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Abstract 

Alzheimer’s disease (AD) is a multifactorial disease with both genetic and environmental factors contributing to its eti-
ology. Previous evidence has implicated disturbed insulin signaling as a key mechanism that plays a role in both neu-
rodegenerative diseases such as AD and comorbid somatic diseases such as diabetes mellitus type 2 (DM2). In this 
study, we analysed available genome-wide association studies (GWASs) of AD and somatic insulin-related diseases 
and conditions (SID), i.e., DM2, metabolic syndrome and obesity, to identify genes associated with both AD and SID 
that could increase our insights into their molecular underpinnings. We then performed functional enrichment 
analyses of these genes. Subsequently, using (additional) GWAS data, we conducted shared genetic etiology analy-
ses between AD and SID, on the one hand, and blood and cerebrospinal fluid (CSF) metabolite levels on the other 
hand. Further, integrating all these analysis results with elaborate literature searches, we built a molecular landscape 
of the overlap between AD and SID. From the landscape, multiple functional themes emerged, including insulin 
signaling, estrogen signaling, synaptic transmission, lipid metabolism and tau signaling. We also found shared genetic 
etiologies between AD/SID and the blood/CSF levels of multiple metabolites, pointing towards “energy metabolism” 
as a key metabolic pathway that is affected in both AD and SID. Lastly, the landscape provided leads for putative novel 
drug targets for AD (including MARK4, TMEM219, FKBP5, NDUFS3 and IL34) that could be further developed into new 
AD treatments.
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Introduction
Alzheimer’s disease (AD) is a multifactorial, neurode-
generative disease that involves gradually progressing 
dementia over the course of multiple years. AD etiology 
is thought to be caused by a complex interplay of genetic 
and environmental risk factors, and it has been demon-
strated that the typical AD-linked pathophysiological 
brain characteristics – involving amyloid beta and tau – 
start many years before the onset of clinical symptoms 
[13, 94]. AD prevalence increases with age and affects 
approximately 4% of the world population age 60 and 
over [5]. Since the size of the elderly population contin-
ues to grow across the world, AD constitutes a significant 
and increasing societal burden and is more prevalent in 
women than men [44]. Moreover, about 5% of people 
with AD develop symptoms at a younger age, i.e., before 
65. Further, approved available pharmacotherapeutic 
approaches for AD include N-methyl-D-aspartate recep-
tor antagonism and acetylcholinesterase inhibition, but 
the efficacy of the currently available drugs is limited and 
disease progression cannot be meaningfully halted or 
reversed yet [40, 59, 62].

Although some AD-causing mutations in a few famil-
ial risk genes (APP, PS1, PS2) that cause an early onset 
form of the diseases have been established [102], the vast 
majority of patients have a sporadic, late onset form of 
AD that is a polygenic disease, involving multiple com-
mon genetic factors that differ between affected and 
unaffected individuals [101]. Apolipoprotein E (APOE) is 
an important lipid carrier in the brain and common vari-
ation in the APOE gene constitutes a major risk factor 
for sporadic AD, in that individuals carrying the APOE4-
allele have a greatly increased risk of developing AD, and 
APOE2-allele carriers have a decreased risk compared to 
individuals with the (most common) APOE3-allele [30, 
2]. Furthermore, (neuro)inflammation is thought to play 
a role in AD [14], and variation in the major histocom-
patibility complex (MHC) locus – constituting a highly 
polymorphic genetic region that codes for the vast range 
of cell surface proteins involved in antigen presentation 
for (adaptive) immunity – has been linked to many dis-
eases, including AD and diabetes [54, 101]. In addition, 
amyloid precursor protein (APP) – precursor of amyloid 
beta, which aggregates into toxic, extraneuronal amyloid 
plaques in AD – and microtubule-associated protein tau 
(MAPT) – which is hyperphosphorylated and accumu-
lates into intraneuronal neurofibrillary tangles in AD – 
are key molecules in the pathogenesis of AD [30].

Furthermore, AD has been found to have multiple 
somatic comorbidities, including (peripheral) insulin-
related diseases and conditions, i.e., diabetes mellitus 
type 2 (DM2), metabolic syndrome (MES) and obesity 
(OBS) [70]. In addition, it is increasingly recognized that 

AD also involves some form of disrupted insulin signal-
ing in the central nervous system (CNS), more specifi-
cally brain insulin resistance [38]. While insulin signaling 
is most commonly known for its role in glucose homeo-
stasis and typical somatic insulin-related diseases (SID), 
such as diabetes mellitus, insulin and the insulin receptor 
(INSR) are also expressed (and functional) in the CNS, 
and AD and SID may therefore share disease mecha-
nisms [38]. In non-brain tissues such as muscle, hepatic 
or adipose tissue, the INSR B-isoform – that can bind 
both insulin and insulin-like growth factor (IGF) 1 – is 
expressed, whereas in neurons in the brain, the INSR 
A-isoform – lacking exon 11 in the hormone-binding 
domain and able to bind insulin and IGF2 – is expressed 
[28]. The INSR (A-isoform) is also commonly overex-
pressed in cancer [73], and IGF2 has also been linked 
to neurodevelopment and neurodegeneration through 
downstream signaling via the IGF2 receptor (IGF2R) [1]. 
Several studies have linked AD to insulin signaling, and 
some have postulated AD as a ‘type 3 diabetes’ [47]. In 
this regard, insulin signaling has also been demonstrated 
to play an important role in the formation of both amy-
loid plaques and neurofibrillary tangles, and APOE-E4 
may adversely affect neuronal insulin signaling leading 
to cellular dysfunction and death [38, 105]. In the brain, 
insulin is also involved in regulating neuronal growth and 
development [33, 78]. In addition, similar to its effects on 
peripheral glucose, insulin stimulates neuronal glucose 
uptake by promoting the translocation of glucose trans-
porters 3 and 4 (GLUT3/SLC2A3 and GLUT4/SLC2A4) 
to the neuronal cell membrane. Moreover, CNS insulin 
regulates peripheral glucose homeostasis through hypo-
thalamic feedback on hepatic glucose release [55, 78].

Although a number of molecules and pathogenic pro-
cesses implicated in the disease have been identified, a 
significant part of AD etiology remains unresolved. In 
addition, currently available treatments lack efficacy and 
these are not disease-modifying treatments (DMTs) [67]. 
Therefore, in the current study, we aimed to improve the 
current knowledge of the molecular mechanisms and 
processes involved in AD and to identify potential novel 
drug targets for AD that could be further developed into 
DMTs. To achieve these aims, we used the ‘molecular 
landscape’ building approach that we have used previ-
ously for other neurological and psychiatric diseases, 
such as amyotrophic lateral sclerosis [43], Parkinson’s 
disease [42], obsessive–compulsive disorder [95] and 
Tourette’s [100]. A unique feature of our approach is that 
we start in an unbiased manner, from the (gen)omics per-
spective. Indeed, our current disease-level ‘hypothesis’ is 
that there is some genetic and molecular overlap between 
AD and the above-mentioned SID, which is in part based 
on our own findings that there are local [24] rather than 
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global [23] genetic correlations between AD and SID. 
To this end, we integrated the latest available genome-
wide association studies (GWASs) of AD as well as D2M, 
MES and OBS, and compiled a list of genes relevant for 
both AD and SID, based on gene-based analyses, func-
tional annotation and expression quantitative trait loci 
(eQTL) mapping. Then, we performed functional enrich-
ment analyses on these AD/SID-related genes to identify 
potentially enriched functional themes, pathways and 
upstream regulator molecules. Furthermore, for unbi-
ased screening purposes and using additional GWAS 
data, we performed shared genetic etiology analyses to 
investigate the presence, extent and direction of genetic 
sharing between AD/SID on the one hand and 237 blood 
and 338 cerebrospinal fluid (CSF) metabolite levels on 
the other hand. Subsequently, integrating the genes and 
themes/pathways/upstream regulators from our genomic 
data analyses with an elaborate literature search, we built 
a molecular landscape of the overlap between AD and 
SID. Lastly, this landscape provides (novel) insights into 
the molecular mechanisms underlying AD etiology, as 
well as ‘leads’ for drug targets that may be further devel-
oped into DMTs for AD.

