Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Aug 15;278(Pt 1):243–248. doi: 10.1042/bj2780243

Does cyclic guanosine monophosphate mediate noradrenaline-induced inhibition of islet insulin secretion stimulated by glucose and palmitate?

E Vara 1, J Tamarit-Rodriguez 1
PMCID: PMC1151474  PMID: 1652940

Abstract

Noradrenaline inhibits in rat islets the stimulation of insulin secretion induced by glucose and its potentiation by palmitate, but the signalling system responsible remains unknown. We have tested the hypothesis that noradrenaline-induced inhibition is mediated by an elevation of cyclic GMP (cGMP) levels. The analogue 8-Br-cGMP decreases dose-dependently the potentiation by palmitate of glucose-induced insulin secretion, whereas it only slightly affects the proper effect of glucose. Similarly, it abolishes palmitate acceleration of glucose-induced 45Ca2+ uptake without modifying the sugar effect. Finally, 8-Br-cGMP completely inhibits the stimulation of the lipid synthesis de novo induced by palmitate, but not that caused by glucose alone. On the other hand, noradrenaline increases dose-dependently islet cGMP content, with alpha 2-adrenergic specificity. As noradrenaline-induced elevation of cGMP is sensitive to pertussis toxin, it probably results from alpha 2-adrenoceptor activation of islet guanylate cyclase through a guanine nucleotide regulatory protein. It is concluded that the elevated cGMP levels mediate noradrenaline inhibition of lipid synthesis de novo, and hence of acceleration by palmitate of 45Ca2+ uptake and insulin secretion in the presence of glucose.

