 voxels, whole volume intensity shifts 

up to ±25%, and whole-placenta intensity shifts of ±0.15 normalized intensity values. These 

values were determined by cross-validation on the training set. When evaluating the model 

on our test set, we post-processed produced label maps by taking the largest connected 

component to eliminate islands. Our segmentation code and trained model are available at 

https://github.com/mabulnaga/automatic-placenta-segmentation.

4. Experiments

4.1 Data

Our dataset consists of BOLD MRI scans taken from two clinical research studies. Data 

were collected from 91 subjects of which 78 were singleton pregnancies (gestational age 

(GA) at MRI scan of 23 weeks (wk), 5 days (d) to 37wk6d), and 13 were monochorionic-

diamniotic (Mo-Di) twins (GA at MRI scan of 27wk5d – 34wk5d). Of these, 63 pregnancies 

were controls, 16 had fetal growth restriction (FGR), and 12 had high maternal body mass 

index (BMI, BMI > 30). Obstetrical ultrasound was used to classify subjects with FGR. 

For singleton subjects, FGR classification was done based on having fetuses with estimated 

weight less than the 10th percentile. For twin subjects, FGR classification was determined by 

monochorionicity and discordance in the estimated fetal weight by growth restriction (< 10th
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percentile) in one or both fetuses; and/or ii) growth discordance (≥ 20%) between fetuses. 

Table 1 shows patient demographics and GA ranges per group.

MRI BOLD scans were acquired on a 3T Siemens Skyra scanner (GRE-EPI, interleaved 

with 3mm isotropic voxels, TR = 5.8–8s, TE = 32 – 47 ms, FA = 90°). To eliminate 

intravolume motion artifacts, we split the acquired interleaved volumes into two separate 

volumes with spacing 3 × 3 × 6mm, then linearly interpolate to 3 × 3 × 3mm. In our analysis, 

we only consider one of two split volumes, as the signals are redundant between pairs. 

Maternal oxygen supply was alternated during the BOLD acquisition via a nonrebreathing 

facial mask to have three 10-minute or 5-minute consecutive episodes: 1. normoxia 

(21% O2), 2. hyperoxia (100% O2, 15L/min), and 3. a return to normoxia 21% O2 .

To generate training data, the placenta was manually segmented by a trained observer. Each 

BOLD MRI time series had 1 to 6 manual segmentations, yielding a total of 176 ground 

truth labels. The data was then split into training, validation, and test sets: (65%/15%/20%: 

63/11/17 subjects). Data was stratified to have proportional distributions of subjects with 

singleton and twin pregnancies, then to proportionally distribute healthy controls, subjects 

with FGR, and subjects with high BMI. Our test set had 15 singleton pregnancies and 2 

twins. Of the singleton pregnancies, 12 were healthy controls, 1 had FGR, and 2 had high 

BMI. Both twin subjects had FGR. Our test set had a total of 31 labeled images, none of 

which were used before final evaluation.

Each subject in the training set had up to Nl = 6 ground truth segmentations in the BOLD 

time series. To prevent bias in sampling images, we train by randomly sampling 1 of Nl

ground truth segmentations for each subject. The length of one epoch is the number of 

subjects rather than the number of images. Subject-wise random sampling was used to 

reduce bias from subjects with more ground truth labels.

4.2 Evaluation

Performance measures.—We first compare the predicted segmentation label maps 

to ground truth segmentations. We measure similarity using the Dice score (Dice), the 

95th-percentile Hausdorff distance (HD95), and the Average Symmetric Surface Distance 

(ASSD). To evaluate the feasibility of the produced segmentations for clinical research 

studying whole-organ signal changes, we evaluate the percentage error in the mean BOLD 

values between our prediction and the ground truth (BOLD error), defined as 100 × b̂ − b /b, 

where b and b̂ denote the mean BOLD signal in the ground truth and in the predicted 

segmentation, respectively. As estimating whole-organ BOLD signal changes is an important 

clinical research task, this metric quantifies the appropriate error caused by using automatic 

placental segmentations.

Benchmarked segmentation loss functions.—We benchmark several popular loss 

functions and their boundary-weighted extensions to assess their performance on placental 

segmentation. We quantify improved performance using the boundary-weighting approach 

(Eq. 1) by comparing performance of the cross-entropy loss ℒCE  and the signed distance 

transform (SDT) loss (ℒSDT) with their boundary-weighted counterparts (ℒBW − CE , ℒBW−SDT). 
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The SDT loss poses segmentation as a regression problem and predicts the signed distance 

transformation to the placenta boundary. The loss ℒSDT computes the mean-squared error of 

the predicted SDT from ground truth (Hoopes et al., 2022). We also benchmark performance 

on the widely used soft Dice loss (ℒDice) (Milletari et al., 2016) and a boundary-weighted 

Focal loss (ℒBW−Focal) with α = 0.5, γ = 2 (Lin et al., 2017). As segmentation often benefits 

from hybrid loss functions (Ma et al., 2021), we also evaluate various combinations of 

losses. Lastly, we evaluate two boundary-focused signed distance-based loss functions from 

Huang et al. (2021) (ℒShape) and from Karimi and Salcudean (2019) ℒHD .

Consistency with hyperoxia.—We evaluate our model’s sensitivity to oxygenation 

by comparing the accuracy of predictions in normoxia and hyperoxia for subjects with 

multiple ground truth annotations. We compute segmentation performance using metric 

m in normoxia mnormoxia yi, ŷi ), and in hyperoxia (mhyperoxia yi, ŷi , where mnormoxia yi, ŷi  denotes 

the similarity using metric m of our predicted segmentation ŷi to the ground truth yi

for subject i in normoxia. For the evaluation metric m, we use the Dice score, HD95, 

ASSD, and percentage BOLD error. To evaluate consistency with oxygenation, we compute 

the mean absolute error between segmentation performance in both oxygenation phases 

mnormoxia yi, ŷi − mhyperoxia yi, ŷi . A low error indicates predicted segmentations are consistent 

with oxygenation changes in the placenta.

Temporal consistency.—We assess the consistency of our predictions by applying our 

model to all volumes in the BOLD time series of the test set. Since our volumes are acquired 

interleaved and split into two separate volumes, we apply our model to every second 

volume in the time series, yielding a mean of 111.7 ± 45.3 volumes per subject. We measure 

consistency by comparing the Dice score between consecutive volumes. We qualitatively 

evaluate segmentation performance across the time series and visualize robustness to fetal 

motion and oxygenation change.

4.3 Results

Table 2 reports the performance of several segmentation losses on the test set. Figure 3 

presents box-and-whisker plots of each model’s performance. Both our best performing 

models trained using ℒBW − CE and ℒBW−Focal achieve a mean Dice score of 82.80, though 

ℒBW − CE produces slightly lower variance. This model also achieves low relative BOLD error 

(4.11 ± 3.0%), indicating that our model’s segmentations are suitable for clinical research 

studies assessing whole-organ signal changes. Similar performance is achieved for the other 

loss functions. Our model also outperforms the two shape-based baselines ℒShape + ℒDice

and ℒHD + ℒDice on all metrics, though performance improvements are not statistically 

significant. These shape-based baselines demonstrate less consistent performance as they 

have higher variance with outliers (Figure 3).

The boundary weighting improves the performance of several loss functions compared to 

their non-boundary weighted counterparts. Training the model with our boundary weighting 

results in a statistically significant increase in performance. When trained using ℒCE, we 

achieve a mean Dice of 82.5 with boundary weighting in the loss compared to 76.5 without. 

Abulnaga et al. Page 8

J Mach Learn Biomed Imaging. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Similarly, for ℒSDT we achieve a mean Dice of 80.6 with boundary weighting compared 

to 76.1 without. However, training with an additive Dice loss improves this performance 

gap: ℒCE + ℒDice achieves a Dice of 81.4 compared to 82.8 for ℒBW‐CE, and ℒFocal + ℒDice

achieves a Dice of 82.0 compared to 82.8 for ℒBW−Focal + ℒDice. The boundary-weighting 

also improves mean performance of ASSD and BOLD error and demonstrates more narrow 

distributions of distortion with fewer outliers (see Figure 3.) Using only the first segmented 

volume of the BOLD MRI series in normoxia also results in a small drop in performance 

ℒBW − CE Nl = 1 . Adding labeled examples from the hyperoxic phase helps generalization, 

as the placental shape and intensity patterns can change greatly.

Our performance is consistent across pregnancy conditions, as we achieve Dice scores of 

77.4, 88.1  on the two subjects with twin pregnancies, 82.8 ± 3.0 on the singletons N = 15 , 

83.0 ± 5.4 on the FGR cohort N = 3 , 82.6 ± 3.0 on the controls N = 12  and 80.6, 86.5  on the 

two BMI cases.

Our model performs consistently well in the normoxic and hyperoxic phases. For the 5 

subjects with ground truth segmentations in both the normoxia and hyperoxia, we achieve 

a mean absolute difference between predictions in normoxia and hyperoxia of 3.78 ± 1.17
Dice, 3.15 ± 1.90mm HD95, 0.77 ± 0.16mm ASSD, and 3.21 ± 1.36% relative BOLD error. 

These results suggest that our model is robust to contrast changes in the placenta resulting 

from maternal hyperoxia, and can be used in studies quantifying oxygen transport in the 

organ. A larger number of subjects are needed to assess statistical significance.

Figure 4 compares the predicted label maps with ground truth on 5 subjects with increasing 

Dice scores using the BW-CE model. The model accurately identifies the location of the 

placenta, but in the worst cases misses boundary details.

BOLD Time Series Evaluation—Figure 5 presents example predicted segmentations at 

multiple points in the BOLD MRI time series for 3 subjects. The predicted segmentations 

are robust to large fetal deformations and placental signal changes. Figure 6 (top) presents 

distributions of Dice score between predicted label maps of consecutive frames in the BOLD 

time series for all subjects in the test set. Distributions have high medians (Dice > 90) for all 

but one case, with high density at high Dice scores (Dice > 90). Dice differences are highly 

affected by fetal and maternal motion that cause placental deformation. We visually verified 

that modest drops in Dice (< 90) were mainly due to fetal motion, but 3 subjects had a small 

number of frames with large drops (Dice < 70) that were caused by errors in the produced 

label maps. Figure 6 (bottom) shows 3D models of failed segmentations from two subjects 

from frames with Dice < 70. Our model omitted parts of the placenta for Subject 9 and 

added a large region for Subject 15. In practice, these failures ocurred in a small number of 

frames, 6.8% of frames for Subject 9 and 0.45% of frames for Subject 15. Overall, predicted 

label maps are consistent between consecutive volumes of the MRI time series, achieving 

a Dice of 92.0 ± 1.7 and a BOLD difference of 2.1 ± 0.60%. The small differences between 

the relative mean-BOLD values suggest these produced segmentations may be suitable for 

research studies assessing placental function.
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Automatic segmentation of each volume in BOLD MRI time series is advantageous as it 

can enable whole-organ spatiotemporal analysis without requiring inter-volume registration, 

which may fail under the presence of large motion. We illustrate a possible application of 

automatic placenta segmentation by investigating the percentage increase in BOLD signal 

in response to maternal hyperoxia. We calculate the percentage increase over the baseline 

period: Δb = bH − bN /bN, where bN denotes the mean BOLD signal over the baseline period, 

and bH denotes the mean of the signal in the last 10 frames of the hyperoxic period. Figure 

7 shows a scatter plot of the hyperoxia response for all subjects in the test set and two 

examples of the BOLD signal time course in the produced placenta segmentation label 

maps. In the control subjects (N = 12), we observe an increase of 10.2 ± 11.1%. The observed 

increase for the healthy controls is consistent with previous studies that demonstrated an 

increase of 12.6 ± 5.4% N = 21  (Sørensen et al., 2015) and from 5% to 20% throughout 

gestation (N = 49) (Sinding et al., 2018).

5. Discussion

We proposed a model to automatically segment the placenta in BOLD MRI time series and 

achieved close matching to ground truth labels with consistent performance in predicting 

segmentations in both the normoxic and hyperoxic phases. Our solution was developed to be 

resilient to the variability caused by large signal changes in the BOLD experiment protocol.

Shape-aware segmentation.