Methods
GWAS data of Alzheimer’s disease (AD) and somatic 
insulin‑related diseases (SID)
We collected summary statistics of the largest and lat-
est available genome-wide association studies (GWASs) 
of AD [8, 101] and three major SID, i.e., type 2 diabetes 
mellitus (DM2) [54], metabolic syndrome (MES) [50] 
and obesity (OBS) [98]. Sample sizes were 86,531 (proxy) 
cases and 676,386 (proxy) controls for AD, 74,124 cases 
and 824,006 controls for DM2, 59,677 cases and 231,430 
controls for MES, and 9,805 cases and 235,085 controls 
for OBS. Further details are available in the (supplemen-
tary information of the) respective GWASs of AD/SID. 
The GWAS summary statistics were filtered based on 
allele frequencies (between 1 and 99%), imputation qual-
ity (INFO >  = 0.8), sample size (> = 67% for cases and 
controls), type of genetic variation (keeping only bi-allelic 
single nucleotide polymorphisms (SNPs)) and strand-
ambiguity (keeping only non-ambiguous SNPs).

Primary analyses of AD and SID GWAS data
Gene‑based analyses in MAGMA
First, we used the AD and SID GWAS data to perform 
gene-based analyses in MAGMA [48] (version 1.09), and 
this to investigate aggregated genetic association signals 
at the gene-level. For each of the 4 GWASs of AD, DM2, 
MES and OBS, we calculated gene-level statistics (using 
the aggregate of SNP-wise mean and top model) for all 
protein-coding genes. The 1000 Genomes [4] (phase 3, 

European samples) reference panel was used to obtain 
information about linkage disequilibrium (LD). Then, we 
performed cross-trait association analyses on the gene-
level statistics of AD with the 3 SID (i.e., AD with DM2, 
AD with MES, and AD with OBS), similar to previous 
studies [41, 61]. In short, we used the gene-based meta-
analysis, as implemented in MAGMA, to aggregate the 
AD and SID gene-level statistics [41, 61]. We considered 
a gene as relevant for both AD and SID if it showed: a 
cross-trait gene-level P-value < 2.50E-06 (i.e., ‘gene-wide’ 
significance), a cross-trait gene-level P-value that is at 
least an order of magnitude smaller than its single disor-
der P-value, and a single disorder P-value in both AD and 
SID < 0.05 [41, 61]. The primary MAGMA analyses were 
run by aggregating the SNP variation within the gene 
boundaries (i.e., without an annotation window around 
the gene), because we found that applying an annota-
tion window resulted in less accurate cross-trait results 
for certain genetic loci with extensive linkage disequilib-
rium (LD) structures and strong association signals in the 
GWAS (e.g., the APOE- or MHC-locus). The genes that 
were found to be relevant for both AD and at least one 
SID were included in the list of input genes for the molec-
ular landscape. Nonetheless, auxiliary MAGMA analyses 
(normal gene-level and cross-trait), using a 100kb up- 
and downstream annotation window around each gene 
were performed, as SNPs outside the gene boundaries 
may affect (the expression of ) the gene [93]. However, the 
genes from these analyses were used for additional func-
tional gene enrichment analyses (see below) only.

Functional annotation and gene mapping (FUMA)
In addition to MAGMA, we performed functional anno-
tation and gene mapping in FUMA [97] on the 4 GWASs 
of AD, DM2, MES and OBS (using the online interface at 
https://​fuma.​ctglab.​nl/, last accessed on April 1st 2024). 
First, we identified genomic risk loci using FUMA default 
parameters for identifying statistical significance (i.e., 
SNP P-value of genetic association cut-off at 5.00E-08) 
and independency between SNPs (i.e., an r2 threshold 
of 0.6 for first identifying ‘independent’ significant SNPs, 
and a second r2 threshold of 0.1 for ‘lead SNPs’ that rep-
resent each cluster of significant SNPs). Genomic risk loci 
were identified based on 250kb LD blocks. Information 
about LD was obtained from the default 1000 Genomes 
[4] (phase 3, European samples) reference panel.

Functional annotation of SNPs within each genomic 
risk locus was performed using the available ANNO-
VAR (http://​annov​ar.​openb​ioinf​ormat​ics.​org/​en/​lat-
est/), CADD (http://​cadd.​gs.​washi​ngton.​edu/) and 
RegulomeDB (http://​regul​omedb.​org/​index) databases, 
as well as chromatin states. For the subsequent gene 
mapping, we filtered SNPs based on CADD (> 12.37, 

https://fuma.ctglab.nl/
http://annovar.openbioinformatics.org/en/latest/
http://annovar.openbioinformatics.org/en/latest/
http://cadd.gs.washington.edu/
http://regulomedb.org/index
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to include more deleterious SNPs) and RegulomeDB 
score (< = 7, to include SNPs that are potentially regu-
lating gene function). Gene mapping was performed in 
FUMA based on genomic position, expression quanti-
tative trait locus (eQTL) and 3D chromatin interaction 
(3CI) information. For eQTL and 3CI mapping, we used 
only the available brain tissue databases to investigate 
whether significant SNPs for AD and SID are specifically 
regulating gene expression in the brain. In this way, the 
mapped eQTL/3CI genes are brain-expressed genes that 
are potentially affected by the SNPs from the AD/SID 
GWASs.

We used the FUMA default FDR cut-offs of 0.05 for 
eQTL and 1.00E-06 for 3CI mapping. Brain databases 
used for eQTL mapping were: eQTL Catalogue (Brain-
Seq DLPFC, Schwartzentruber 2018 sensory neuron; 
https://​www.​ebi.​ac.​uk/​eqtl/), PsychENCODE (PFC, TC, 
CB; http://​resou​rce.​psych​encode.​org/), xQTL (DLPFC; 
http://​mosta​favil​ab.​stat.​ubc.​ca/​xqtl/), CommonMind 
Consortium (CMC; https://​www.​synap​se.​org//#​!Synap​se:​
syn55​85484), BRAINEAC (10 regions; http://​www.​brain​
eac.​org/), and GTEx ver. 8 (13 regions; http://​www.​gtexp​
ortal.​org/​home/). For 3CI mapping, we used the follow-
ing brain databases: dorsolateral prefrontal cortex and 
hippocampus, adult and fetal cortex, PsychENCODE 
(prefrontal cortex; http://​resou​rce.​psych​encode.​org/) and 
FANTOM5 (http://​fantom.​gsc.​riken.​jp/5/). We required 
SNPs to be overlapping with the one end of a chroma-
tin interaction loop, while the other end of the loop had 
to be overlapping with transcription start sites. In addi-
tion, SNPs had to be overlapping with enhancer regions 
and gene transcription start sites had to overlap with 
promoter regions, using the Roadmap Consortium data-
base (E053 to E082 brain datasets; http://​egg2.​wustl.​edu/​
roadm​ap/​web_​portal/​DNase_​reg.​html), thereby effec-
tively only considering enhancer-promoter interactions. 
The genes that were mapped for both AD and SID (i.e., 
AD on the one hand and DM2, MES and/or OBS on the 
other hand) were included as input genes for the molecu-
lar landscape.

