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Abstract
BACKGROUND 
The quality of a radiotherapy plan often depends on the knowledge and expertise 
of the plan designers.

AIM 
To predict the uninvolved liver dose in stereotactic body radiotherapy (SBRT) for 
liver cancer using a neural network-based method.

METHODS 
A total of 114 SBRT plans for liver cancer were used to test the neural network 
method. Sub-organs of the uninvolved liver were automatically generated. Correl-
ations between the volume of each sub-organ, uninvolved liver dose, and neural 
network prediction model were established using MATLAB. Of the cases, 70% 
were selected as the training set, 15% as the validation set, and 15% as the test set. 
The regression R-value and mean square error (MSE) were used to evaluate the 
model.
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RESULTS 
The volume of the uninvolved liver was related to the volume of the corresponding sub-organs. For all sets of R-
values of the prediction model, except for Dn0 which was 0.7513, all R-values of Dn10-Dn100 and Dnmean were > 0.8. The 
MSE of the prediction model was also low.

CONCLUSION 
We developed a neural network-based method to predict the uninvolved liver dose in SBRT for liver cancer. It is 
simple and easy to use and warrants further promotion and application.

Key Words: Dose prediction; Sub-organ; Machine learning; Stereotactic body radiotherapy; Liver cancer
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Core Tip: In this study, a neural network prediction model for the uninvolved liver dose was established using the MATLAB 
neural network application. The regression R-value and mean square error (MSE) were used to evaluate the model. All R-
values for Dn10-Dn100 and Dnmean were > 0.8, except for Dn0, which was 0.7513, respectively. The MSE of the prediction model 
was also very low.
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INTRODUCTION
Radiation therapy (RT) is an important cancer treatment method required by approximately 70% of patients with cancer
[1]. A radiotherapy plan is designed based on a reverse plan design method, namely, the doctor gives the prescription 
dose and dose limit data for the relevant organ(s) at risk (OAR)[2]. Then, this information is used to optimize and set 
constraints for the target area and relevant normal tissues. Next, the optimization algorithm is used in the RT planning 
system to obtain a therapy plan that meets the clinical requirements. Plan optimization is one of the most important steps 
in designing a radiotherapy plan, and selecting the optimization goals and constraints is the most critical step, as it 
directly affects the quality performance of the final plan[3]. However, the goals and constraints are unknown when the 
clinical radiotherapy plan is designed[4-6]. Planners usually refer to the goals provided by doctors based on general 
population data, the Radiation Therapy Oncology Group guidelines, or clinical statistical specifications. These reference 
goals have universal applicability, but for some patients, the optimal conditions are not the same owing to the uniqueness 
of their anatomical structures. Therefore, meeting only universal target requirements is insufficient. The primary clinical 
solution to this issue is to continuously modify the statistical protocol-based goals or constraints by relying on manual 
experience, optimizing the results, and then re-evaluating until a new optimal result is determined. However, this 
manual trial and error method causes the quality of the plan to be completely dependent on the experience of the plan 
designer, resulting in large discrepancies in radiotherapy plan quality among institutions and planners[7-9]. To address 
this challenge, planners frequently modify statistical protocol-based goals or constraints through manual attempt, 
optimization of results, and reassessment until an optimal outcome is achieved. However, this approach renders the 
quality of the plan solely dependent on the planner's experience, leading to significant variations in radiotherapy plan 
quality across institutions and planners.

Recently, OAR dose prediction has gained widespread application in RT[10-13], owing to its numerous advantages. 
One of its primary benefits is the ability to forecast the quality of RT plans by evaluating and identifying suboptimal 
plans. This predictive capability enables the identification of potential issues or inefficiencies in an RT plan before it is 
executed, allowing adjustments and optimizations to be made. Consequently, this leads to an improvement in the overall 
plan quality, ensuring that the treatment is as effective and safe as possible.

Furthermore, OAR dose forecasting plays a crucial role in enhancing quality consistency across RT planning. By 
minimizing variations among planners with diverse levels of experience[14-16], this technique ensures that RT plans are 
standardized and aligned with best practices. This reduction in variability is particularly important in complex cases 
where the margin of error is minimal and consistent high-quality planning is essential for achieving optimal patient 
outcomes. Ultimately, the application of OAR dose prediction in RT not only improves plan quality but also contributes 
to more reliable and effective treatments for patients.