Full text

PDF
248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahrén B. ANF inhibits glucose-stimulated insulin secretion in mouse and rat. Am J Physiol. 1988 Nov;255(5 Pt 1):E579–E582. doi: 10.1152/ajpendo.1988.255.5.E579. [DOI] [PubMed] [Google Scholar]
  2. Anand-Srivastava M. B., Srivastava A. K., Cantin M. Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein. J Biol Chem. 1987 Apr 15;262(11):4931–4934. [PubMed] [Google Scholar]
  3. Antoni F. A., Dayanithi G. Guanosine 3':5'cyclic monophosphate and activators of guanylate cyclase inhibit secretagogue-induced corticotropin release by rat anterior pituitary cells. Biochem Biophys Res Commun. 1989 Feb 15;158(3):824–830. doi: 10.1016/0006-291x(89)92796-4. [DOI] [PubMed] [Google Scholar]
  4. Bouman P. R., Wolters G. H., Konijnendijk W. Insulin secretion and cyclic adenosine 3', 5'-monophosphate levels in pancreatic islets of fed and fasted rats. Time course and dose kinetics during glucose stimulation. Diabetes. 1979 Feb;28(2):132–140. doi: 10.2337/diab.28.2.132. [DOI] [PubMed] [Google Scholar]
  5. Gagerman E., Hellman B. Islet contents of cyclic 3',5'-guanosine monophosphate under conditions which affect the cyclic 3',5'-adenosine monophosphate. Acta Endocrinol (Copenh) 1977 Oct;86(2):344–354. doi: 10.1530/acta.0.0860344. [DOI] [PubMed] [Google Scholar]
  6. Garbers D. L. Guanylate cyclase, a cell surface receptor. J Biol Chem. 1989 Jun 5;264(16):9103–9106. [PubMed] [Google Scholar]
  7. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  8. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose on 45Ca2+ uptake by pancreatic islets as studied with the lanthanum method. J Physiol. 1976 Jan;254(3):639–656. doi: 10.1113/jphysiol.1976.sp011250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Howell S. L., Montague W. Regulation of guanylate cyclase in guinea-pig islets of Langerhans. Biochem J. 1974 Aug;142(2):379–384. doi: 10.1042/bj1420379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jaiswal N., Sharma R. K. Dual regulation of adenylate cyclase and guanylate cyclase: alpha 2-adrenergic signal transduction in adrenocortical carcinoma cells. Arch Biochem Biophys. 1986 Sep;249(2):616–619. doi: 10.1016/0003-9861(86)90041-x. [DOI] [PubMed] [Google Scholar]
  11. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  12. Laychock S. G. Alpha 2-adrenoceptor stimulation affects total glucose utilization in isolated islets of Langerhans. Mol Pharmacol. 1987 Aug;32(1):241–248. [PubMed] [Google Scholar]
  13. Laychock S. G., Bilgin S. Alpha 2-adrenergic inhibition of pancreatic islet glucose utilization is mediated by an inhibitory guanine nucleotide regulatory protein. FEBS Lett. 1987 Jun 22;218(1):7–10. doi: 10.1016/0014-5793(87)81007-4. [DOI] [PubMed] [Google Scholar]
  14. Laychock S. G. Effects of guanosine 3',5'-monophosphate on glucose utilization in isolated islets of Langerhans. Endocrinology. 1987 Feb;120(2):517–524. doi: 10.1210/endo-120-2-517. [DOI] [PubMed] [Google Scholar]
  15. Laychock S. G. Evidence for guanosine 3',5'-monophosphate as a putative mediator of insulin secretion from isolated rat islets. Endocrinology. 1981 Apr;108(4):1197–1205. doi: 10.1210/endo-108-4-1197. [DOI] [PubMed] [Google Scholar]
  16. Laychock S. G. Mediation of insulin release by cGMP and cAMP in a starved animal model. Mol Cell Endocrinol. 1983 Oct;32(2-3):157–170. doi: 10.1016/0303-7207(83)90079-5. [DOI] [PubMed] [Google Scholar]
  17. Malaisse W. J., Malaisse-Lagae F. The role of cyclic AMP in insulin release. Experientia. 1984 Oct 15;40(10):1068–1074. doi: 10.1007/BF01971453. [DOI] [PubMed] [Google Scholar]
  18. Morgan N. G., Montague W. Studies on the mechanism of inhibition of glucose-stimulated insulin secretion by noradrenaline in rat islets of Langerhans. Biochem J. 1985 Mar 1;226(2):571–576. doi: 10.1042/bj2260571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nakashima S., Tohmatsu T., Hattori H., Okano Y., Nozawa Y. Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun. 1986 Mar 28;135(3):1099–1104. doi: 10.1016/0006-291x(86)91041-7. [DOI] [PubMed] [Google Scholar]
  20. Neer E. J., Clapham D. E. Roles of G protein subunits in transmembrane signalling. Nature. 1988 May 12;333(6169):129–134. doi: 10.1038/333129a0. [DOI] [PubMed] [Google Scholar]
  21. Otsuki M., Okabayashi Y., Ohki A., Suehiro I., Oka T., Baba S. Dibutyryl guanosine 3',5'-monophosphate inhibits cholecystokinin potentiation of insulin release in the isolated perfused rat pancreas. Endocrinology. 1986 Jul;119(1):244–249. doi: 10.1210/endo-119-1-244. [DOI] [PubMed] [Google Scholar]
  22. Tamarit-Rodríguez J., Vara E., Tamarit J. Starvation-induced changes of palmitate metabolism and insulin secretion in isolated rat islets stimulated by glucose. Biochem J. 1984 Jul 15;221(2):317–324. doi: 10.1042/bj2210317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Turtle J. R., Kipnis D. M. An adrenergic receptor mechanism for the control of cyclic 3'5' adenosine monophosphate synthesis in tissues. Biochem Biophys Res Commun. 1967 Sep 7;28(5):797–802. doi: 10.1016/0006-291x(67)90388-9. [DOI] [PubMed] [Google Scholar]
  24. Ullrich S., Wollheim C. B. GTP-dependent inhibition of insulin secretion by epinephrine in permeabilized RINm5F cells. Lack of correlation between insulin secretion and cyclic AMP levels. J Biol Chem. 1988 Jun 25;263(18):8615–8620. [PubMed] [Google Scholar]
  25. Ullrich S., Wollheim C. B. Islet cyclic AMP levels are not lowered during alpha 2-adrenergic inhibition of insulin release. J Biol Chem. 1984 Apr 10;259(7):4111–4115. [PubMed] [Google Scholar]
  26. Vara E., Fernández-Martín O., García C., Tamarit-Rodríguez J. Palmitate dependence of insulin secretion, "de novo" phospholipid synthesis and 45Ca2+-turnover in glucose stimulated rat islets. Diabetologia. 1988 Sep;31(9):687–693. doi: 10.1007/BF00278753. [DOI] [PubMed] [Google Scholar]
  27. Vara E., Tamarit-Rodriguez J. Glucose stimulation of insulin secretion in islets of fed and starved rats and its dependence on lipid metabolism. Metabolism. 1986 Mar;35(3):266–271. doi: 10.1016/0026-0495(86)90212-x. [DOI] [PubMed] [Google Scholar]
  28. Vara E., Tamarit-Rodriguez J. Norepinephrine inhibits islet lipid metabolism, 45Ca2+ uptake, and insulin secretion. Am J Physiol. 1989 Dec;257(6 Pt 1):E923–E929. doi: 10.1152/ajpendo.1989.257.6.E923. [DOI] [PubMed] [Google Scholar]
  29. Verspohl E. J., Ammon H. P. Atrial natriuretic peptide (ANP) acts via specific binding sites on cGMP system of rat pancreatic islets without affecting insulin release. Naunyn Schmiedebergs Arch Pharmacol. 1989 Mar;339(3):348–353. doi: 10.1007/BF00173590. [DOI] [PubMed] [Google Scholar]
  30. Waldman S. A., Murad F. Cyclic GMP synthesis and function. Pharmacol Rev. 1987 Sep;39(3):163–196. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES