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Abstract
Background Anthracyclines are essential in pediatric cancer treatment, but patients are at risk cancer therapy-related 
cardiac dysfunction (CTRCD). Standardized definitions by the International Cardio-Oncology Society (IC-OS) aim to 
enhance precision in risk assessment.

Objectives Categorize distinct phenotypes among pediatric patients undergoing anthracycline chemotherapy using 
unsupervised machine learning.

Methods Pediatric cancer patients undergoing anthracycline chemotherapy at our institution were retrospectively 
included. Clinical and echocardiographic data at baseline, along with follow-up data, were collected from patient 
records. Unsupervised machine learning was performed, involving dimensionality reduction using principal 
component analysis and K-means clustering to identify different phenotypic clusters. Identified phenogroups were 
analyzed for associations with CTRCD, defined following contemporary IC-OS definitions, and hypertensive response.

Results A total of 187 patients (63.1% male, median age 15.5 years [10.4–18.7]) were included and received 
anthracycline chemotherapy with a median treatment duration of 0.66 years [0.35–1.92]. Median follow-up duration 
was 2.78 years [1.31–4.21]. Four phenogroups were identified with following distribution: Cluster 0 (32.6%, n = 61), 
Cluster 1 (13.9%, n = 26), Cluster 2 (24.6%, n = 46), and Cluster 3 (28.9%, n = 54). Cluster 0 showed the highest risk 
of moderate CTRCD (HR: 3.10 [95% CI: 1.18–8.16], P = 0.022) compared to other clusters. Cluster 3 demonstrated a 
protective effect against hypertensive response (HR: 0.30 [95% CI: 0.13– 0.67], P = 0.003) after excluding baseline 
hypertensive patients. Longitudinal assessments revealed differences in global longitudinal strain and systolic blood 
pressure among phenogroups.

Conclusions Unsupervised machine learning identified distinct phenogroups among pediatric cancer patients 
undergoing anthracycline chemotherapy, offering potential for personalized risk assessment.

Keywords Machine learning, Anthracycline, Cancer therapy–related cardiac dysfunction, Cardiotoxicity, 
Echocardiography
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Introduction
Anthracyclines are crucial agents for treating various 
cancers in children and adolescents. Despite an 85% sur-
vival rate [1], long-term survivors face cancer therapy-
related risks, notably cardiac dysfunction (CTRCD), 
ranging from asymptomatic reduction in left ventricu-
lar ejection fraction (LVEF) to overt heart failure (HF) 
[2]. The Children’s Oncology Group (COG) reported 
that around 12% of pediatric acute myeloid leukemia 
patients experienced cardiotoxicity [3]. To address var-
ied estimates of cardiotoxicity risk, the International 
Cardio-Oncology Society (IC-OS) recently issued a con-
sensus statement to standardize definitions, aiming to 
improve communication and enhance research on clini-
cal outcomes [4]. Increased awareness and assessment of 
cardiotoxicity using both LVEF and global longitudinal 
strain (GLS) could guide more effective cardioprotective 
measures to achieve improved long-term outcomes [5]. 
In contemporary clinical practice, the risk stratification of 
these patients relies on established methods that use pre-
defined criteria and known risk factors identified in prior 
observational or randomized studies [6]. These conven-
tional approaches typically categorize patients into broad 
risk groups based on factors like age, gender, diagnosis, 
and comorbidities [6]. Unsupervised machine learning 
approaches provide a unique opportunity to improve risk 
stratification and patient phenotyping by examining pat-
terns and structures within a given population [7]. For 
example, a previous machine learning model developed 
for prediction of cardiotoxicity, combining genetic and 
clinical factors, outperformed models relying solely on 
clinical variables, while exhibiting high specificity and a 
low misclassification rate [8]. Our hypothesis was based 
upon utilizing baseline clinical variables and the evolu-
tion of cardiac function and blood pressure parameters to 
discern distinct phenotypes of pediatric patients under-
going anthracycline chemotherapy. As these variables are 
readily available in clinical practice, this phenogrouping 
could potentially lead to a more detailed comprehen-
sion of the diversity in disease progression over time, and 
uncover potential avenues for patient-tailored treatment 
strategies.

Methods
Study population
We retrospectively identified patients with cancer who 
underwent anthracycline chemotherapy (specifically 
doxorubicin, epirubicin, daunorubicin, idarubicin, or 
mitoxantrone) as part of their treatment at our institution 
from January 2013 to September 2021. Patients receiv-
ing other medications with potential cardiotoxic effects 
were excluded. The cumulative total dose of anthracy-
clines was converted to a doxorubicin equivalent using 
evidence-based equivalence ratios [9]. Throughout their 

cancer treatment and subsequent post-chemotherapy 
follow-up, these patients underwent cardiac assessment 
using 2-dimensional echocardiography at clinically indi-
cated intervals, as determined by their treating oncolo-
gist. To be eligible for the study, patients were required 
to have undergone a baseline assessment at maximum 
25 days prior to starting chemotherapy, have under-
gone a minimum of 2 total echocardiography assess-
ments, and have longitudinal follow-up at our institution. 
Exclusion criteria consisted of inadequate image quality 
for myocardial deformation analysis, any level of valvu-
lar stenosis, valvular regurgitation, or a history of prior 
heart failure. The study was approved by the Johns Hop-
kins Medicine institutional review board with waiver of 
informed consent due to the retrospective nature of the 
study. Sex- and age-standardized weight, height, and BMI 
metrics were obtained from Centers for Disease Con-
trol and Prevention (CDC) growth charts for the United 
States [10]. Blood pressure (BP) was measured using an 
automated BP cuff in the sitting position, prior to per-
forming an echocardiogram. An appropriately sized cuff 
was chosen and BP was measured in the right arm, unless 
otherwise indicated in the standard measurement guide-
lines [11]. Age- and height adjusted Z-scores for BP were 
obtained from the Boston Children’s Hospital Z-score 
calculator [12]. 

Echocardiography measurements and analysis
All patients underwent a comprehensive transthoracic 
echocardiographic assessment as part of their routine 
chemotherapy surveillance. All echocardiograms were 
performed using a commercially available ultrasound 
system (Vivid 9, General Electric Medical Systems, 
Horten, Norway). Standard imaging windows and mea-
surements were made according to the American Society 
of Echocardiography guidelines following a standardized 
protocol [13]. Left ventricular ejection fraction (LVEF) 
was calculated using Simpson’s biplane measurement in 
the apical four- and two-chamber views. Left ventricular 
fractional shortening (LVFS) was obtained from M-mode 
imaging in the parasternal long-axis view. Global longi-
tudinal strain (GLS) was measured using speckle track-
ing echocardiography (STE) in the apical four-chamber, 
two-chamber, and three-chamber views. Tricuspid annu-
lar plane systolic excursion (TAPSE) was obtained from 
m-mode imaging in the apical four-chamber view.

Study outcomes
The primary outcome consisted of asymptomatic cancer 
therapy-related cardiac dysfunction (CTRCD) classified 
into categories following recommendations by the Inter-
national Cardio-Oncology Society 2021 Consensus state-
ment: mild CTRCD indicates a LVEF of ≥ 50% along with 
a new relative decline in GLS > 15% from baseline and/or 
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a new elevation in cardiac biomarkers; moderate CTRCD 
encompasses an absolute LVEF reduction of ≥ 10% result-
ing in an LVEF of 40–49%, or a reduction of < 10% points 
to an LVEF between 40 and 49%, coupled with a new 
relative decline in GLS > 15% from baseline and/or a new 
elevation in cardiac biomarkers; while severe CTRCD 
denotes a new LVEF reduction to < 40%. The secondary 
outcome consisted of exaggerated hypertensive response 
to the chemotherapy regimen, and was defined as SBP 
increase > 20  mm Hg or mean arterial pressure (MAP) 
increase > 15 mmHg from baseline [4, 14]. 

Data processing
Missing data was evaluated, and features exceeding 40% 
missingness were omitted from the analysis. Among the 
47 features considered for analysis (Supplemental Table 
1), 5 had missingness between 20% and 40%. To handle 
missing data, individual prediction models were created 
using the XGBoost regression algorithm, was trained on 
a complete dataset using a 75/25 train/test split [15]. The 
Boruta feature selection algorithm was applied to the 
training set to retain the features that had statistical sig-
nificance in predicting the target variables [16], and using 
this subset of features a Bayesian hyperparameter tun-
ing process was employed to train the XGBoost model, 
determine the optimal training parameters, and evaluate 
the model performance [17, 18]. Following model devel-
opment and evaluation, missing values were estimated 
for those 5 target variables. The remaining variables 
with less than 20% missingness were imputed using an 
iterative imputer, taking into consideration the similarity 
among patients to estimate the missing values [19]. For 
each patient, to assess phenotypic response to therapy, 
change in the following variables was measured: LVESV, 
LVEDV, LVEF, GLS, SBP and DBP. This value of each 
variable at timepoint T was quantified using a quadratic 
function according to the following formula:

 
ResponseTherapyT = V ariableT 0 + Slope ∗ T ime+

QuadraticCoefficient ∗ T ime

Unsupervised machine learning analysis
Following imputation, the dataset was standardized prior 
to principal component analysis (PCA) [20]. Unsuper-
vised learning analyzes unlabeled datasets to uncover 
inherent patterns and structures without relying on 
dependent variables, unlike supervised learning meth-
ods which require a “ground truth”, typically a class 
or an outcome [7]. Within the group of unsupervised 
machine learning, techniques such as PCA are often 
employed for dimensionality reduction, simplifying data 
by reducing its dimensions while preserving variability. 
PCA generates principal components (PC), which are 

linear combinations of the original variables, capturing 
the most significant variations in the data [7]. Clustering 
methods, including k-means and hierarchical clustering, 
then group data points sharing similarities into distinct 
clusters; for instance, k-means allocates data points to 
clusters based on their proximity to the cluster centroids 
[7]. In our study, PCA was applied prior to clustering to 
reduce data dimensionality (Supplemental Table 2). Sub-
sequently, 5 PCs that accounted for 47.8% of the variance 
in the data were selected due to a significant “elbow” at 
the 5th PC in the explained variance ratio (Supplemen-
tal Fig.  1). These selected PCs were then used as input 
for unsupervised cluster analysis (Supplemental Table 
3). After dimensionality reduction using PCA, we used 
K-means clustering algorithm to segment patients into 
distinct phenogroups based on their similarity, which 
was optimized using a grid search by varying the num-
ber of clusters [21]. We implemented an iterative pro-
cess to determine the optimal configuration for K-means 
clustering, maximizing the silhouette score as the evalu-
ation metric, while minimizing the within-cluster sum 
of squares (WCSS) [22]. The optimal configuration seg-
mented the patients into four clusters, each account-
ing for 32.6%, 13.9%, 24.6% and 28.9% of the population. 
Cluster labels were obtained from the K-means clustering 
for each patient and phenomap analysis was implemented 
to identify the set of similar patient characteristics across 
each cluster and the set of characteristics that differenti-
ate between the clusters.

Statistical analysis
Normality of the distribution of continuous variables 
was tested using the Shapiro–Wilk test. Continuous 
variables are expressed as mean with standard deviation 
or median with interquartile range (IQR), as appropri-
ate. Categorical variables are expressed as counts and 
relative frequency (%). Time-to-event data were plotted 
using the Kaplan–Meier method. To assess the relation-
ship between clusters and CTRCD, we employed Cox 
regression models. A linear mixed-effects model using 
cubic polynomials was used to describe the relationship 
between follow-up variables across clusters. To evalu-
ate whether cluster group membership had a significant 
impact on these variables, a likelihood ratio test (LRT) 
was used. The LRT compares the full model, includ-
ing cluster groups and interactions, to a reduced model 
that excludes these terms. A 2-tailed p-value < 0.05 
was considered statistically significant. All analyses 
were completed with R Statistical Software (version 
4.1.1, Foundation for Statistical Computing, Vienna, 
Austria) and Python (version 3.11.3, Python Software 
Foundation).
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Results
Study population
A total of 187 patients (median age 15.5 [IQR 10.4, 18.7] 
years, range 4.6 months to 24.7 years, 118 males [63.1%]) 
underwent anthracycline chemotherapy for the treat-
ment of primary malignancy. Clinical characteristics of 
the study cohort are summarized in Table 1, along with 
the percentage of missingness for that variable. The 

chemotherapeutic regimen had a median duration of 
0.66 (IQR 0.35, 1.92) years accounting for a median total 
cumulative anthracycline exposure of 200 (IQR 135, 343) 
mg/m2.

Exploration of the low-dimensional output space
In total, 80.3% of the variance could be explained by 14 
PCs, however, the PCA analysis consisted of 5 PCs that 
accounted for 47.8% of the variance (Fig. 1A). Unsuper-
vised k-means clustering identified four distinct clusters, 
which corresponded to the quadrants identified by PCA 
(Fig. 1B). Exploration of the first 3 PCs (explaining 35.4% 
of the variance) revealed that (1) PC1 seems to repre-
sent a combination of various blood pressure metrics at 
baseline (MAP Z-score, DBP Z-score and SBP Z-score) 
as well as their longitudinal changes in response to ther-
apy, (2) PC2 was most influenced by features that capture 
variations related to different cardiac functional metrics 
(LVEF, LVFS, GLS), and lastly (3) PC3 was most repre-
sented by variations related strongly to anthropometric 
parameters (BMI Z-score, weight- and height-for-age 
Z-scores, BSA) (Fig. 2) (Supplemental Fig. 2).

Unsupervised machine learning revealed four distinct 
phenogroups
Patient characteristics according to identified phe-
nogroups are presented in Table  2. Cluster 0 (n = 61 
patients) consisted of adolescents (median 17.1 [IQR 
12.0, 19.4] years at baseline), with lymphoma being the 
most common diagnosis (36.1%). Patients in Cluster 
0 demonstrated already high levels of abnormal GLS at 
baseline (62.3%). Cluster 1 (n = 26 patients) consisted of 
younger children (median 5.8 [IQR 2.28, 12.4] years at 

Table 1 Characteristics of the entire chemotherapy cohort
Characteristic Missing 

(%)
Total
(N = 187)

Age, years 0 (0.0) 15.5 [10.4, 18.7]
Male, n (%) 0 (0.0) 118 (63.1)
Height, cm 1 (0.5) 163 [135, 175]
BMI, kg/m2 3 (1.6) 21.1 [17.0, 25.5]
Hypertension, n (%) 2 (1.1) 32 (17.1)
Diagnosis
 Lymphoma, n (%) 0 (0.0) 50 (26.7)
 Sarcoma, n (%) 0 (0.0) 49 (26.2)
 AML, n (%) 0 (0.0) 14 (7.5)
 ALL, n (%) 0 (0.0) 36 (19.3)
 Blastoma, n (%) 0 (0.0) 8 (4.3)
 Wilms tumor, n (%) 0 (0.0) 10 (5.4)
 Other, n (%) 0 (0.0) 20 (10.7)
Baseline cardiac medications, n (%) 0 (0.0) 0 (0.0)
Duration of chemotherapy, years 3 (1.6) 0.66 [0.35, 1.92]
Cumulative anthracycline exposurea, 
mg/m2

3 (1.6) 200 [135, 343]

Duration of follow-up, years 0 (0.0) 2.78 [1.31, 4.21]
LEGEND Normally distributed variables were presented as mean ± standard 
deviation while non-normally distributed variables were presented as median 
(interquartile range). Categorical variables are expressed as frequency 
(percentage). ABBREVIATIONS: ALL, acute lymphoblastic leukemia; AML, acute 
myeloid leukemia; BMI, body mass index

Fig. 1 Principal components and clustering of the low dimensional output space. Legend: Percentage of explained cumulative variance by the principal 
components (A) and positioning of the included patients in the 3 first principal components of the output space obtained after dimensionality reduc-
tion, colored according to the assigned distinct cluster phenotypes obtained from the K-means clustering algorithm (B). Abbreviations: PC: principal 
component
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baseline), with acute lymphoblastic leukemia (ALL) being 
the most common diagnosis (30.8%). Characteristic 
about this cluster is the high level of elevated BP (92.3%), 
and hypertension (76.9% Stage 1, and 34.6% Stage 2), 
demonstrating the largest increases in DBP Z-score. Fur-
thermore, patients within this cluster were frequently 

underweight (76.9%). Cluster 2 (n = 46 patients) was char-
acterized by relatively preserved LVEF and GLS com-
pared to the other groups. Furthermore, this cluster had 
the highest frequency of female patients (47.8%) and were 
very frequently underweight (60.9%). Cluster 3 (n = 54 
patients) can be classified as having more obesity (55.6% 

Fig. 2 Exploration of the low dimensional output space. Legend: Exploration of clusters according to the first 3 principal components in each direction. 
Abbreviations: BMI, body mass index; DBP, diastolic blood pressure; MAP, mean arterial pressure; PC: principal component; SBP, systolic blood pressure
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overweight, and 22.2% obese) and systolic hypertension 
(14.8%), potentially indicating a metabolic syndrome-like 
profile.

During longitudinal follow-up (median of 2.8 [IQR 
1.3–4.2] years), cumulative anthracycline exposure varied 

between groups, with Cluster 0 receiving the highest 
doses on average (245 [IQR 168, 322] mg/m2). In con-
trast, Cluster 1 had the shortest duration of anthracy-
cline chemotherapy and received the lowest doses. The 
early event rates for mild CTRCD, moderate CTRCD and 

Table 2 Baseline characteristics according to identified phenotypes
Characteristic Cluster 0

(N = 61)
Cluster 1
(N = 26)

Cluster 2
(N = 46)

Cluster 3
(N = 54)

Overall 
p-value

Demographics
 Age, years 17.1 [12.0, 19.4] 5.80 [2.28, 12.4] 13.4 [9.96, 17.1] 16.7 [15.0, 18.8] < 0.001*†¶§#

 Male, n (%) 42 (68.9) 16 (61.5) 24 (52.2) 36 (66.7) 0.32
 Diagnosis < 0.001*†¶§#

 Lymphoma, n (%) 22 (36.1) 3 (11.5) 10 (21.7) 15 (27.8)
 Sarcoma, n (%) 17 (27.9) 3 (11.5) 13 (28.3) 16 (29.6)
 AML, n (%) 8 (13.1) 1 (3.9) 0 (0.0) 5 (9.3)
 ALL, n (%) 8 (13.1) 8 (30.8) 8 (17.4) 12 (22.2)
 Blastoma, n (%) 0 (0.00) 4 (15.4) 4 (8.7) 0 (0.0)
 Wilms tumor, n (%) 2 (3.3) 6 (23.1) 2 (4.4) 0 (0.0)
 Other, n (%) 4 (6.6) 1 (3.9) 9 (19.6) 6 (11.1)
Clinical assessment
 BMI Z-score 0.51 [-0.34, 0.99] -0.44 [-0.97, 0.52] -0.67 [-1.27, 0.38] 1.28 [0.83, 1.76] < 0.001*†‡§#

 Height Z-score 0.34 [-0.50, 1.00] 0.81 [-0.22, 1.43] -0.30 [-1.34, 0.26] 0.49 [-0.24, 1.12] < 0.001†¶#

 Weight Z-score 0.59 [-0.24, 1.18] 0.00 [-0.63, 0.54] -0.63 [-1.25, -0.14] 1.55 [0.81, 2.11] < 0.001†‡¶§#

 Systolic BP Z-score 0.17 (0.99) 1.79 (0.81) -0.06 (1.04) 1.50 (0.97) < 0.001*‡¶#

 Diastolic BP Z-score 0.27 [-0.22, 0.88] 2.33 [1.85, 3.23] 0.42 [-0.19, 0.65] 0.94 [0.34, 1.77] < 0.001*‡¶§#

 MAP Z-score 0.14 (0.69) 2.08 (0.89) -0.08 (0.80) 1.08 (0.86) < 0.001*‡¶§#

HTN classification
 Elevated blood pressure, n (%) 11 (18.0) 24 (92.3) 9 (19.6) 19 (35.2) < 0.001*¶§

 Stage 1 HTN, n (%) 1 (1.7) 20 (76.9) 4 (8.7) 7 (13.0) < 0.001*‡¶§

 Stage 2 HTN, n (%) 0 (0.0) 9 (34.6) 0 (0.0) 1 (1.85) < 0.001*¶§

Baseline echocardiography assessment
 LVESV, ml 28.1 [21.9, 37.7] 14.5 [9.61, 24.4] 16.8 [11.7, 21.6] 25.8 [21.9, 31.5] < 0.001*†§#

 LVEDV, ml 77.4 [56.9, 95.6] 39.7 [28.1, 57.0] 50.2 [37.8, 67.0] 81.6 [68.5, 96.1] < 0.001*†§#

 LVESVi, ml/m2 19.3 [15.3, 21.7] 15.3 [12.8, 17.6] 13.3 [11.0, 15.3] 13.7 [12.0, 16.2] < 0.001*†‡

 LVEDVi, ml/m2 48.0 [41.4, 55.5] 40.3 [36.5, 44.2] 41.2 [33.2, 47.6] 42.1 [37.0, 49.5] 0.002*†‡

 LVFS, % 33.6 [31.4, 36.5] 35.7 [32.9, 38.9] 39.6 [37.4, 42.6] 40.0 [36.9, 42.9] < 0.001*†‡¶§

 LVEF, % 61.2 (3.5) 63.7 (5.2) 67.7 (4.0) 66.6 (4.7) < 0.001*†‡¶§

 GLS, % -18.65 (2.7) -21.48 (2.6) -22.37 (2.2) -20.54 (2.9) < 0.001*†‡#

 Abnormal GLS, n (%) 38 (62.3) 7 (26.9) 7 (15.2) 18 (33.3) < 0.001*†‡

 TAPSE, cm 2.31 (0.5) 2.06 (0.3) 2.19 (0.4) 2.60 (0.4) < 0.001‡§#

Follow-up
 Duration of chemotherapy, years 0.51 [0.34, 0.83] 1.25 [0.52, 2.10] 0.64 [0.36, 2.28] 0.72 [0.33, 1.88] 0.080*

 Cumulative anthracycline exposurea, mg/m2 245 [168, 322] 148 [80.3, 179] 207 [122, 360] 200 [135, 371] 0.001*¶§

 Cumulative anthracycline exposure > 250 mg/m2, n (%) 21 (34.4) 3 (11.5) 18 (39.1) 20 (37.0) 0.099
 Duration of follow-up, years 3.02 [1.74, 4.82] 1.48 [0.60, 2.57] 2.80 [1.65, 3.61] 2.79 [1.49, 4.42] 0.021*¶§

 Cardiac medications during follow-up
 Angiotensin-converting enzyme inhibitors, n (%) 17 (27.9) 1 (3.9) 1 (2.2) 9 (16.7) 0.001*†#

 Beta-blockers, n (%) 5 (8.2) 1 (3.9) 1 (2.2) 1 (1.9) 0.36
LEGEND Normally distributed variables were presented as mean ± standard deviation while non-normally distributed variables were presented as median 
(interquartile range). Categorical variables are expressed as frequency (percentage). Pairwise comparisons were adjusted for multiple testing using the Tukey 
correction method and Benjamini-Hochberg method as appropriate. * Significant p-value between Cluster 0 and Cluster 1, † Significant p-value between Cluster 
0 and Cluster 2, ‡ Significant p-value between Cluster 0 and Cluster 3, ¶ Significant p-value between Cluster 1 and Cluster 2, § Significant p-value between Cluster 
1 and Cluster 3, # Significant p-value between Cluster 2 and Cluster 3. aCumulative lifetime dose expressed as doxorubicin equivalent. ABBREVIATIONS: ALL, acute 
lymphoblastic leukemia; AML, acute myeloid leukemia; BMI, body mass index; GLS, global longitudinal strain; HTN, hypertension; LVEF, left ventricular ejection 
fraction, LVEDV, LV end diastolic volume, LVESV, LV end systolic volume, LVFS, left ventricular fractional shortening; LVEDVi, LVEDV indexed to BSA; LVESVi, LVESV 
indexed to BSA; MAP, mean arterial pressure; TAPSE, tricuspid annular plane systolic excursion
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hypertensive response at 6 months and 1 year follow-up 
for patients with complete follow-up is shown in Table 3. 
During longer follow-up, 81 patients (43.3%) experienced 

mild CTRCD, 17 patients (9.1%) experienced moder-
ate CTRCD and 3 patients (1.6%) experienced severe 
CTRCD. Kaplan–Meier analysis of long-term CTRCD 
stratified by phenogroups identified on k-means cluster-
ing is shown in Fig.  3A-B. Cluster 0 demonstrated the 
highest risk for moderate CTRCD compared to the other 
phenotypes (HR: 3.10 [95% CI: 1.18–8.16], P = 0.022). In 
line with this observation, Cluster 0 also received angio-
tensin-converting enzyme inhibitors more frequently 
(27.9%) compared to the other phenotypes (8.7%).

From the 17 total patients with moderate CTRCD, 
only 5 patients (29.4%) recovered completely. Recov-
ery varied when stratified by phenotypes identified on 
k-means clustering (4 recoveries in Cluster 0 [40.0%], 1 
recovery in Cluster 2 [50.0%], and no recovery in Clus-
ter 1 and 3). However, no statistically significant lower 
risk was observed with Cluster 0 compared to the other 
phenotypes (RR: 0.70 [95% CI: 0.39–1.26], P = 0.24). 
Kaplan–Meier analysis of long-term hypertensive 
response stratified by phenotypes identified on k-means 
clustering is shown in Fig.  3C. Upon excluding patients 
with baseline HTN, Cluster 3 demonstrated a protec-
tive effect for hypertensive response to anthracycline 
chemotherapy compared to the other groups (HR: 0.30 
[95% CI: 0.13– 0.67], P = 0.003). The relationship between 
systolic function (LVEF and GLS) and BP (SBP Z-score 
and DBP Z-score) and identified phenotypes over long-
term follow-up was evaluated. GLS was significantly dif-
ferent between clusters (P = 0.017), while LVEF was not 
(P = 0.77) (Fig.  4A-B). The changes stratified by pheno-
types identified on k-means clustering aligned with those 
observed using the primary outcome of CTRCD, with 
Cluster 1 demonstrating the most preserved GLS and 
LVEF. SBP Z-score was significantly different between 
clusters (P = 0.005), while DBP Z-score was not (P = 0.32) 
(Fig. 4C-D).

Table 3 Early events stratified according to identified phenotype 
with complete follow-up
Outcomes Event at 

6 months 
(%)

Relative Risk 
(95% CI)

Event at 1 
year (%)

Relative 
Risk 
(95% CI)

Mild CTRCD 41 / 168 
(24.4)

48 / 149 
(32.2)

 Cluster 0 15 / 55 
(27.3)

Reference 17 / 50 (34.0) Reference

 Cluster 1 2 / 21 (9.5) 0.35 
(0.09–1.40)

2 / 16 (12.5) 0.37 
(0.10–1.42)

 Cluster 2 15 / 44 
(34.1)

1.25 
(0.69–2.27)

15 / 40 (37.5) 1.10 
(0.63–1.92)

 Cluster 3 9 / 48 (18.8) 0.69 
(0.33–1.43)

14 / 43 (32.6) 0.96 
(0.54–1.71)

Moderate 
CTRCD

11 / 168 
(6.5)

10 / 149 (6.7)

 Cluster 0 8 / 55 (14.5) Reference 6 / 50 (12.0) Reference
 Cluster 1 1 / 21 (4.8) 0.33 

(0.04–2.46)
1 / 16 (6.3) 0.52 

(0.07–4.01)
 Cluster 2 1 / 44 (2.3) 0.16 

(0.02–1.20)
1 / 40 (2.5) 0.21 

(0.03–1.66)
 Cluster 3 1 / 48 (2.1) 0.14 

(0.02–1.10)
2 / 43 (4.7) 0.39 

(0.08–1.82)
Hyper-
tensive 
response

18 / 168 
(10.7)

20 / 149 
(13.4)

 Cluster 0 9 / 55 (16.4) Reference 9 / 50 (18.0) Reference
 Cluster 1 0 / 21 (0.0) 0.13 

(0.01–2.20)
0 / 16 (0.0) 0.15 

(0.01–2.57)
 Cluster 2 7 / 44 (15.9) 0.97 

(0.39–2.40)
9 / 40 (22.5) 1.25 

(0.55–2.85)
 Cluster 3 2 / 48 (4.2) 0.25 

(0.06–1.12)
2 / 43 (4.7) 0.26 

(0.06–1.13)
ABBREVIATIONS CTRCD, cancer therapy-related cardiac dysfunction

Fig. 3 Freedom from cancer therapy-related cardiac dysfunction and hypertensive response. Legend: Kaplan–Meier curves for the primary outcomes 
(A) mild CTRCD, (B) moderate CTRCD and (C) hypertensive response stratified according to identified phenotypes. *Patients with baseline hypertension 
(N = 38 patients) were excluded from the analysis of hypertensive response. Abbreviations: CI, confidence interval; CTRCD, cancer therapy-related cardiac 
dysfunction; HR, hazard ratio; HTN, hypertension
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Discussion
In this study, we applied unsupervised machine learn-
ing to a cohort of pediatric cancer patients undergoing 
anthracycline chemotherapy to identify and character-
ize distinct phenotypes. We observed four phenotypes 
characterized by diverse baseline clinical profiles, cardiac 
functional metrics, and longitudinal changes in blood 
pressure. These phenotypes exhibited varying suscep-
tibility profiles to chemotherapy-related cardiotoxicity 
encompassing both CTRCD and hypertensive response. 
The growing application of cluster analyses in clinical 
research aims to reveal hidden structures within data, 
potentially overlooked by conventional observational or 
epidemiological studies [7]. This approach seeks to iden-
tify novel phenotypes linked to a disease or clinical syn-
drome [7]. 

Four distinct phenotypes were identified based on 
baseline characteristics which are visually summarized 
(Fig.  5). Cluster 0 comprised of 61 patients, represent-
ing predominantly male adolescents, with the most 
prevalent diagnosis within this cluster being lymphoma. 
Already at baseline this cluster demonstrated decreased 
systolic function, with the highest risk for moderate 
CTRCD during follow-up. Additionally, while the study 

revealed limited recovery from moderate CTRCD, Clus-
ter 0 exhibited a higher trend towards complete recov-
ery. Cluster 1, with only 26 patients, showed significantly 
younger age, were more likely underweight and hyperten-
sive, with a higher prevalence of ALL and Wilms tumor 
as their primary diagnosis. The initial hypertension dur-
ing acute presentation may be inherently linked to the 
primary diagnosis or, in part, attributed to induction che-
motherapy, often involving high-dose corticosteroids [23, 
24]. In both scenarios, hypertension frequently resolved 
shortly thereafter, such as in the case of Wilms tumor fol-
lowing nephrectomy and in ALL after the completion of 
induction chemotherapy [23, 24]. However, in both, an 
increased long-term risk of hypertension persisted [23, 
24]. The blood pressure trajectory in Cluster 1 revealed 
a biphasic pattern, marked by initial surges, subsequent 
early recovery, and later steady increases during follow-
up, which aligns with these findings. Another intriguing 
finding was the clustering of young patients with ALL in 
this particular group (mean age of 6.6 ± 3.5 years in Clus-
ter 1 compared to 15.1 ± 5.4 years in the other clusters, 
P < 0.001), indicating that individuals of a younger age, 
previously proposed as a risk factor for increased hyper-
tension incidence [24], may indeed constitute a distinct 

Fig. 4 Differences in blood pressure and systolic function. Legend: Echocardiographic and clinical trajectories stratified according to identified phe-
notypes. Abbreviations: DBP, diastolic blood pressure; GLS, global longitudinal strain; LVEF, left ventricular ejection fraction; SBP, systolic blood pressure
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subgroup within the ALL population. Cluster 2, consist-
ing of 46 patients with the highest frequency of female 
patients, had an intermediate age and a diverse distribu-
tion of diagnoses. At presentation, these patients were 
frequently underweight, and had the greatest cardiac 
function, with only a fraction demonstrating abnormal 
GLS. During follow-up, they frequently encountered 
declines in both GLS and LVEF resulting in mild CTRCD 
being common, while occurrences of moderate CTRCD 
were infrequent. Lastly, Cluster 3, comprising 54 patients, 
was characterized by excess body weight and obesity, and 
had high rates of mild CTRCD. A prevailing hypoth-
esis suggests that obesity may trigger an upregulation of 
pro-inflammatory adipokines and a downregulation of 
anti-inflammatory adipokines, contributing to the devel-
opment of a chronic, low-grade inflammatory state [25, 
26]. This state may exacerbate the pro-inflammatory state 
induced by anthracyclines, potentially increasing suscep-
tibility to cardiotoxicity. This may explain the occurrence 
of only CTRCD, and the concentration of these patients 
in this cluster, indicated by a clear visual separation on 
PC3. During follow-up these patients also frequently 
received angiotensin-converting enzyme inhibitors, 

with 7 out of 8 (87.5%) patients receiving angiotensin-
converting enzyme inhibitors having experienced mild 
CTRCD, potentially indicating selection bias towards 
easier prescription in overweight patients with elevated 
SBP. The identification of distinct phenotypes carries 
significant implications for future clinical practice. For 
example, insights derived from our cluster phenotyping 
analysis could improve the detection of adverse events 
in prediction models by incorporating cluster member-
ship as an additional predictor besides conventional risk 
stratification strategies. By extension, monitoring strate-
gies and interventions could be subsequently based on 
patient cluster membership, leading to more effective 
prevention and management of CTRCD. The incorpora-
tion of machine learning algorithms into clinical practice 
is under investigation through a randomized feasibil-
ity trial at a single center, encompassing more than 200 
adult cancer survivors [27]. These algorithms combine 
risk prediction with existing guidelines, expert consen-
sus, and medical society scientific statements, potentially 
enhancing patient outcomes and reflecting a paradigm 
shift toward digital transformation in the cardiovascular 
care pathway [27]. 

Fig. 5 Visual summary of the distinct phengroups. Legend: Representation of the diverse clinical profiles, cardiac metrics, and adverse outcomes in the 
4 identified clusters. ABBREVIATIONS: ALL, acute lymphoblastic leukemia; BMI, body mass index; CTRCD, cancer therapy-related cardiac dysfunction; DBP, 
diastolic blood pressure; GLS, global longitudinal strain; HTN, hypertension; LV, left ventricle; LVEF, left ventricular ejection fraction; MAP, mean arterial 
pressure; SBP, systolic blood pressure
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Study limitations
While acknowledging the strengths of our study, several 
limitations warrant consideration. First, the retrospective 
nature of the study introduces inherent biases and lim-
its the ability to establish causation. Second, the limited 
sample size, while robustly characterized, may not fully 
capture the diversity of pediatric cancer patients under-
going chemotherapy on a worldwide scale. Furthermore, 
the reliance on echocardiography during routine follow-
up may also overlook more subtle or intermittent cardiac 
changes. Lastly, due to the limited study duration these 
phenotypes may not fully capture differences in long-
term sequelae, prompting the need for extended follow-
up studies.

Conclusions
Utilizing unsupervised machine learning algorithms, 
we identified four distinct phenotypes among pediat-
ric patients with cancer treated with anthracycline che-
motherapy. These phenotypes, characterized by diverse 
clinical profiles and cardiac metrics, displayed varying 
susceptibilities to adverse outcomes, highlighting the effi-
cacy of machine learning algorithms in phenogrouping 
patients based on shared features and clinical progres-
sion. Ultimately, the integration of machine learning into 
clinical pediatric oncology practice holds promise for 
optimizing patient care.
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