Stereotactic body radiotherapy (SBRT) has emerged as a new radiotherapy technology that delivers high doses of 
radiation to the target area in fewer fractions[17,18]. SBRT accurately transfers a large dose of multiple beams to the target 
tumor within one to five fractions owing to technical progress, respiratory movement management, and daily image 
guidance[19-21]. A short treatment period benefits patients by reducing interference with other treatment measures. Our 
practice recommends SBRT for patients with unresectable primary and metastatic liver cancer; however, the SBRT 
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treatment strategy is highly individualized.
To meet the individualized needs of patients, reduce variations in treatment dosage, and enhance patient treatment 

safety, we established a novel predictive model for the uninvolved liver during liver cancer SBRT based on a neural 
network. This model was derived from our self-developed dose-prediction method, which is protected by Chinese patent 
ZL201610529290.8. This method aims to minimize the impact of subjective factors on plan quality and provide person-
alized SBRT plans for patients.

MATERIALS AND METHODS
Patient data
A total of 114 patients with liver cancer who underwent liver biopsy between January 2017 and December 2023 were 
selected for retrospective analysis. When splitting the relatively small dataset into training, validation, and testing sets, 
we utilized stratified random sampling to maintain consistency in basic patient characteristics across the sets, thereby 
enhancing the reliability of results. Specifically, 70% of the 114 SBRT plans were randomly assigned to the training set, 
15% to the validation set, and the remaining 15% to the test set using the MATLAB neural net-fitting application. 
Furthermore, to address concerns regarding reliability with a small dataset, we ensured that the process was repeated 
multiple times, and the average results were considered, strengthening the stability of our findings. The inclusion criteria 
were designed to ensure a homogeneous cohort comprising individuals who: (1) Underwent preoperative imaging with 
dual-phase contrast-enhanced computed tomography (CT); (2) Had no prior history of RT or chemotherapy; (3) A 
definitive diagnosis of malignant liver tumor via postoperative pathological analysis accompanied by comprehensive 
clinical documentation; and (4) Were 18-80 years of age, with no contraindications for RT, and with a projected lifespan 
exceeding three months. The exclusion criteria rigorously screened cases that might compromise the validity of the study, 
including: (1) CT scans exhibiting severe motion artifacts or overt noise, precluding accurate image analysis; (2) Tumors 
measuring less than 1.0 cm in diameter, which may not fully reflect the population of interest; (3) Coexisting malignancies 
or additional tumor conditions; and (4) Pregnant or lactating females, as well as those who declined to employ adequate 
contraceptive measures, thereby presenting ethical concerns or potential confounding factors.

Prescription dose and limiting requirements
The gross tumor volume (GTV) was determined based on the tumor displayed on enhanced CT and magnetic resonance 
imaging. The internal target volume (ITV) was defined as the sum of multiphase GTVs. The planning target volume 
(PTV) included the ITV, with a margin of 3-5 mm. The design plan specified the prescribed dose in the isodose line 
containing > 95% of the PTV, and the PTV prescription dose was 25-50 Gy, divided into five fractions. The mean dose to 
the unaffected liver was 15 Gy[22,23].

SBRT plans
All SBRT plans were generated using a 7- or 9-coplanar field intensity-modulated RT technique with 6-MV photon 
beams. All planning was performed using the Eclipse treatment planning system (TPS) (Varian Medical Systems, Palo 
Alto, CA, United States). The planning parameters were to avoid the uninvolved liver as much as possible and conform 
the dose to the target volumes within the OAR constraints. Individualize the number and location of radiation fields to 
minimize the liver exposure volume and dose.

Deriving the sub-organs from the uninvolved liver
The PTV was expanded externally to a plurality of rings (ring1-ringn) with a width of 0.5 cm. Ring1-ringn and different 
uninvolved liver intersection regions (ring1-ringn∩uninvolved liver) were used as independent sub-organs; ringn

∩uninvolved liver was defined as a sub-organ (e.g., ring1∩uninvolved liver was defined as sub-organ1). The total number 
of sub-organs was maintained at 20. The intersecting regions for sub-organ1-sub-organ of the uninvolved liver are shown 
in Figure 1. The sub-organ volume was normalized to improve data analysis. The normalized sub-organ volume 
(Vnsub-organ) was calculated as the sub-organ volume divided by the total uninvolved liver volume.

The red line indicates PTV, the yellow shadow indicates the sub-organ1, the green shadow indicates the sub-organ2, 
the pink shadow indicates the sub-organ3, the sky blue shadow indicates the sub-organ4, the blue shadow indicates the 
sub-organ5.

Preprocessing
To eliminate the effects of different prescription doses, the uninvolved liver dose was normalized using the following 
equation: Dnx = Dx (Dx: Dose of x% of the uninvolved liver volume)/prescription dose of the PTV (Dprescription). The neural 
network prediction model was established based on the correlations between Vnsub-organ, Dn0-Dn100, and the normalized mean 
dose (Dnmean) of the uninvolved liver, with Vnsub-OAR as the independent variable and Dn0-Dn100 and Dnmean as the dependent 
variables. The correlation between DNX and VN was also analyzed.

Neural network model
Neural networks, inspired by biological systems, are computational models comprising interconnected processing units 
(neurons) with weighted connections. They learn complex input-output relationships by adjusting the weights. In this 
study, we employed a multilayer feedforward neural network to capture the nonlinear relationships between input 
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Figure 1 Sub-organ of the uninvolved liver. The red line indicates planning target volume, the yellow shadow indicates the sub-organ1, the green shadow 
indicates the sub-organ2, the pink shadow indicates the sub-organ3, the sky blue shadow indicates the sub-organ4, the blue shadow indicates the sub-organ5.

features (e.g., volumes of unaffected liver sub-organs) and outputs (e.g., dose to the uninvolved liver). The advantages of 
neural networks include their nonlinear modeling capability, adaptability for solving complex prediction problems, and 
universal approximation capability. However, they also have disadvantages, such as computational complexity, risk of 
overfitting, and lack of interpretability. In this study, we leveraged nonlinear modeling and the adaptability of neural 
networks to predict the dose to the uninvolved liver in SBRT planning, overcoming the limitations of traditional linear 
models. In our study, we set up a three-layer neural network in which the number of neurons in the first two hidden 
layers was 10, and the number of neurons in the last output layer was 1. We used the Rectified Linear Unit activation 
function to mitigate the vanishing gradient problem and accelerate training. The cross-entropy loss function was used to 
evaluate the prediction accuracy, and the Levenberg-Marquardt algorithm was employed for training to optimize the 
network parameters. Given the constraints of the small dataset, the hyperparameter tuning process was conducted 
rigorously and accurately. The dataset was divided into training, validation, and test sets. The validation set was used to 
monitor the performance of the model during training to stop promptly to prevent data overfitting. The prediction model 
was established using the MATLAB neural net-fitting application, with the best results selected from 100 training 
iterations. A five-fold cross-validation method was used to ensure good generalization and model stability. The MATLAB 
application was used for the automatic generation and reading of sub-organ volumes and doses.

Prediction accuracy evaluation
The regression R-value measures the correlation between the outputs and targets. An R-value of 1 indicates a perfect 
relationship, whereas 0 indicates a random relationship. The mean square error (MSE) is the average squared difference 
between the outputs and targets, where lower values are better and 0 means no error. The R-values and MSE were 
evaluated using a neural network prediction model.

Statistical analysis
Pearson’s correlation test was performed to analyze the correlation between Dnx and Vnsub-organ using SPSS software version 
19.0.

RESULTS
The Vnsub-organ was correlated with the Dn0-Dn100 and Dnmean of the uninvolved liver (P < 0.05), and prediction models for Dn0-
Dn100 and Dnmean were established based on this correlation. Table 1 shows the correlation coefficients between Dn0-Dn100 and 
Dnmean for the uninvolved liver and Vnsub-organs.

Figure 2A illustrates the regression diagram of the neural network prediction model for Dn0-Dn50. The figure 
demonstrates a strong positive correlation between the predicted and actual doses, with R-values indicating a good fit for 
the prediction model across different dose levels.

Figure 2B shows the regression diagrams for Dn60-Dn100 and Dnmean. Similarly, there was a close agreement between the 
predicted and actual doses, with all R-values > 0.8, indicating the reliability of the prediction model in estimating the 
mean dose and different dose levels.

The R-values of the neural network prediction models are listed in Table 2. For all R-values of the prediction model, the 
highest R-value was 0.9274 for Dn40, and the lowest R-value was 0.7513 for Dn0. The R-values of Dn10-Dn100 and Dnmean were > 
0.8.

The MSE values for the neural network prediction model are listed in Table 3. The MSE of the prediction model was 
also low (0.0004-0.0080).

Figure 2C shows the predicted and actual plots of uninvolved liver doses. The pink line represents the doses predicted 
by the neural network model and the blue line indicates the planned target doses. The close alignment between the two 
lines validated the accuracy of the prediction model across different dose levels, further emphasizing its potential for 
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Table 1 Correlation coefficients between Dn0-Dn100 and Dnmean of the uninvolved liver and the Vnsub-organ

Dose Vnsub-organ1 Vnsub-organ2 Vnsub-organ3 Vnsub-organ4 Vnsub-organ5 P value

Dn0 0.529b 0.414b 0.332b 0.276b 0.238a P < 0.01

Dn10 0.689b 0.694b 0.674b 0.662b 0.654b P < 0.01

Dn20 0.653b 0.704b 0.702b 0.706b 0.710b P < 0.01

Dn30 0.587b 0.667b 0.686b 0.706b 0.721b P < 0.01

Dn40 0.542b 0.630b 0.664b 0.693b 0.718b P < 0.01

Dn50 0.533b 0.608b 0.641b 0.670b 0.695b P < 0.01

Dn60 0.563b 0.628b 0.654b 0.676b 0.697b P < 0.01

Dn70 0.605b 0.642b 0.653b 0.664b 0.676b P < 0.01

Dn80 0.653b 0.670b 0.669b 0.668b 0.672b P < 0.01

Dn90 0.664b 0.669b 0.663b 0.652b 0.649b P < 0.01

Dn100 0.539b 0.466b 0.417b 0.378b 0.354b P < 0.01

Dnmean 0.675b 0.725b 0.732b 0.742b 0.752b P < 0.01

aP < 0.05. This suggests that the observed correlation is statistically significant at the 5% level, meaning there is less than a 5% chance of observing such 
results if the null hypothesis were true.
bP < 0.01, indicating a higher level of statistical significance. This implies that the observed correlation is statistically significant at the 1% level, with less 
than a 1% chance of occurring under the null hypothesis.
Pearson’s correlation test was used to analyze the correlation. The P value provides a quantitative measure of the statistical significance of the observed 
results.

Table 2 R-value of the neural network prediction model

Dose Training Verification Test All

Dn0 0.8792 0.6458 0.6207 0.7513

Dn10 0.9209 0.8115 0.8126 0.8813

Dn20 0.9101 0.8509 0.8720 0.8918

Dn30 0.9261 0.8510 0.9561 0.9139

Dn40 0.9674 0.8915 0.8697 0.9274

Dn50 0.8319 0.8146 0.8629 0.8263

Dn60 0.9252 0.8278 0.8537 0.8858

Dn70 0.9162 0.8332 0.8924 0.9010

Dn80 0.8397 0.7873 0.7825 0.8199

Dn90 0.8599 0.8138 0.8079 0.8391

Dn100 0.9715 0.7300 0.8336 0.8606

Dnmean 0.9088 0.9498 0.7943 0.9006

clinical applications.

DISCUSSION
The primary goal of RT is to protect the OAR as much as possible while ensuring that the target area reaches the 
prescribed dose[24,25]. In clinical applications, RT requires professionals to design treatment plans before im-
plementation[26]. Completing the plan requires the planner to pass the TPS according to the target area, OAR designated 
by the doctor, and the prescription dose as well as multiple adjustments to optimize the target and constraint conditions 
for the optimal plan. After the design is completed, the doctor checks the dose distribution, considers whether the plan 
requires improvement, and ensures that maximum treatment gain ratios are achieved[27]. However, the quality of an RT 
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Table 3 Mean square error of the neural network prediction model

Dose MSE

Dn0 0.0071

Dn10 0.0066

Dn20 0.0080

Dn30 0.0075

Dn40 0.0035

Dn50 0.0046

Dn60 0.0022

Dn70 0.0012

Dn80 0.0006

Dn90 0.0004

Dn100 0.0006

Dnmean 0.0019

MSE: Mean square error.

plan often depends on the knowledge and expertise of the plan designers, making it difficult to guarantee high quality. 
Clinical plans are subject to uniform norms and standards, making it difficult to design plans that meet individual patient 
needs and clinical norms[13]. Using our prediction model, the patient’s dose can be predicted before designing the plan. 
The model assists the planner by performing quality assessments during the design phase and determining whether the 
plan meets dosimetry verification and quality control requirements. Consequently, predicting the OAR dose before 
designing a plan can automatically adjust plans to meet individual patient needs and provide a basis for RT automation
[28,29]. The value of predicting the OAR dose before planning lies in the ability to evaluate plan quality[30,31].

Numerous studies have explored the use of machine-learning techniques in RT planning, particularly for dose 
prediction. However, few studies have specifically focused on predicting the dose to the uninvolved liver during SBRT 
for liver cancer. Our study establishing a prediction model based on neural network methodology, which has been 
granted a Chinese invention patent.

This study is the first to find a correlation between the Vnsub-organ, Dn0-Dn100, and Dnmean of the uninvolved liver and 
establish a prediction model based on the neural network method. This method has been granted a Chinese invention 
patent. For the prediction model, except for Dn0, the R-values for Dn10-Dn100 and Dnmean were > 0.8. The MSE value of the 
prediction model was also low, which shows that the method used in our study can still provide a reference for high- and 
low-dose areas that are difficult to predict. Therefore, this study model was accurate and reliable for predicting the 
uninvolved liver dose, demonstrating its potential for quality assurance in RT plans.

Compared with other studies in the field[32-34], our prediction model offers several advantages. First, it serves as a 
valuable quality assurance tool for RT plans, enabling precise control of individualized OAR doses. Specifically, a 
threshold value can be established for both the individual OAR-predicted and TPS values, determining the maximum 
acceptable difference between the predicted and planned doses. This approach minimizes the influence of subjective 
factors and ensures that the RT plan meets the required quality standards. Second, our method of establishing a 
predictive model is both simple and reliable. It utilizes the open-source MATLAB software and employs a dataset 
partitioned into five folds to prevent overfitting. This ensures a reliable estimate of the final model’s forecast accuracy 
when trained with a complete dataset. Furthermore, the self-written MATLAB application program can automatically 
generate sub-organs for each OAR and extract relevant data, such as Vnsub-organ, Dn0-Dn100, and Dnmean, significantly enhancing 
efficiency and reducing time costs compared with manual TPS use. The entire process is automated, eliminating the need 
for manual intervention and further improving efficiency. Manual TPS use can be time-consuming and labor-intensive, 
especially when dealing with large datasets, which may hinder the widespread adoption of this research method. 
Therefore, our predictive modeling approach offers a simple, reliable, and cost-effective solution without the need to 
purchase additional TPS software modules.

Our study also had some limitations. First, all included patients were recruited from a single institution. To validate the 
generalizability of the model, further research incorporating multiple centers and a larger dataset of SBRT plans for liver 
cancer is necessary. If a sufficiently extensive dataset is obtained, a refined neural network model that can predict the 
OAR dose in liver cancer SBRT plans with enhanced accuracy can be developed. Second, the method used to establish 
predictive models in this study cannot currently be extended to other tumors, so the participation of additional tumor 
centers is required. Although data augmentation techniques were not directly utilized in this study to artificially increase 
the dataset size, we recognized their potential value in machine-learning applications. Therefore, we plan to explore the 
use of data augmentation in future studies to enhance the predictive accuracy and generalizability of our models for RT 
planning.
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Figure 2 The neural network prediction model. A: Regression diagram of Dn0-Dn50 for the neural network prediction model; B: Regression diagram of Dn60-D
n100 and Dnmean for the neural network prediction model; C: The predicted value by the neural network model and the actual planned value. Pink is the predicted value 
of the neural network model; blue is the target planned value. Dnx = Dx (Dx: Dose of x% uninvolved liver volume)/prescription dose of planning target volume 
(Dprescription).

In summary, our neural-network-based prediction model has great potential for improving the quality and personal-
ization of RT programs for patients with liver cancer. By predicting the dose to the liver before planning, we can ensure 
that patients receive the highest possible therapeutic benefit while minimizing the risk of complications. Although our 
study has certain limitations, it provides valuable references for research in this important field and highlights the 
potential of machine learning in RT planning.

CONCLUSION
We developed a method based on machine learning for predicting the OAR dose in an SBRT plan for liver cancer. This 
method is simple, easy to use, and demonstrates promising results, warranting further investigation and potential clinical 
application.
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