
DataLad: distributed system for joint management of code, data, 
and their relationship

Yaroslav O. Halchenko*,1, Kyle Meyer1, Benjamin Poldrack2, Debanjum Singh Solanky1, 
Adina S. Wagner2, Jason Gors1, Dave MacFarlane3, Dorian Pustina4, Vanessa Sochat5, 
Satrajit S. Ghosh6, Christian Mönch2, Christopher J. Markiewicz7, Laura Waite2, Ilya 
Shlyakhter8, Alejandro de la Vega9, Soichi Hayashi10, Christian Olaf Häusler2,11, Jean-
Baptiste Poline12, Tobias Kadelka2, Kusti Skytén13, Dorota Jarecka6, David Kennedy14, 
Ted Strauss15, Matt Cieslak16, Peter Vavra17, Horea-Ioan Ioanas18, Robin Schneider19, Mika 
Pflüger20, James V. Haxby1, Simon B. Eickhoff2,11, Michael Hanke†,2,11

1Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth 
College, Hanover, NH, USA

2Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, 
Jülich, Germany

3McGill Center for Integrative Neuroscience, Montreal, Canada

4CHDI Management/CHDI Foundation, Princeton, NJ, USA

5Lawrence Livermore National Lab, Livermore, CA, USA

6Massachusetts Institute of Technology, Cambridge, MA, USA

7Stanford University, Stanford, CA, USA

8Quest Diagnostics, Marlborough, MA, USA

9The University of Austin at Austin, Austin, TX, USA

10Indiana University, Bloomington, IN, USA

11Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, 
Düsseldorf, Germany

12Faculty of Medicine and Health Sciences, McConnell Brain Imaging Center, McGill University, 
Montreal, Canada

13University of Oslo, Oslo, Norway

14University of Massachusetts Medical School, Worcester, MA, USA

15Montreal Neurological Institute, McGill University, Montreal, Canada

License Authors of papers retain copyright and release the work under a Creative Commons Attribution 4.0 International License (CC 
BY 4.0).
*Contributed equally
†Contributed equally

Conflicts of interest
There are no conflicts to declare.

HHS Public Access
Author manuscript
J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

Published in final edited form as:
J Open Source Softw. 2021 ; 6(63): . doi:10.21105/joss.03262.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


16University of Pennsylvania, Philadelphia, PA

17Department of Biological Psychology, Otto-von-Guericke-University Magdeburg, Magdeburg, 
Germany

18Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA

19Independent Developer, Germany

20Potsdam Institute for Climate Impact Research (PIK) e. V., Potsdam, Germany

Summary

DataLad is a Python-based tool for the joint management of code, data, and their relationship, built 

on top of a versatile system for data logistics (git-annex) and the most popular distributed version 

control system (Git). It adapts principles of open-source software development and distribution 

to address the technical challenges of data management, data sharing, and digital provenance 

collection across the life cycle of digital objects. DataLad aims to make data management as easy 

as managing code. It streamlines procedures to consume, publish, and update data, for data of any 

size or type, and to link them as precisely versioned, lightweight dependencies. DataLad helps 

to make science more reproducible and FAIR (Wilkinson et al., 2016). It can capture complete 

and actionable process provenance of data transformations to enable automatic re-computation. 

The DataLad project (datalad.org) delivers a completely open, pioneering platform for flexible 

decentralized research data management (RDM) (Hanke, Pestilli, et al., 2021). It features a Python 

and a command-line interface, an extensible architecture, and does not depend on any centralized 

services but facilitates interoperability with a plurality of existing tools and services. In order to 

maximize its utility and target audience, DataLad is available for all major operating systems, and 

can be integrated into established workflows and environments with minimal friction.

Statement of Need

Code, data and computing environments are core components of scientific projects. While 

the collaborative development and use of research software and code is streamlined with 

established procedures and infrastructures, such as software distributions, distributed version 

control systems, and social coding portals like GitHub, other components of scientific 

projects are not as transparently managed or accessible. Data consumption is complicated 

by disconnected data portals that require a large variety of different data access and 

authentication methods. Compared with code in software development, data tend not to be 

as precisely identified because data versioning is rarely or only coarsely practiced. Scientific 

computation is not reproducible enough, because data provenance, the information of how 

a digital file came to be, is often incomplete and rarely automatically captured. Last but 

not least, in the absence of standardized data packages, there is no uniform way to declare 

actionable data dependencies and derivative relationships between inputs and outputs of 

a computation. DataLad aims to solve these issues by providing streamlined, transparent 

management of code, data, computing environments, and their relationship. It provides 

targeted interfaces and interoperability adapters to established scientific and commercial 

tools and services to set up unobstructed, unified access to all elements of scientific projects. 

This unique set of features enables workflows that are particularly suited for reproducible 

Halchenko et al. Page 2

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://git-annex.branchable.com/
https://git-scm.com/
http://datalad.org/


science, such as actionable process provenance capture for arbitrary command execution that 

affords automatic re-execution. To this end, it builds on and extends two established tools for 

version control and transport logistics, Git and git-annex.

Why Git and git-annex?

Git is the most popular version control system for software development1. It is a distributed 

content management system, specifically tuned towards managing and collaborating on text 

files, and excels at making all committed content reliably and efficiently available to all 

clones of a repository. At the same time, Git is not designed to efficiently handle large 

(e.g., over a gigabyte) or binary files (see, e.g., Kenlon, 2016). This makes it hard or 

impossible to use Git directly for distributed data storage with tailored access to individual 

files. Git-annex takes advantage of Git’s ability to efficiently manage textual information 

to overcome this limitation. File content handled by git-annex is placed into a managed 

repository annex, which avoids committing the file content directly to Git. Instead, git-annex 

commits a compact reference, typically derived from the checksum of a file’s content, 

that enables identification and association of a file name with the content. Using these 

identifiers, git-annex tracks content availability across all repository clones and external 

resources such as URLs pointing to individual files on the web. Upon user request, git-annex 

automatically manages data transport to and from a local repository annex at a granularity 

of individual files. With this simple approach, git-annex enables separate and optimized 

implementations for identification and transport of arbitrarily large files, using an extensible 

set of protocols, while retaining the distributed nature and compatibility with versatile 

workflows for versioning and collaboration provided by Git.

What does DataLad add to Git and git-annex?

Easy to use modularization.—Research workflows impose additional demands for an 

efficient research data management platform besides version control and data transport. 

Many research datasets contain millions of files, but a large number of files precludes 

managing such a dataset in a single Git repository, even if the total storage demand is 

not huge. Partitioning such datasets into smaller, linked components (e.g., one subdataset 

per sample in a dataset comprising thousands) allows for scalable management. Research 

datasets and projects can also be heterogeneous, comprising different data sources or 

evolving data across different processing stages, and with different pace. Beyond scalability, 

modularization into homogeneous components also enables efficient reuse of a selected 

subset of datasets and for recording a derivative relationship between datasets. Git’s 

submodule mechanism provides a way to nest individual repositories via unambiguously 

versioned linkage, but Git operations must still be performed within each individual 

repository. To achieve modularity without impeding usability, DataLad simplifies working 

with the resulting hierarchies of Git repositories via recursive operations across dataset 

boundaries. With this, DataLad provides a “monorepo”-like user experience in datasets 

with arbitrarily deep nesting, and makes it trivial to operate on individual files deep in the 

hierarchy or entire trees of datasets. A testament of this is datasets.datalad.org, created as the 

project’s initial goal to provide a data distribution with unified access to already available 

1 https://en.wikipedia.org/wiki/Git#Adoption 

Halchenko et al. Page 3

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://datasets.datalad.org/
https://en.wikipedia.org/wiki/Git#Adoption


public data archives in neuroscience, such as crcns.org and openfmri.org. It is curated by the 

DataLad team and provides, at the time of publication, streamlined access to over 260 TBs 

of data across over 5,000 subdatasets from a wide range of projects and dozens of archives 

in a fully modularized way.

Re-executable annotation of changes.—Digital provenance is crucial for the 

trustworthiness and reproducibility of a research result, and contributes to the reusability 

aspect of the FAIR principles (Wilkinson et al., 2016). Knowing which code and data were 

used is essential, but, for changes that are programmatically introduced, how a command 

or script was invoked is another key piece of information to capture. One approach is 

to include this information in the Git commit message that accompanies a change, but 

doing so manually is tedious and error prone. To solve this, DataLad supports executing a 

command and automatically generating a commit message that includes a structured record 

with comprehensive details on the invocation. In addition to providing reliable information 

about past command-line invocations, these machine-readable records make it possible to 

easily re-execute commands (e.g., to verify if a result is computationally reproducible or to 

apply an analog change to a different dataset state).

Targeted interfaces and interoperability adapters.—Interoperability with scientific 

or commercial computing and storage services allows researchers to integrate data 

management routines into their established workflows with minimal friction. Git can already 

interact with other local or remote repositories via standard or custom network transport 

protocols. DataLad implements support for additional services that require custom protocols, 

such as the Open Science Framework (OSF) (Hanke, Poldrack, et al., 2021). Git-annex 

readily provides access to a wide range of external data storage resources via a large set of 

protocols. DataLad builds on this support and adds, for example, more fine-grained access 

(e.g. direct access to individual components contained in an archive hosted on cloud storage) 

or specialized services, such as XNAT (http://www.xnat.org/). Efficient and seamless access 

to scientific data is implemented using the special remote protocol provided by git-annex 

(Hess, 2013), through which external tools, like DataLad, can provide custom transport 

functionality transparently to a user. With this approach, DataLad and other projects 

can jointly facilitate access to an ever-growing collection of resources (Hess, 2011) and 

overcome technological limitations of storage solutions, like file size or inode limits.

Metadata management.—Metadata are essential for scientific discovery, as they are 

routinely used to complete all data analyses. Metadata is the core concept behind Git 

and git-annex functioning: Git records and uses metadata about each change (author, 

date, description, original state, etc) for each commit. Git-annex manages metadata about 

content availability and allows to associate additional arbitrary key-value pairs to any 

annexed content. Files managed by git and git-annex can in turn be of standardized file 

formats comprised of data with rich metadata records. Moreover, entire repositories might 

conform to a standard (e.g., BIDS (Gorgolewski et al., 2016)) or provide a standardized 

dataset descriptor (e.g., Frictionless data package). To facilitate metadata availability and 

utility, DataLad provides an extensible framework for metadata extraction and aggregation. 

Metadata for each file (contained in the file or recorded by git and git-annex) or associated 

Halchenko et al. Page 4

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://crcns.org/
http://openfmri.org/
http://www.xnat.org/
https://frictionlessdata.io/data-package/


with the entire dataset can be extracted into a collection of machine-readable (JSON) 

records and aggregated across all contained sub-datasets. Such simple mechanism makes it 

possible to provide immediate access to metadata about all contained data within a larger 

super-dataset (such as datasets.datalad.org).

Overview of DataLad and its ecosystem

Design principles

Besides the free software nature and open processes of the DataLad project, the development 

of DataLad is guided by four principles to ensure its open and domain agnostic nature, to 

maximize the long-term utility of its datasets and to minimize users’ technical debt:

• Datasets and the files they comprise are the only two recognized entities

• A dataset is a Git repository with an optional annex

• Minimization of custom procedures and data structures

• Complete decentralization, with no required central server or service, but 

maximum interoperability with existing 3rd-party resources and infrastructure

In conjunction, these principles aim to reduce the risk of adoption for DataLad users. They 

foster the resilience of an ecosystem using DataLad datasets as a standard package format 

for any digital objects by avoiding any critical dependency on service deployments governed 

by central entities, and even on DataLad itself, for access to any resources managed with 

DataLad.

DataLad core

The datalad Python package provides both a Python library and a command line tool which 

expose core DataLad functionality to fulfill a wide range of decentralized RDM use cases 

for any domain. All DataLad commands operate on DataLad datasets. On a technical level, 

these datasets are Git repositories with additional metadata. On a conceptual level, they 

constitute an overlay structure that allows to version control files of any size, track and 

publish files in a distributed fashion, and record, publish, and execute actionable provenance 

of files and file transformations. Figure 1 summarizes key commands and concepts for local 

or distributed data and provenance management.