Identification of the placental boundary is challenging as the organ is a thin and 

elongated structure with limited contrast with surrounding anatomy. In this work, we 

emphasized these challenging aspects of placental shape during network training by using 

a simple additive boundary-weighted loss function. As hypothesized, boundary weighting 

significantly improved placenta segmentation performance when integrated with the popular 

cross-entropy and signed distance transform (SDT) losses as compared with their non-

boundary weighted counterparts. We then performed an extensive evaluation over shape-

based losses including our chosen formulation and the losses of Karimi and Salcudean 

(2019), and Huang et al. (2021) and found that our adopted loss outperforms others in 

several key aspects of placenta segmentation. Lastly, we broadly find that shape-based 

losses outperform losses without shape information (cross-entropy, Dice, and SDT losses), 

demonstrating that including shape information can aid in the identification of the placenta.

Utility for clinical research.

The main objective of this work was to develop a segmentation model to assess whole-

organ signal changes in BOLD MRI time series. We achieve low BOLD error (4%) 

compared to ground truth with performance that is consistent across oxygenation period. 

Segmenting each volume in the BOLD MRI time series can be advantageous for clinical 

research assessing whole-organ temporal changes. We illustrated one possible study in 

assessing placental response during hyperoxia and observed an increase in signal intensity 

consistent with prior work. However, our cohort is limited, and several factors, including 

maternal position, gestational age, and contractions are covariates not considered. Producing 

segmentations that are resilient to placental oxygenation can also enable essential post-
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processing such as motion correction (Abaci Turk et al., 2017), reconstruction (Uus et al., 

2020), and mapping to a standardized representation (Miao et al., 2017; Abulnaga et al., 

2019, 2022a; Chi et al., 2023). These tasks are often essential in clinical research studies 

assessing placental function.

We provide access to our code and trained model for use in future clinical research studies. 

Our model is robust to gestational age, pregnancy condition, and oxygenation. Further, the 

model requires simple preprocessing and can be used with a variety of EPI scans. In this 

work however, we only trained and tested on isotropic MRI with TE=32 – 47 ms. It is 

unclear how well the model would work on scans with earlier GA, nonistropic images, or 

different imaging protocols.

A limitation of relying only on segmentations is that they can only be used to quantify 

whole-organ signal changes, such as mean T2 ⋆ or mean BOLD increase. One is often 

interested in assessing functional differences within subregions of the placenta, for example 

across twins in Mo-Di pregnancies (Luo et al., 2017; Shnitzer et al., 2022), within vessels 

(Torrents-Barrena et al., 2019a), or across cotyledons (Dey et al., 2023). Localized analysis 

requires deformable registration (Abaci Turk et al., 2017) to track changes within these 

regions. Having reliable segmentations for each point in the BOLD MRI time series can be 

used to improve registration, for example by treating segmentations as spatial priors. One 

may also consider methods that jointly learn registration and segmentation such as that of 

Xu and Niethammer (2019).

Comparison to prior work.

The closest work to ours is that of Pietsch et al. (2021) that proposes a 2D U-Net based 

model to automatically segment the placenta in functional MRI (BOLD, T2*). They achieve 

a Dice of 58 on a cohort of 108 subjects of low- and high-risk singleton subjects of a 

wide GA range. Their performance was comparable to the inter-rater variability of two 

radiologists (Dice=68), which represents an upper limit. In contrast, we achieve a Dice of 

82.8 on a cohort of singleton and twin subjects from healthy pregnancies, subjects with 

FGR, and subjects with high BMI. While comparing our work with that of Pietsch et 

al. (2021) provides context for our performance, direct comparison with this work is not 

feasible due to differences in data set size and patient demographics, imaging protocols, and 

MRI study design. An interesting direction of future work is to quantify the improvement in 

performance due to model design versus dataset composition.

Limitations and Future Work.

The main limitation of this work is the inability to quantify segmentation performance 

across the entire BOLD MRI study. While we demonstrated low absolute differences in 

predictions between normoxia and hyperoxia, we only had 5 subjects with ground truth 

images in multiple time points. We measured the consistency of consecutive predictions 

via Dice overlap and percentage BOLD differences. However, without correction for inter-

frame placental deformation, the reported scores are subject to noise caused by motion. 

We performed visual quality control and found that for many subjects, modest drops in 

Dice < 90 , were often due to fetal motion displacing the placenta. In a small number of 
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cases, we observed large drops (Dice < 70) that were caused by segmentation error (Figure 6 

bottom). Since we apply the model to each volume in the time series independently, imaging 

artifacts, such as intensity and geometric artifacts, can affect the predicted segmentations.