Functional enrichment analyses of AD/SID‑related genes
Using the list of input genes for the molecular landscape 
that we derived from the MAGMA and FUMA analyses, 
we performed functional enrichment analyses with Inge-
nuity Pathway Analysis [46] (IPA,QIAGEN Inc., https://​
www.​qiage​nbioi​nform​atics.​com/​produ​cts/​ingen​uityp​
athway-​analy​sis). We used the total set of all MAGMA 
and FUMA AD/SID-relevant landscape input genes, 
as well as the subset of MAGMA genes that overlapped 
between all 3 AD/SID cross-trait analyses (see above) as 
input datasets for IPA. Finally, we also investigated the 
AD/SID-relevant genes, that were obtained through the 

auxiliary MAGMA analyses (applying a 100kb annota-
tion window, see above), with IPA (again, using all genes, 
and the ones overlapping between all 3 AD/SID cross-
trait analyses). We used IPA to obtain information about 
enriched molecular pathways (metabolic and cell signal-
ing cascades), upstream regulator molecules (regulating 
the expression of the input genes), interacting protein 
networks (networks of proteins interacting with the input 
proteins to identify network hubs and connectivity pat-
terns of biological relevance) and ‘diseases and cellular 
functions’ (expected causal effects of genes/proteins on 
the disease/function). Because oncology research is over-
represented in the literature, and our primary interest 
in building our landscape is in non-oncological diseases 
(AD/SID), we do not mention the enriched annotations 
for any type of cancer-related diseases or functions in the 
results.

IPA performs enrichment analyses is based on the 
‘Ingenuity Knowledge Base’, a large, curated database 
that itself is based on existing literature (https://​www.​
qiage​nbioi​nform​atics.​com/​produ​cts/​ingen​uityp​athway-​
analy​sis). We applied the IPA default Fisher’s exact test 
(right-tailed) with subsequent Benjamini Hochberg (BH) 
correction (BH cut-off 0.05) to identify significant enrich-
ment signals.

Genetic sharing analyses for AD/SID‑related genes 
and blood and CSF metabolite levels
After the MAGMA and FUMA analyses, we collected 
summary statistics data from GWASs of an extensive 
range of blood [69] and CSF [66] metabolite levels. Sam-
ple sizes ranged from 703 to 1802 for the blood metabo-
lite GWASs and the sample size was (up to) 291 for the 
GWAS of CSF metabolites (all continuous traits). All 
metabolite GWAS summary statistics were filtered simi-
lar to the AD/SID GWAS data (i.e., regarding: allele fre-
quency (between 5 and 95%), sample size, imputation 
quality, type of variation, and strand ambiguity). Further 
details are available in the (supplementary information of 
the) respective GWASs.

Polygenic score (PGS)‑based analyses
To investigate the presence, extent and direction of 
genetic sharing between AD/SID and blood/CSF metab-
olite levels, we performed polygenic score (PGS)-based 
analyses using PRSice [22] (version 1.25, optimized for 
summary statistics based analyses, which uses the R 
package ‘GTX’ (https://​github.​com/​tobyj​ohnson/​gtx)) 
using AD/SID and the metabolite GWAS data (237 blood 
and 338 CSF metabolites). Because of sample overlap 
between the largest available GWASs for AD, DM2, and 
the blood metabolite levels GWASs, we used the pub-
licly available FINNGEN (R10; data and info available at 

https://www.ebi.ac.uk/eqtl/
http://resource.psychencode.org/
http://mostafavilab.stat.ubc.ca/xqtl/
https://www.synapse.org//#!Synapse:syn5585484
https://www.synapse.org//#!Synapse:syn5585484
http://www.braineac.org/
http://www.braineac.org/
http://www.gtexportal.org/home/
http://www.gtexportal.org/home/
http://resource.psychencode.org/
http://fantom.gsc.riken.jp/5/
http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.html
http://egg2.wustl.edu/roadmap/web_portal/DNase_reg.html
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://github.com/tobyjohnson/gtx
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https://​www.​finng​en.​fi/​en) GWAS data of AD (10,520 
cases and 402,662 controls) and DM2 (65,085 cases and 
335,112 controls) as ‘base’ phenotype for the PGS-based 
analyses with the blood metabolite levels as ‘target’ phe-
notypes. The 1000 Genomes [4] (phase 3, European sam-
ples) reference panel was used to obtain information 
about LD. LD was addressed by clumping SNPs within a 
500kb window with an R2 threshold of 0.25. PGSs were 
estimated based on 7 broad GWAS P-value thresholds 
for SNP inclusion into the score (SNP P ≤ 0.001, 0.05, 
0.1, 0.2, 0.3, 0.4 and 0.5). A PGS represents a weighted 
sum of the SNPs’ effects of the ‘base’ phenotype, which 
is then regressed onto the second or ‘target’ phenotype. 
Bonferroni correction was applied to identify statistically 
significant results for blood (Bonferroni P-value cut-off 
0.05 / (237 metabolites * 7 P-thresholds) = 3.01E-05) and 
CSF (Bonferroni P-value cut-off 0.05 / (338 metabolites * 
7 P-thresholds) = 2.11E-05) metabolic traits.

Molecular landscape of the overlap between AD and SID
We built the molecular landscape using an approach 
that we have applied multiple times previously [42, 43, 
95, 100]. Firstly, we filtered the list of putative input 
genes for the molecular landscape (as obtained from 
the MAGMA and FUMA analyses, see above) for pro-
tein-coding genes that are expressed in the brain (using 
the Human Protein Atlas [89] (https://​www.​prote​inatl​
as.​org/), Uniprot Knowledge Base [87] (https://​www.​
unipr​ot.​org/) and existing literature through search-
ing PubMed (https://​pubmed.​ncbi.​nlm.​nih.​gov/)). Then, 
we used the Uniprot Knowledge Base [87] and existing 
literature to obtain functional and structural informa-
tion about each of the proteins encoded by the (filtered) 
input genes. The subcellular localization of proteins was 
investigated through the use of multiple sources, includ-
ing the Uniprot Knowledge Base [87], Ingenuity Path-
way Analysis [46] (IPA,QIAGEN Inc., https://​www.​qiage​
nbioi​nform​atics.​com/​produ​cts/​ingen​uityp​athway-​analy​
sis), the Human Protein Atlas [89] and through manually 
reviewing the literature. We investigated protein–protein 
interactions between all proteins encoded by the input 
genes using existing literature, the Ingenuity Knowledge 
Base, and multiple protein interaction databases includ-
ing BioGRID (https://​thebi​ogrid.​org/), STRING (https://​
string-​db.​org/) and IntAct (https://​www.​ebi.​ac.​uk/​intact/​
home) to identify high-quality interactions based on 
experimental evidence (i.e., no predicted interactions). 
Together, these databases capture a comprehensive range 
of protein–protein interactions, both in number and type 
of interactions (i.e., physical binding and all other func-
tional relationships, such as activation, inhibition, deg-
radation, expression regulation, etc.) across the protein 
interactome. For each protein–protein interaction, the 

nature (e.g. activation through phosphorylation) as well 
as the plausibility (based on physical proximity, such as 
the same subcellular compartment) was determined. All 
filtered and curated interactions between the proteins 
encoded by the input genes were included in the molec-
ular landscape. We also added a number of enriched 
interacting proteins or upstream regulators from the 
functional enrichment analyses to the landscape, given 
their role and likely biological significance in relation to 
the input genes/proteins for the landscape. Furthermore, 
blood or cerebrospinal fluid metabolites that emerged 
from the genetic sharing analyses were added to the land-
scape. The protein-metabolite interactions were investi-
gated and curated/filtered by using the same approach 
and databases as used for protein–protein interactions. 
The landscape was drawn using Serif DrawPlus software 
(version X8). For visual convenience, we avoided crossing 
arrows as much as possible, and tried to restrict redun-
dancy in drawing proteins and their interactions. Color 
and symbolic coding were used for proteins and pro-
tein interactions and these are described in detail in the 
Results section and the corresponding landscape figure.

Expression analyses of landscape genes in AD brains
Subsequently and to corroborate the built landscape, we 
used the results from a previously published study [82] – 
based on publicly available RNA sequencing data from 
the AMP-AD knowledge portal on the Synapse platform 
(project SynID: syn2580853) – to investigate differential 
gene expression in 7 brain regions from AD patients com-
pared to healthy controls. For all genes encoding proteins 
in the landscape, we investigated whether they are signif-
icantly differentially expressed (FDR P < 0.05, regardless 
of fold change) in one or more of the 7 brain regions from 
AD patients. The (differential) expression of these genes 
was also considered when assessing the different aspects 
of specificity for identifying potentially novel drug targets 
from the molecular landscape (see below).

Identification of putative novel drug targets
From the molecular landscape of the overlap between 
AD and SID, we identified a number of putative (novel) 
drug targets for AD. This was not an analysis based on a 
single tool or bioinformatics pipeline, but an assessment 
based on extensive literature searches for all landscape 
proteins for different aspects of drug target specificity, 
complemented by the gene expression analyses men-
tioned above. In this regard, an ideal drug target for AD 
should adhere to five broad aspects of target specificity. 
Firstly, the target should have ‘regional specificity’, in that 
it should be expressed in the brain and be affected/func-
tional in relevant cell types (such as neurons, astrocytes 
and microglial cells), and preferably also be differentially 

https://www.finngen.fi/en
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expressed in AD compared to healthy controls. For the 
latter, we assessed the differential expression of all land-
scape proteins in the brain of AD patients versus con-
trols, as described above. Secondly, an excellent AD 
target needs to show ‘temporal specificity’, i.e., it is linked 
in time with AD onset and/or its expression pattern 
changes with AD symptoms over time. A third impor-
tant aspect is ‘symptomatic specificity’: the target should 
be linked to one or more disease symptoms or signs. 
Given the role of insulin signaling in both AD and SID, 
we considered both cognitive and neurological symp-
toms associated with AD and insulin resistance, together 
with related endocrine/metabolic traits, as disease symp-
toms/signs for assessing the symptomatic specificity of 
potential drug targets. Fourthly, a good AD drug target 
should have ‘molecular specificity’, i.e., it needs to play 
an important role in disease etiology, as is reflected by its 
involvement in multiple protein interactions and func-
tional themes in the molecular landscape of AD-SID 
overlap. Finally and importantly, an ideal target should 
have ‘modulatory specificity’: it should be possible to 
modulate the putative drug target to modify – in a ben-
eficial way – the progression of AD and reduce AD symp-
toms. In our consideration of novel targets, we did not 
consider some ‘well-known’ landscape proteins – such as 
tau (MAPT) and APOE – which have already been exten-
sively studied.

Results
Input genes for the landscape resulting from primary 
analyses of AD and SID GWAS data
Based on the MAGMA analyses of the latest available 
GWAS summary statistics for AD and SID, a total of 
211 genes passed inclusion criteria from the AD x DM2, 
AD x MES and AD x OBS cross-trait analyses and were 
included as input genes for the landscape. A total of 15 
genes emerged from all three cross-trait analyses (Sup-
plementary Table  1). The auxiliary MAGMA analyses 
(using a 100kb up- and downstream annotation window 
around each gene) resulted in 492 genes from the AD x 
DM2, AD x MES and AD x OBS cross-trait analyses, of 
which 42 genes emerged from all three cross-trait analy-
ses (Supplementary Table 1).

The functional gene mapping with FUMA resulted in 
135 mapped genes for AD and 904 mapped genes for SID 
(661 for DM2, 185 for MES, and 14 for OBS). In total, 19 
genes overlapped between the FUMA analyses for AD 
and (at least one) SID, and these were also included as 
input genes for the landscape (Supplementary Table 2).

Combining the 211 MAGMA-derived genes and 19 
FUMA-derived genes resulted in 219 unique input genes 
for the landscape (Supplementary Table 3). In Fig. 1 we 

have provided an overview of the different analyses per-
formed and their interrelationships.

Functional enrichment analyses of AD/SID‑related genes
We used IPA to perform functional enrichment analy-
ses of the 219 input genes for the molecular landscape. 
In addition, we performed enrichment analyses of two 
subsets of input genes, namely, the 15 MAGMA genes 
that overlapped in the cross-trait analyses and the 19 
overlapping genes obtained from the FUMA analyses. In 
addition, we screened the 492 genes from the auxiliary 
MAGMA cross-trait analyses with a 100kb annotation 
window, and the corresponding subset of 42 genes that 
overlapped between these cross-trait analyses. Supple-
mentary Table 4 provides an overview of the results from 
all IPA analyses.

Within the set of all 219 input genes (see Supplemen-
tary Table  4), we found 5 enriched ‘canonical’ pathways 
related to immune signaling (e.g., ‘Antigen Presentation 
Pathway’). We found 9 enriched upstream regulators 
including the frontotemporal dementia-linked gene Pro-
granulin (GRN – 8 target molecules in the set). A total of 
12 protein interaction networks were enriched, with cen-
tral molecules including Beta Estradiol (network #6) and 
APP (network #12). A large number of diseases and cel-
lular functions were enriched, including ‘Abnormal mor-
phology of synapse’, ‘Synaptic transmission of synapse’ 
and ‘Morphology of neurons’.

In the set of 15 input genes that emerged from all 
three MAGMA analyses (see Supplementary Table  4), 
we found no enriched pathways. We found 9 enriched 
upstream regulators, but – except for one – they all had 
only one target molecule in the set. Two networks were 
enriched with central molecules JUN and ESR1. After 
merging these two connected networks, ESR1 remained 
the central molecule of the merged network (Supplemen-
tary Fig. 1). A number of diseases and cellular functions 
were enriched, including ‘Synaptic transmission’.

In the set of 19 input genes that emerged from the 
FUMA analyses (see Supplementary Table  4), we found 
no enriched pathways. We found one enriched upstream 
regulator. Two networks were enriched, with central 
molecules APOE and APP. After merging these two con-
nected networks, APP was the central molecule of the 
merged network (Supplementary Fig.  2). A number of 
diseases and cellular functions were enriched, includ-
ing ‘Abnormal morphology of synapse’ and ‘Insulin 
resistance’.

In the set of 492 genes that emerged from the auxil-
iary MAGMA analyses (see Supplementary Table 4), we 
found 18 enriched pathways, mostly related to immune 
signaling (e.g. ‘Antigen Presentation Pathway’ and ‘Neu-
roinflammation Signaling Pathway’). We found GRN 
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as the only enriched upstream regulator (10 target mol-
ecules in the set), and GRN itself was also part of the set. 
A total of 25 networks were enriched, with central mol-
ecules including BAG6 (network #5), SREBF1 (network 
#13), ESR1 (network #15) and APP (network #16). A large 
number of diseases and cellular functions were enriched, 
including ‘Development of neurons’ and ‘Abnormal mor-
phology of neurons’.

In the set of 42 genes emerging from all three auxil-
iary MAGMA analyses (see Supplementary Table 4), we 
found one enriched pathway, ‘Neuroprotective Role of 
THOP1 in Alzheimer’s Disease’. We found no enriched 
upstream regulators. Three networks were enriched, with 
central molecules Insulin (network #1 – Supplementary 
Fig.  3), TNF and MAPK3. A number of diseases and 
cellular functions were enriched including ‘Abnormal 

Fig. 1  Overview of the different analyses performed and their interrelationships
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morphology of synapse’, ‘Synaptic transmission’ and 
‘Development of neurons’.

In summary, enriched major functional themes that 
emerged from the IPA analyses were estrogen (ESR1) 
signaling, insulin signaling and synaptic functioning. 
GRN was identified as an enriched upstream regulator of 
interest.

Genetic sharing analyses for AD/SID‑related genes 
and blood and CSF metabolite levels
After Bonferroni correction, we observed genetic shar-
ing between AD and the levels of 10 blood metabolites 
(R2 of AD genetic risk explaining metabolic traits of up to 
1.19%). Regarding SID, we found genetic sharing between 
DM2, MES and OBS, and the levels of 37, 66 and 16 blood 
metabolites, respectively (R2 of SID genetic risk explain-
ing metabolic traits of up to 8.75%). We observed genetic 
sharing between AD and the levels of 11 CSF metabolites 
(R2 of AD genetic risk explaining metabolic traits of up 
to 14.26%). In the case of SID, we found genetic sharing 
between DM2, MES and OBS, and the levels of 18, 7 and 
3 CSF metabolites, respectively (R2 of SID genetic risk 
explaining metabolic traits of up to 14.37%). See Supple-
mentary Table 5 for all results.

From the aforementioned findings, the levels of 8 blood 
metabolites shared genetics with both AD and SID: DAG 
34:2, LPE 18:0, TAG 50:4, TAG 52:4, TAG 52:5, TAG 
54:5, TAG 54:6 and TAG 56:9. These are all lipids, mostly 
triacylglycerols (triglycerides, TAGs), one diacylglycerol 
(diglyceride, DAGs) and one lysophospholipid (LPE). For 
all these 8 lipid levels, the direction of genetic sharing was 
positive with AD. For 3 of these lipid levels (TAG 50:4, 
TAG 52:5 and TAG 54:6), the direction of genetic shar-
ing was positive with DM2. For 7 of these lipid levels (all 
aforementioned except LPE 18:0), the direction of genetic 
sharing was positive with MES. For 2 of these lipid levels 
(LPE 18:0 and TAG 56:9), the direction of genetic sharing 
was negative with OBS. Supplementary Figs. 4–1 to 4–20 
provide bar plots of the presence, extent and direction of 
genetic sharing for different PGS P-value thresholds for 
the 8 aforementioned blood metabolic traits (with AD 
and the SID mentioned). In addition to these 8 lipids, we 
observed other TAGs, DAGs, LPEs and other lipid spe-
cies that also share genetics with AD and SID.

Regarding CSF metabolic traits, there were no over-
lapping metabolites between AD and SID, but also here 
we observed some lipid species (glycerophosphati-
dylcholines, GPCs; and fatty acids) that shared genet-
ics with both AD and SID. A few CSF metabolic traits 
(pyruvate and isocitrate levels), together with a blood 
metabolic trait (fumarate, aggregated with maleate and 
α-ketoisovalerate levels) could be mapped to a common 
metabolic pathway, namely the Krebs cycle. The direction 

of genetic sharing was negative between AD and CSF 
pyruvate levels, and between MES and isocitrate levels. 
The direction of genetic sharing was positive between 
MES and blood fumarate, maleate and α-ketoisovalerate 
levels. Supplementary Figs. 5–1- to 5–3 provide bar plots 
of the presence, extent and direction of genetic sharing 
for different PGS P-value thresholds for the aforemen-
tioned 3 CSF and blood metabolic traits (with AD and 
the SID mentioned).

Taken together, our metabolome-wide genetic shar-
ing analyses with AD/SID revealed lipid metabolism and 
energy metabolism (Krebs cycle) as potentially shared 
metabolic functional themes.

Molecular landscape of the genetic overlap between AD 
and SID
The landscape was built based on the literature-derived 
interactions between the proteins encoded by the 219 
input genes shared by AD and at least one of the SID 
investigated. Subsequently, we added a number of blood 
and cerebrospinal fluid metabolites emerging from the 
shared genetic etiologies between AD and SID. In addi-
tion, the enriched functional themes estrogen (ESR1) 
signaling, insulin signaling, synaptic functioning and the 
upstream regulator GRN were integrated into the land-
scape. Given its important role in AD and its emergence 
in some of the enriched interacting protein networks, we 
also included APP and its interactions with other land-
scape proteins in the landscape. Furthermore, synaptic 
transmission was enriched in the landscape input genes/
proteins and synaptic loss is a hallmark of AD that cor-
relates with cognitive decline. Therefore and as most of 
the landscape proteins were located in the postsynaptic 
density/membrane, the landscape was mainly placed in 
a dendritic spine of a postsynaptic neuron. In addition, 
a microglial cell and astrocyte were added since certain 
landscape proteins are more highly expressed by these 
cell-types than by neurons.

The molecular landscape is shown in Fig.  2. In total, 
147 of the proteins encoded by the 219 input genes (67%) 
could be placed into the landscape. In the Supplemen-
tary Information, we provide extensive detail about how 
the landscape was built and about all the protein–pro-
tein interactions in the landscape – organized by cellular 
compartment – and the blood and CSF metabolites that 
emerged from the shared genetic etiology analyses.

Differentially expressed landscape genes in AD‑related 
brain regions (AD patients versus controls)
To corroborate our landscape, we investigated for all 
genes encoding proteins in the landscape whether they 
are significantly differentially expressed in one or more 
of 7 AD-related brain regions, comparing AD patients 
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to control individuals [82]. In Supplementary Table  6, 
all landscape genes are listed, with their respective fold 
changes (at FDR P < 0.05) in one or more AD brain 
regions. In total, 110 of the landscape genes were also 
found to be differentially expressed in at least one AD-
related brain region.

Identification of putative novel drug targets for AD
After building the molecular landscape, we considered 
the five broad aspects of drug target specificity that are 
described in the Methods to identify putative novel drug 
targets for AD among the landscape proteins. We iden-
tified 10 such putative targets and in Supplementary 
Table  7, we have indicated how each target adheres to 
the five aspects of specificity. In the Discussion, we will 
elaborate on the five most fitting examples of landscape 
proteins that we consider to be potentially interesting 
novel drug targets for AD: MARK4, TMEM219, FKBP5, 
NDUFS3 and IL34.

Discussion
We built a molecular landscape of the overlap between 
AD and SID by analyzing and integrating the available 
GWAS data for these diseases and assessing the functions 

and interactions of the proteins encoded by the genes 
found to be relevant for both AD and SID. In addition, 
we investigated genetic sharing of AD/SID with the lev-
els of 237 blood and 338 CSF metabolites. In total, 147 of 
the proteins encoded by the 219 input genes (67%) could 
be placed into the landscape. A number of functional 
themes play a role in the molecular landscape of the over-
lap between AD and SID. First, we found enrichment of 
estrogen (ESR1) signaling, insulin signaling and synap-
tic functioning in the input genes/proteins for the land-
scape. Furthermore, from the genetic sharing analyses, 
we observed energy metabolism (oxidative phosphoryla-
tion and mitochondrial functioning), lipid metabolism 
and tau signaling as possibly shared metabolic pathways. 
From the proteins interact in the molecular landscape, 
we further discuss five potential (novel) drug targets for 
AD, some of which could also be of relevance for SID 
given their molecular overlap with AD.

Estrogen receptor 1 (ESR1) signaling was identified as 
a major functional theme in the AD/SID landscape. ESR1 
is a nuclear hormone receptor and transcription factor 
regulating many genes in different target tissues, includ-
ing the insulin receptor [104]. Furthermore, estradiol (E2) 
treatment increases insulin sensitivity through FOXO1 
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inhibition (via the PI3K/AKT pathway) [103]. Estra-
diol and other estrogens binds to the estrogen receptors 
ESR1 and ESR2, which are mainly located in the nucleus 
and cytoplasm, after which the ESRs can dimerize [9, 
26]. In the nucleus, ESR1 and ESR2 can bind to estrogen 
response elements at the promoter region of their tar-
get genes and exert different effects on transcription. In 
addition to directly binding to target DNA, there are also 
indirect transcriptional effects of ESR1 and ESR2 [9, 26]. 
With regard to the brain, estrogen signaling is impor-
tant for normal brain functioning and reduced estrogen 
signaling has been thought to be involved in the etiology 
of AD [92]. Similarly, we observed reduced expression 
of ESR1 in AD versus controls for two AD-related brain 
areas (temporal cortex and parahippocampal gyrus). Fur-
thermore, estrogen signaling regulates the expression of 
glucose transporter type 4 (GLUT4) [29] and possibly 
also of GLUT3 [18]. Important landscape proteins that 
are regulated by ESR1 include CKB (involved in energy 
metabolism), MAPT, the MHC class 1 complex, PHB1 
(involved in mitochondrial functioning and transcrip-
tion) and RTN2. In addition, ESR1 binds and interacts 
with other mitochondrial landscape proteins (such as 
MTCH2, TOMM22 and TOMM40), and the important 
lipogenic transcription factor SREBF1. Therefore, ESR1 
also connects different functional themes in the land-
scape, including estrogen signaling, insulin signaling, 
lipid metabolism, tau signaling and mitochondrial func-
tioning/energy metabolism.

Another important functional landscape theme is insu-
lin signaling. Brain insulin resistance has been thought 
to be a key mechanism in AD [38, 47]. Insulin binds to 
the insulin receptor (INSR) and the insulin-INSR com-
plex translocates from the cell membrane to the cyto-
plasm and nucleus. It is then either recycled back to the 
plasma membrane or sent to lysosomes for degradation 
[28, 39]. Insulin increases glucose uptake by muscle and 
adipose tissue through the insertion of GLUT4 in the cell 
membrane [27]. Furthermore, insulin inhibits hepatic 
gluconeogenesis and glycogenolysis, affects fatty acid and 
protein synthesis, and has effects on growth and devel-
opment [7, 99]. As can also be seen from the landscape, 
insulin signaling is linked to both APP and MAPT, and, 
indeed, has been implicated in the formation of both 
amyloid plaques and neurofibrillary tangles, the two key 
pathological characteristics of AD [38]. Furthermore, 
brain insulin signaling plays roles in multiple processes 
including growth and maturation of neurons, synaptic 
functioning, and regulating overall glucose homeosta-
sis through hypothalamic feedback on hepatic glucose 
release [10, 28],Martina, Ribeiro and Antunes, 2018; 
[78]. Modulation of synaptic plasticity by insulin may be 
related to its effects on dopamine, norepinephrine and 

serotonin signaling [10, 28]. Furthermore, while GLUT4 
plays a key role in peripheral insulin signaling, in the 
brain, GLUT1 and GLUT3 play major roles in glucose 
uptake across the blood–brain-barrier and by neurons 
and glia cells [32, 45, 56]. Although GLUT1 and -3 have 
been considered as insulin-insensitive, evidence suggests 
that there might be (indirect) mechanisms through which 
insulin signaling may affect GLUT1/3-mediated glucose 
uptake in the brain [57].

In the landscape, insulin signaling plays an important 
role. The landscape protein CELF1, strongly associated 
with both AD and SID in the latest available GWASs, is 
a splicing regulator that causes skipping of exon 11 of the 
INSR, resulting in the neuronal, A-isoform [72, 75]. On 
the contrary, peripheral INSRs are mainly the B-isoform, 
which includes exon 11 [28, 56]. The INSR A-isoform can 
bind both insulin and IGF2, and also plays a role in fetal 
growth [75, 99] and cancer [73]. The INSR regulates the 
expression of numerous important landscape proteins, 
including SREBF1 [85], PEMT [51] (converts phosphati-
dylethanolamine to phosphatidylcholine, of which blood/
CSF-levels shows genetic sharing with AD/SID), the tran-
scription factor POU5F1 (OCT4)(Kee Keong [37]) and 
RTN2 [11] (regulated by ESR1 and regulates APP, GLUT4 
and MAPT [74]). In addition, GRN – an important 
upstream regulator in the landscape with downstream 
targets APOC1, APOE, APP and the MHC (class 1 and 
2) complex and known for its link with frontotemporal 
dementia [80] – is also regulated by the INSR. Therefore, 
in summary, insulin signaling plays a central role and 
links different themes in the molecular landscape, includ-
ing estrogen signaling, lipid metabolism, synaptic func-
tioning and tau signaling.

In addition to estrogen and insulin signaling, energy 
metabolism emerged as a functional theme from the 
landscape and genetic sharing analyses. In the mitochon-
dria, ATP – as a cellular energy source – is generated 
through oxidative phosphorylation. To this end, the mito-
chondrial electron transport chain consists of a series of 
protein complexes that are located in the mitochondrial 
membrane. Electrons are passing through this chain of 
protein complexes through a number of redox reactions. 
This electron transport creates a proton gradient across 
the mitochondrial membrane, which subsequently drives 
the synthesis of ATP from ADP by the final complex of 
the chain (ATP synthase). The Krebs, tricarboxylic acid 
or citric acid cycle is a critical step in cellular respiration, 
by providing the electron carriers NADH and FADH2 to 
the electron transport chain. NADH and FADH2 are con-
verted back to their oxidized forms, NAD + and FAD—by 
the electron transport chain—that are then used again in 
the Krebs cycle and in glycolysis [25, 64]. Interestingly, 
in the genetic sharing analyses, we found that genetic 
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variants/SNPs that increase AD risk also contribute to 
lower CSF levels of pyruvate, whereas SNPs that increase 
MES risk also contribute to lower CSF-levels of isocitrate 
and increased blood levels of fumarate. These metabo-
lites can be mapped to the Krebs cycle as a potentially 
shared metabolic pathway between AD and SID (MES). 
In addition, a number of mitochondrial proteins from the 
landscape – such as CKB, DNAJC11, LACTB, NDUFS2, 
NDUFS3, PHB1, TOMM22 and TOMM40 – are involved 
in energy metabolism or other mitochondrial functions 
such as membrane organization, mitochondrial dynam-
ics and protein import. Further, different interactions of 
CELF1, ESR1, MAPT and SREBF1 with (the aforemen-
tioned) mitochondrial landscape proteins point to the 
link of mitochondrial energy production and functioning 
with other functional themes in the landscape, including 
insulin signaling, estrogen signaling, lipid metabolism 
and tau signaling.