DataLad’s features can be flexibly integrated into standard scientific workflows. For 

example, by using the concept of dataset nesting to modularize the evolution of a research 

project, DataLad can fulfill the YODA principles for reproducible science (YODA Team, 

2021), and, with this simple paradigm, facilitate efficient access, composition, scalability, 

reuse, sharing, and reproducibility of results (see Figure 2). With core commands that aim to 

simplify operation of the underlying tools, DataLad makes RDM workflows more accessible 

to novices and experts alike. Importantly, compatibility with all Git/git-annex functionality is 

retained.

Halchenko et al. Page 5

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://datasets.datalad.org/


Extensions

Like Git and git-annex, DataLad core is a generic tool that is not specifically tuned to 

particular data types or use cases. It offers a robust foundation to build more specialized 

solutions on top of. DataLad extensions, stand-alone Python packages with additional 

DataLad functionality, extend DataLad with domain-focused or technology-specific features. 

A dedicated datalad-extension-template repository provides a starting point for creating new 

DataLad extensions. Some established extensions include:

• datalad-container (Meyer et al., 2021) to simplify management and use of 

Docker and Singularity containers typically containing complete computational 

environments

• datalad-crawler (Halchenko et al., 2021) to automate creation and updates of 

DataLad datasets from external resources

• datalad-neuroimaging (Hanke et al., 2020) to provide neuroimaging-specific 

procedures and metadata extractors

• datalad-osf (Hanke, Poldrack, et al., 2021) to collaborate using DataLad through 

the Open Science Framework (OSF)

• datalad-ukbiobank (Hanke, Waite, et al., 2021) obtain and BIDS-normalize 

imaging data releases of the UKBiobank

The same mechanism of extensions is used for rapid development of new functionality to 

later be moved into the core tool (e.g., datalad-metalad). The datalad-extensions repository 

provides a list of extensions and continuous integration testing of their released versions 

against released and development versions of the DataLad core.

External uses and integrations

DataLad can be used as an independent tool to access and manage data (see e.g. Wittkuhn 

& Schuck (2021), Gautheron et al. (2021), Gautheron (2021)) or as a core technology 

behind another tool or a larger platform (e.g. Far et al. (2021)). TemplateFlow (Ciric et 

al., 2021) uses DataLad for the management of neuroimaging templates. OpenNeuro uses 

DataLad for data logistics with data deposition to a public S3 bucket. CONP-PCNO adopts 

aforementioned features for modular composition and nesting to deliver a rich collection 

of datasets with public or restricted access to data. ReproMan integrates with DataLad 

to provide version control and data logistics. www.datalad.org/integrations.html provides a 

more complete list of DataLad usage and integration with other projects, and Hanke, Pestilli, 

et al. (2021) provides a systematic depiction of DataLad as a system for decentralized RDM 

used by a number of projects.

Documentation

Developer-focused technical documentation at docs.datalad.org, with detailed descriptions 

of the command line and Python interfaces, is automatically generated from the DataLad 

core repository. A comprehensive handbook (Wagner et al., 2021a) provides user-oriented 

documentation with an introduction to research data management, and numerous use case 

descriptions for novice and advanced users of all backgrounds (Wagner et al., 2021b).

Halchenko et al. Page 6

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/datalad/datalad-extension-template
https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-crawler
https://github.com/datalad/datalad-neuroimaging
https://github.com/datalad/datalad-osf/
https://github.com/datalad/datalad-ukbiobank/
https://github.com/datalad/datalad-metalad/
https://github.com/datalad/datalad-extensions/
http://templateflow.github.io/
http://openneuro.org/
https://github.com/CONP-PCNO/
http://reproman.repronim.org/
http://www.datalad.org/integrations.html
http://docs.datalad.org/
http://handbook.datalad.org/


Installation

The handbook provides installation instructions for all major operating systems. DataLad 

releases are distributed through PyPI, Debian, NeuroDebian, brew, and conda-forge. The 

datalad-installer (also available from PyPI) streamlines the installation of DataLad and 

its dependencies, in particular git-annex, across a range of deployment scenarios, such as 

continuous integration systems, or high-performance computing (HPC) environments.

Development

DataLad has been developed openly in a public repository (github.com/datalad/datalad) 

since its inception in 2013. At the time of this publication, the repository amassed over 13.5k 

commits, 2.5k merged PRs, and 2.3k closed (+700 open) issues from over 30 contributors. 

Issue tracker, labels, milestones, and pull requests are used to coordinate development. 

The development process of DataLad is not isolated from its foundational building blocks. 

For every new feature or bug fix the most appropriate software layer is determined to 

maximize the size of the benefitting user base and, importantly, also the associated developer 

audience. This strategy aims to achieve a robust integration with the larger open source 

software ecosystem, and simultaneously minimize the total technical debt carried solely by 

the DataLad development team. Consequently, DataLad development is tightly connected 

to and involves frequent communication with the git-annex project and its main developer 

Joey Hess (Hess & DataLad Team, 2016). To guarantee robust operation across various 

deployments, DataLad heavily utilizes continuous integration platforms (Appveyor, GitHub 

actions, and Travis CI) for testing DataLad core, building and testing git-annex (in a 

dedicated github.com/datalad/git-annex), and integration testing with DataLad extensions 

(datalad-extensions).

Contributions

DataLad is free and open source software and encourages unconstrained use and reuse 

in any context. Therefore, DataLad is released under DFSG- and OSI-compliant MIT/

Expat license. License terms for reused components in the code-base are provided in 

the COPYING file. The project aims to promote contributions rather than detached 

developments in forks and anyone is highly welcome to contribute to DataLad in any form 

under these terms. Technical and procedural guidelines for such contributions can be found 

in the CONTRIBUTING.md file shipped within DataLad’s source repository. Contributors 

are acknowledged on the project website, and also credited in the form of co-authorship in 

the Zenodo-based archival of software releases. All co-authors of this paper as well as the 

contributors acknowledged below have added to the project with code- or non-code-based 

contributions, and we thank past, present, and future contributors of this community for their 

involvement and work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Halchenko et al. Page 7

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://handbook.datalad.org/r.html?install
https://pypi.org/project/datalad
https://tracker.debian.org/pkg/datalad
http://neuro.debian.net/pkgs/datalad.html
https://formulae.brew.sh/formula/datalad
https://formulae.brew.sh/formula/datalad
https://anaconda.org/conda-forge/datalad
https://github.com/datalad/datalad-extensions/
https://github.com/datalad/git-annex
https://github.com/datalad/datalad-extensions/
https://en.wikipedia.org/wiki/Debian_Free_Software_Guidelines
https://opensource.org/osd
https://github.com/datalad/datalad/blob/master/COPYING
https://github.com/datalad/datalad/blob/master/CONTRIBUTING.md


Acknowledgements

We express our gratitude to Joey Hess for the development and maintenance of git-annex, and for years of 
productive collaboration with the DataLad team. We would like to extend our gratitude to Joey Zhou, Matteo 
Visconti di Oleggio Castello, John T. Wodder II, Satya Ortiz-Gagné, Jörg Stadler, Andrew Connolly, John Lee, 
Nolan Nichols, Elizabeth DuPre, Cécile Madjar, Gergana Alteva, Timo Dickscheid, Alex Waite for notable 
contributions to the codebase, bug reports, recommendations, and promotion of DataLad.

DataLad development was made possible thanks to support by NSF 1429999, 1912266 (PI: Halchenko) and 
BMBF 01GQ1411, 01GQ1905 (PI: Hanke) through the CRCNS program. It received significant contributions 
from ReproNim 1P41EB019936-01A1 (PI: Kennedy) and DANDI 5R24MH117295-02 (PIs: Ghosh, Halchenko) 
NIH projects. It also received contributions from the Canadian Open Neuroscience Platform and the NeuroHub 
(Co-PI: Poline) projects thanks in part to funding from a Brain Canada Platform Support Grant Competition 
Award in addition to funds and in-kind support from sponsor organizations, and from the Canada First Research 
Excellence Fund, awarded through the Healthy Brains, Healthy Lives initiative at McGill University, and the 
Brain Canada Foundation with support from Health Canada. This development was supported by the European 
Regional Development Fund (Project: Center for Behavioral Brain Sciences Magdeburg, Imaging Platform, PI: 
Hanke), the European Union’s Horizon 2020 research and innovation programme under grant agreements Human 
Brain Project (SGA3, H2020-EU.3.1.5.3, grant no. 945539; Co-Investigators: Eickhoff, Hanke), and Virtual Brain 
Cloud (H2020-EU.3.1.5.3, grant no. 826421; PI: Eickhoff), the Deutsche Forschungsgemeinschaft (DFG, German 
Research Foundation) under grants SFB 1451 (431549029; Co-PIs: Eickhoff, Hanke) and IRTG 2150 (269953372; 
Co-PIs: Eickhoff, Hanke).

References

Ciric R, Lorenz R, Thompson W, Goncalves M, MacNicol E, Markiewicz C, Halchenko Y, Ghosh S, 
Gorgolewski K, Poldrack R, & Esteban O (2021). TemplateFlow: A community archive of imaging 
templates and atlases for improved consistency in neuroimaging. 10.21203/rs.3.rs-264855/v1

Far MS, Stolz M, Fischer JM, Eickhoff SB, & Dukart J (2021). JTrack: A digital biomarker platform 
for remote monitoring in neuropsychiatric and psychiatric diseases. CoRR, abs/2101.10091. https://
arxiv.org/abs/2101.10091

Gautheron L (2021). The LAAC superdataset: Datasets of infant day-long recordings. https://
github.com/LAAC-LSCP/datasets

Gautheron L, Rochat N, & Cristia A (2021). Managing, storing, and sharing long-form recordings and 
their annotations. 10.31234/osf.io/w8trm

Gorgolewski KJ, Auer T, Calhoun VD, Craddock RC, Das S, Duff EP, Flandin G, Ghosh SS, Glatard 
T, Halchenko YO, Handwerker DA, Hanke M, Keator D, Li X, Michael Z, Maumet C, Nichols 
BN, Nichols TE, Pellman J, … Poldrack RA (2016). The brain imaging data structure, a format 
for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1). 10.1038/
sdata.2016.44

Halchenko Y, Hanke M, Meyer K, Olson T, Chaselgrove, & Poldrack B (2021). Datalad-crawler: 
DataLad extension for crawling external resources. Zenodo. 10.5281/ZENODO.2558512

Hanke M, Halchenko Y, Poldrack B, & Meyer K (2020). datalad-neuroimaging: DataLad extension for 
neuroimaging. Zenodo. 10.5281/ZENODO.3874225

Hanke M, Pestilli F, Wagner AS, Markiewicz CJ, Poline J-B, & Halchenko YO (2021). In defense of 
decentralized research data management. Neuroforum, 27(1). 10.1515/nf-2020-0037

Hanke M, Poldrack B, Wagner AS, Huijser D, Sahoo AK, Boos M, Steinkamp SR, Guenther N, & 
Appelhoff S (2021). datalad-osf: DataLad extension for integration with OSF.io. Zenodo. 10.5281/
ZENODO.3900277

Hanke M, Waite LK, Poline J-B, & Hutton A (2021). DataLad extension for working with the 
UKbiobank (Version 0.3.3) [Computer software]. Zenodo. 10.5281/zenodo.4773629

Hess J (2011). Git-annex: Special remotes. https://git-annex.branchable.com/special_remotes/

Hess J (2013). Git-annex: External special remote protocol. https://git-annex.branchable.com/design/
external_special_remote_protocol/

Hess J, & DataLad Team. (2016). Git-annex: DataLad project - bug and todo report. https://git-
annex.branchable.com/projects/datalad