We performed a comprehensive evaluation of several commonly used loss functions with 

and without our boundary weighting approach, and compared with shape-based baselines of 

two previous works: ℒShape of Huang et al. (2021) and ℒHD of Karimi and Salcudean (2019). 

While our boundary-weighting outperformed these loss functions, we observed that any 

shape-based loss improved performance over conventional loss functions (e.g. ℒCE , ℒDice , 

demonstrating the benefit in capturing the placenta boundary accurately. Additional loss 

functions exist that we did not compare with, such as the distance transform-based 

boundary loss of Kervadec et al. (2021), and the boundary contour-based loss functions 

of Specktor-Fadida et al. (2021) and Jurdi et al. (2021). Similar to our baselines, these 

loss functions are additive and aim to improve boundary capture and reduce the Hausdorff 

distance. Consequently, we do not expect significant differences over our proposed model, 

though future work should compare with additional baselines. Since our proposed loss is a 

boundary-based weighting rather than a separate loss function, it is versatile to be used with 

any existing loss.

Future work can investigate semi-supervised learning approaches to incorporate all 

unlabeled volumes in the BOLD MRI time series, increasing the variety of available 

data to potentially improve temporally consistent segmentation. As there are often a 

few hundred unlabeled volumes in each BOLD time series, these approaches can more 

accurately capture the rapid signal changes resulting from fetal motion and maternal 

oxygenation. The unlabeled data can be incorporated using non-rigid registration as in (Xu 

and Niethammer, 2019; Zhao et al., 2019; Chartsias et al., 2020) or by using unsupervised 

shape-regularization losses (Mirikharaji and Hamarneh, 2018; Young et al., 2023).

6. Conclusion

We developed a model to automatically segment the placenta in BOLD MRI time series. Our 

model performed consistently well at different oxygenation phases of the BOLD protocol, 

and across a variety of pregnancy conditions and gestational ages. We demonstrated one 

potential clinical research application of this work in quantifying BOLD increase due to 

hyperoxia that matched reported values from the literature. Automatic segmentation in 

BOLD MRI time series can be used to investigate oxygenation dynamics in the placenta. For 

example, temporal segmentations can be used to derive T2* maps to perform whole-organ 

signal comparisons across population groups, enabling quantitative analysis of placental 

function with the ultimate goal of developing biomarkers of placental and fetal health.
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Figure 1: 
During maternal oxygen administration, the placenta undergoes large shape deformation 

caused by fetal motion (left) and strong BOLD signal changes caused by maternal hyperoxia 

(right). Placental boundaries are marked in red. Signal normalization is based on averaging 

all MRI intensities in the first normoxic period.
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Figure 2: 
Illustration of inner and outer boundaries used in the additive boundary loss. Right image 

is zoomed in from the top left corner of the placenta (green box) to closely illustrate 

boundaries. Placenta segmentation outline is shown in red and inner and outer boundaries 

δ-distance away are shown in blue.
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Figure 3: 
Box-and-whisker plots of Dice (top left), HD95 (top right), ASSD (bottom left), and BOLD 

error (bottom right) on the test set across all models. We evaluate several commonly used 

loss functions with and without our boundary weighting and evaluate the baseline shape-

based loss (ℒShape) of Huang et al. (2021) and the soft-Hausdorff distance loss (ℒHD) of 

Karimi and Salcudean (2019). Black horizontal lines inside the box indicate the median. The 

boxes extend to the 25th and 75th percentiles and the whiskers reach to the most extreme 

values not considered outliers (black bars). The outliers, shown as crosses, are points farther 

than 1.5 times the interquartile range. Mean values are indicated on the top horizontal 

axis. Boundary weighting results in higher mean values with more narrow distributions 

of distortion compared to their non-boundary weighted counterparts. We further observe 

improved performance compared with baseline losses in terms of mean, variance, and 

number of outliers.
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Figure 4: 
Example predictions on 5 subjects from the test set. Ground truth segmentations are shown 

in yellow and predictions in red. Dice scores are indicated below each column. Two slices 

are shown for each subject, spaced 18mm apart.
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Figure 5: 
Consistency of predictions throughout the time series on 3 subjects from the test set. Each 

row corresponds to a subject. The leftmost column shows the ground truth segmentation 

outlined in yellow, and temporal-predicted segmentations in columns 2 − 5 are shown in 

red. The same axial slice is shown for each subject, and images span the time series. 

Segmentations are consistent across time series, achieving consecutive BOLD differences of 

2.6 ± 2.0%, 1.1 ± 1.4%, and 2.6 ± 2.1%  and Dice scores of 90.7 ± 0.4, 95.5 ± 0.3, and 89.7 ± 8.8
(top, middle, and bottom). Variations in these metrics are expected due to fetal motion and 

changes in oxygenation due to the BOLD protocol.
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Figure 6: 
Top: Per-subject density distributions of Dice scores between consecutive predictions in 

BOLD MRI time series. Dots inside distributions indicate the median. Bottom: Example 

failure cases at frames with Dice < 70. 3D models of placentae predicted at two consecutive 

time points are shown for two subjects. Left: The region in black is distorted in the predicted 

segmentation of subject 9. Right: A large portion of the placenta (encircled) is wrongfully 

predicted in the placenta of subject 15. Failure cases are likely to occur with large drops in 

consecutive Dice (Dice < 70).
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Figure 7: 
Example application using our model’s produced placenta segmentations in BOLD time 

series to characterize oxygenation response from maternal hyperoxia. Left: Observed 

increase relative to normoxic baseline for the test set. Right: Example time series for one 

singleton control (GA=33wk2d, Dice=85.5, Δb = 14.1%) and one singleton FGR subject 

(GA=34wk5d, Dice=83.5, Δb = 2.5% .
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Table 1:

Demographic information for subjects in our analysis. GA is gestational age.

Group Criteria Control FGR High BMI

Singleton # subjects 60 6 12

GA at MRI 23wk5d – 37wk6d 26wk6d – 34wk5d 26wk4d – 36wk6d

Twin # subjects 3 10 0

GA at MRI 31wk2d – 34wk5d 27wk5d – 34wk5d N/A
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Table 2:

Test results produced by our 3D U-Net model trained using different loss functions. Numbers in bold indicate 

the best result in each column. We evaluate commonly used loss functions and the shape-based loss (ℒShape) of 

(Huang et al., 2021) and the soft-Hausdorff distance loss ℒHD  of Karimi and Salcudean (2019).

Loss Dice HD95 (mm) ASSD (mm) BOLD error (%)

ℒBW − CE 82.80 ± 3.25 13.31 ± 6.4 4.01 ± 1.0 411 ± 3.0

ℒBW − CE Nl = 1 81.98 ± 5.3 12.61 ± 4.66 4.08 ± 1.02 4.30 ± 4.52

ℒCE 76.47 ± 7.43 17.92 ± 11.02 5.96 ± 2.1 5.22 ± 2.53

ℒDice 77.13 ± 9.74 22.51 ± 18.02 6.14 ± 3.95 8.95 ± 11.37

ℒBW − CE + ℒDice 79.82 ± 6.57 15.91 ± 7.93 4.44 ± 1.3 4.61 ± 2.59

ℒCE + ℒDice 81.44 ± 6.42 12.87 ± 8.9 4.14 ± 1.42 5.84 ± 8.28

ℒBW − Focal 81.82 ± 4.71 12.88 ± 5.04 4.10 ± 0.97 4.44 ± 3.4

ℒBW − Focal + ℒDice 82.80 ± 3.91 12.75 ± 5.58 4.02 ± 0.92 4.06 ± 1.75

ℒFocal + ℒDice 81.96 ± 6.19 14.02 ± 8.99 4.27 ± 1.62 6.32 ± 7.25

ℒBW − SDT 80.63 ± 5.96 16.63 ± 12.4 4.68 ± 1.92 5.64 ± 6.35

ℒSDT 76.06 ± 8.67 20.14 ± 14.25 6.01 ± 2.51 7.09 ± 8.86

ℒHD + ℒDice 80.39 ± 7.16 16.16 ± 12.17 4.62 ± 1.98 6.35 ± 9.52

ℒShape + ℒDice 81.54 ± 6.30 16.06 ± 13.28 4.65 ± 2.26 5.25 ± 4.59
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