We found that there is genetic sharing between AD as 
well as SID and the blood levels of eight specific lipids 
(mainly triglycerides (TAGs), a diglyceride (DAG 34:2) 
and a lysophospholipid (LPE 18:0)). The direction of 
genetic sharing for AD and SID (DM2 and MES) was pos-
itive with regard to these lipid species, whereas for OBS 
the direction of genetic sharing was negative. In addi-
tion, we identified genetic sharing between AD/SID and 
the blood levels of several other TAGs, DAGs and some 
lysophospholipids. DAGs may play a role in (peripheral) 
insulin resistance through disrupted fatty acid processing 
and consequent activation of certain protein kinase C iso-
forms [21, 71]. TAGs are strongly related to and serve as 
biomarkers for insulin resistance, both in peripheral tis-
sues and in the brain [6, 86]. In addition, there is genetic 
sharing between AD/SID and the blood and CSF levels 
of different other lipid species such as lysophosholipids 
and phosphatidylcholines (PCs). PCs are important for 
normal lipid metabolism [49] and increased breakdown 
of PCs has been linked to AD [12]. Thus, lipid metabo-
lism emerges as an important functional theme from 
the molecular landscape, and is closely connected with 
(brain) insulin signaling. In addition, the expression of 
genes related to cholesterol synthesis has been linked 
to tau pathology [91]. Lastly, as can also be seen in the 
landscape, the lipid-transport protein encoded by APOE, 
and in particular by the AD risk factor APOE4, increases 
the phosphorylation of MAPT and is (consequently) 
involved in tau hyperphosphorylation [31, 88]. Impor-
tantly, APOE4 has also been shown to impair brain insu-
lin signaling through trapping of the INSR in endosomes, 
which, in turn adversely affects insulin-dependent energy 
metabolism in the mitochondria [106]. These effects can 
be accelerated through increased dietary intake of fatty 
acids [106].

Lastly, tau (or MAPT) is thought to play a key role in 
AD. Hyperphosphorylation of tau decreases its bind-
ing to microtubules and its aggregation results in neu-
rofibrillary tangles inside affected neurons in AD and 
other ‘tauopathies’ [15, 35]. Tau signaling also emerges 
as an important functional theme in the landscape. Spe-
cifically, tau has many interactions with other landscape 
proteins such as APOE(4), CRHR1, FKBP5, MARK4 
and NDUFS3, and it is connected to insulin signaling, 
estrogen signaling and APP. Moreover, knockout of the 
neuronal INSR increases tau phosphorylation, thereby 
(indeed) pointing to a role for brain insulin resistance 
in AD [74]. Therefore, Tau signaling plays an important 
role in the overlap between AD and SID, both through its 
link with insulin signaling and other functional themes in 
the landscape. In addition, tau interacts with a number of 
potential novel drug targets for AD (see below).

Putative (novel) drug targets emerging from the molecular 
landscape of the overlap between AD and SID
MAP/microtubule affinity-regulating kinase 4 (MARK4, 
localized to the cytoplasm) is a serine/threonine-pro-
tein kinase that phosphorylates MAPT [87]. MARK4 
shows regional specificity for AD, as it is differentially 
expressed (downregulated) in the hippocampus and 
parahippocampal gyrus from AD patients versus con-
trols (Supplementary Table  6). Furthermore, MARK4 is 
associated with early tau phosphorylation in AD granu-
lovacuolar degeneration bodies [52], pointing to its tem-
poral specificity for AD. Dl-3-n-butylphthalide inhibits 
MARK4 and reduces cognitive deficits, synaptic loss and 
tau phosphorylation (in tau transgenic mice) [17]. Inac-
tivation of MARK4 leads to increased insulin sensitivity 
(in mice) [84]. This shows that MARK4 also has symp-
tomatic specificity, in that it is involved in different clini-
cal signs/symptoms of AD (and SID). In the molecular 
landscape of AD-SID overlap, MARK4 interacts with 
multiple other important landscape proteins, including 
tau, constituting its molecular specificity. Importantly, 
inhibition of MARK4 could be beneficial for AD and SID 
through possible effects on tau phosphorylation, neuro-
inflammation, and insulin resistance [76, 77, 84], reflect-
ing its modulatory specificity. MARK4 is also inhibited 
by acetylcholinesterase (AChE) inhibitors (e.g. donepezil, 
rivastigmine) – that are among the only approved drugs 
for AD [67] – antidiabetics (e.g. metformin, linagliptin), 
and a number of other compounds (including serotonin, 
irisin). Taken together, as it adheres to all five aspects of 
target specificity, we would submit that MARK4 would 
be an excellent drug target for AD.

Another putative drug target from the landscape of 
AD-SID overlap is insulin-like growth factor-binding 
protein 3 receptor (IGFBP3R, other name:TMEM219), 
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a cell membrane receptor specific for IGFBP3. 
TMEM219 is highly expressed in the brain, includ-
ing in the hippocampus [89]. In addition, binding of 
IGFBP3 to TMEM219 leads to pancreatic beta cell 
loss and dysfunction [20]. These findings show the 
regional specificity of TMEM219 for the brain and 
pancreas. In addition, decreased blood levels of the 
TMEM219-ligand IGFBP3 are linked with increased 
age and decreased cognitive skills in AD patients [34], 
and higher Aβ42 CSF levels (a robust biomarker of AD) 
[36], constituting the temporal and symptomatic speci-
ficity of TMEM219 in AD. Nevertheless, the decrease 
in IGFBP3 blood levels with age may be a confounding 
factor here [34] and increased IGFBP3 blood levels have 
also been linked to AD [36]. Furthermore, TMEM219 
interacts with multiple other (important) landscape 
proteins such as the MHC class II complex and the ace-
tylcholine receptor, suggesting its molecular specific-
ity for AD. Moreover, inhibition of TMEM219/IGFBP3 
signaling has been suggested to be beneficial for both 
AD and SID (DM), by decreasing the loss/dysfunc-
tion of TMEM219-expressing cells affected in these 
diseases [63]. However, TMEM219 has been found to 
be suppressed in different types of cancers, which may 
be a contra-indication for TMEM219-antagonism as a 
treatment for AD [63]. Summarizing, TMEM219 could 
be a potential drug target for AD that warrants further 
investigation.

Further, peptidyl-prolyl cis–trans isomerase (FKBP5, 
localized to the cytoplasm) is a peptidyl prolyl isomerase 
chaperone that is involved in multiple functions, includ-
ing protein folding, activation and degradation [87]. 
FKBP5 has regional specificity for AD, since it is differen-
tially expressed (upregulated) in AD cases versus controls 
in the hippocampus (Supplementary Table  6). Further-
more, FKBP5 is a biomarker of metabolic dysfunction 
[81] and is linked with Aβ-induced memory impairment 
[3] and insulin resistance [83], pointing to its tempo-
ral and symptomatic specificity for AD and SID. In the 
molecular landscape, FKBP5 interacts with many other 
(important) landscape proteins, such as tau and AKT, 
reflecting its molecular specificity. In addition, Apelin-13 
inhibits FKBP5 and protects against Aβ-induced memory 
impairment [3], while increased expression of FKBP5 is 
linked to insulin resistance [79]. This suggests that inhibi-
tion of FKBP5 could be beneficial for AD and SID, consti-
tuting its modulatory specificity. In this respect, existing 
FKBP5-inhibitors include Rapamycin, Apelin-13 and 
selective serotonin reuptake inhibitors class antidepres-
sants (e.g. fluoxetine, citalopram, sertraline). To summa-
rize, FKBP5 is a potential novel drug target for AD – with 
already existing modulating compounds – that could be 
further studied/developed.

NADH dehydrogenase (ubiquinone) iron-sulfur pro-
tein 3 (NDUFS3, localized to the mitochondrion), is a 
core subunit of mitochondrial electron transport chain 
Complex 1 (NADH dehydrogenase) [87]. NDUFS3 
expression is downregulated in the hippocampus and 
parahippocampal gyrus from AD patients versus controls 
(Supplementary Table  6), pointing to its regional speci-
ficity. In addition, plasma neuroexosomal NDUFS3 is 
increased at the early clinical stages of AD in people with 
SID (DM2) and may serve as an early prognostic and 
diagnostic biomarker of AD (onset) [19], thereby consti-
tuting its temporal specificity. Furthermore, inhibition of 
Complex 1 improves cognitive function, synaptic plas-
ticity, phosphorylated tau (p-tau) and Aβ levels, neuro-
inflammation, insulin resistance, and neurodegeneration 
[90], reflecting the symptomatic specificity of NDUFS3/
Complex 1 and suggesting that inhibition of Complex 
1 could be beneficial for AD. Furthermore, NDUFS3 
is regulated by tau and interacts with other mitochon-
drial landscape protein (such as prohibitin), pointing to 
its molecular specificity in AD/SID. Moreover, different 
Complex 1 inhibitors already exist, and especially a small 
molecule tricyclic pyrone compound (CP2) appears to 
be promising. CP2 showed good pharmacological prop-
erties, low toxicity and good efficacy in animal studies, 
including improvement in brain and peripheral energy 
homeostasis (including insulin resistance), synaptic activ-
ity and long-term potentiation, dendritic spine matura-
tion, cognitive function, as well as reducing p-tau and Aβ 
levels and brain and peripheral inflammation, reflecting 
the modulatory specificity for NDUFS3/Complex 1 [90]. 
Therefore, we consider NDUFS3 (and mitochondrial 
Complex 1) as a putative novel drug target for AD that 
should be further investigated.

Lastly, interleukin-34 (IL34, localized extracellular) 
is a pro-inflammatory cytokine that promotes pro-
liferation and differentiation of monocytes and mac-
rophages [87]. IL34 expression is downregulated in the 
hippocampus from AD patients versus controls (Sup-
plementary Table 6), constituting its regional specific-
ity. Furthermore, by promoting microglial proliferation 
and thereby possibly neurodegeneration [65], IL34 
may contribute to AD disease progression over time, 
and it has been associated with cognitive decline in 
vascular dementia [96]. In addition, IL34 impairs the 
ability of macrophages to ‘clear’ pathological amyloid 
beta [107] and plasma IL34 levels correlate positively 
with insulin resistance [60]. All these findings point to 
the temporal and symptomatic specificity of IL34 in 
AD. Further, IL34 interacts with one other landscape 
protein (HEY2) and is involved in neuroprotective 
signaling in neurodegeneration [53], constituting its 
molecular specificity. As for its modulatory specificity, 
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inhibition of IL34 reduces microglial proliferation (and 
hence conveys a protective effect in AD) [65], although 
at the same time, IL34 was found to enhance the neu-
roprotective effects of microglia to attenuate amyloid 
beta neurotoxicity [58]. Therefore, with regard to AD, 
both IL34 inhibition and activation could have benefi-
cial effects, so maintaining an optimal IL34 level may 
be recommended. With regard to SID (DM), it appears 
that IL34 inhibition may be beneficial, given the posi-
tive association of IL34 levels with insulin resistance, 
obesity [16], and beta cell dysfunction and apoptosis 
[68]. Summarizing, IL34 may be a putative novel drug 
target for AD, but this needs to be further investigated.

Strengths and limitations
In the current study, we explored the hypothesis 
that there is molecular overlap between AD and SID 
through altered insulin signaling from an unbiased 
perspective. By analyzing and integrating data from 
the largest and latest GWASs of AD and SID, com-
plemented with metabolome-wide GWAS data and 
an extensive literature search on interactions between 
the AD/SID-relevant proteins and metabolites, we 
built a molecular landscape of the AD-SID overlap. 
This molecular landscape provides insights into the 
shared molecular processes underlying AD and SID, 
and, importantly, it allows for the identification of bio-
logically meaningful and potentially novel drug tar-
get (and biomarker) candidates that could be further 
investigated and developed in future studies. A limi-
tation of the genome-wide screen for genetic sharing 
between AD/SID and blood and CSF metabolite lev-
els is that we considered only the genome-wide com-
ponent of genetic sharing in the PGS-based-analyses. 
More specifically, we considered the aggregated SNP 
effects across the genome rather than genetic sig-
nals originating from specific loci. In addition, while 
the sample sizes for the GWAS data of AD/SID were 
sufficiently large, the sample sizes of some of the 
metabolite GWASs – in particular the ones from cer-
ebrospinal fluid – were (relatively) small. Therefore, 
it may have been the most sound approach to study 
genome-wide shared genetic effects, rather than locus-
specific effects. Furthermore, the accessed literature 
and databases may overrepresent certain diseases or 
topics (e.g., oncology) and their investigated substrates 
and pathways, and are (unavoidably) still incomplete 
with regard to protein–protein and protein-metabolite 
interactions. Therefore, future studies regarding the 
protein interactome in general and with regard to the 
described functional themes and proposed drug target 
leads for AD are needed.

Conclusions
In conclusion, we have analyzed the latest available 
GWAS data for AD and SID, as well as an extensive range 
of blood and CSF metabolites, to identify genes/proteins 
relevant to both AD and SID, and to investigate genetic 
overlap between AD/SID and blood/CSF metabolite lev-
els. We investigated functional enrichment in the identi-
fied genes/proteins and performed an extensive literature 
search on the interactions between the proteins encoded 
by the genes relevant to AD/SID, and the metabolites of 
which the blood/CSF levels show genetic overlap with 
AD/SID. We integrated all data and results into a molec-
ular landscape of the overlap between AD and SID, and 
we identified a number of functional biological themes 
including estrogen signaling, insulin signaling, synap-
tic functioning, energy metabolism and tau signaling. 
Based on the landscape, we identified 5 interesting leads 
for potential (novel) drug targets for AD. That being said, 
future in-depth studies are necessary to further investi-
gate the identified molecular themes. In addition, in sil-
ico, in vitro, in vivo and ultimately human clinical studies 
are needed to (possibly) ‘develop’ the proposed drug tar-
get leads into new drugs to treat AD.
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