Halchenko et al. Page 8

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
http://www.nsf.gov/awardsearch/showAward?AWD_ID=1912266
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5147
https://projectreporter.nih.gov/project_info_details.cfm?aid=8999833&map=y
https://projectreporter.nih.gov/project_info_description.cfm?aid=9981835&icde=53349087
https://cordis.europa.eu/project/id/945539
https://cordis.europa.eu/project/id/945539
https://cordis.europa.eu/project/id/826421
https://cordis.europa.eu/project/id/826421
https://gepris.dfg.de/gepris/projekt/431549029
https://gepris.dfg.de/gepris/projekt/269953372
https://gepris.dfg.de/gepris/projekt/269953372
https://arxiv.org/abs/2101.10091
https://arxiv.org/abs/2101.10091
https://github.com/LAAC-LSCP/datasets
https://github.com/LAAC-LSCP/datasets
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/design/external_special_remote_protocol/
https://git-annex.branchable.com/design/external_special_remote_protocol/
https://git-annex.branchable.com/projects/datalad
https://git-annex.branchable.com/projects/datalad


Kenlon S (2016). How to manage binary blobs with git. https://opensource.com/life/16/8/how-manage-
binary-blobs-git-part-7

Meyer K, Hanke M, Halchenko Y, Poldrack B, & Wagner A (2021). datalad-container: DataLad 
extension for working with computational containers. Zenodo. 10.5281/ZENODO.2431914

Wagner AS (2020). The DataLad Handbook: Cheatsheet. http://handbook.datalad.org/r.html?
cheatsheet

Wagner AS, Waite LK, Meyer K, Heckner MK, Kadelka T, Reuter N, Waite AQ, Poldrack B, 
Markiewicz CJ, Halchenko YO, Vavra P, Chormai P, Poline J-B, Paas LK, Herholz P, Mochalski 
LN, Kraljevic N, Wiersch L, Hutton A, … Hanke M (2021a). The DataLad Handbook. Zenodo. 
10.5281/ZENODO.4495560

Wagner AS, Waite LK, Meyer K, Heckner MK, Kadelka T, Reuter N, Waite AQ, Poldrack B, 
Markiewicz CJ, Halchenko YO, Vavra P, Chormai P, Poline J-B, Paas LK, Herholz P, Mochalski 
LN, Kraljevic N, Wiersch L, Hutton A, … Hanke M (2021b). The DataLad Handbook: Use Cases. 
http://handbook.datalad.org/usecases/intro.html

Wilkinson MD, Dumontier M, Aalbersberg Ij. J., Appleton G, Axton M, Baak A, Blomberg N, Boiten 
J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon 
O, Edmunds S, Evelo CT, Finkers R, … Mons B (2016). The FAIR guiding principles for scientific 
data management and stewardship. Scientific Data, 3(1). 10.1038/sdata.2016.18

Wittkuhn L, & Schuck NW (2021). Dynamics of fMRI patterns reflect sub-second activation 
sequences and reveal replay in human visual cortex. Nature Communications, 12(1). 10.1038/
s41467-021-21970-2

YODA Team. (2021). YODA: README. https://github.com/myyoda/myyoda

Halchenko et al. Page 9

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7
https://opensource.com/life/16/8/how-manage-binary-blobs-git-part-7
http://handbook.datalad.org/r.html?cheatsheet
http://handbook.datalad.org/r.html?cheatsheet
http://handbook.datalad.org/usecases/intro.html
https://github.com/myyoda/myyoda


Figure 1: 
Schematic overview of a dataset, datasets nesting, and selected commands for content 

and dataset management. A more comprehensive cheatsheet is provided in the DataLad 

handbook (Wagner, 2020).

Halchenko et al. Page 10

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
DataLad datasets are reusable modular components, which can be nested to establish a 

complete provenance trail all the way from a publication to the original data. Various access 

schemes to datasets and data are provided, and further extensibility is a key architectural 

property.

Halchenko et al. Page 11

J Open Source Softw. Author manuscript; available in PMC 2024 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Summary
	Statement of Need
	Why Git and git-annex?
	What does DataLad add to Git and git-annex?
	Easy to use modularization.
	Re-executable annotation of changes.
	Targeted interfaces and interoperability adapters.
	Metadata management.


	Overview of DataLad and its ecosystem
	Design principles
	DataLad core
	Extensions
	External uses and integrations
	Documentation
	Installation
	Development
	Contributions

	References
	Figure 1:
	Figure 2:

