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Abstract
Background Nicotinamide and tryptophan metabolism play important roles in regulating tumor synthesis 
metabolism and signal transduction functions. However, their comprehensive impact on the prognosis and the tumor 
immune microenvironment of glioma is still unclear. The purpose of this study was to investigate the association of 
nicotinamide and tryptophan metabolism with prognosis and immune status of gliomas and to develop relevant 
models for predicting prognosis and sensitivity to immunotherapy in gliomas.

Methods Bulk and single-cell transcriptome data from TCGA, CGGA and GSE159416 were obtained for this study. 
Gliomas were classified based on nicotinamide and tryptophan metabolism, and PPI network associated with 
differentially expressed genes was established. The core genes were identified and the risk model was established 
by machine learning techniques, including univariate Cox regression and LASSO regression. Then the risk model was 
validated with data from the CGGA. Finally, the effects of genes in the risk model on the biological behavior of gliomas 
were verified by in vitro experiments.

Results The high nicotinamide and tryptophan metabolism is associated with poor prognosis and high levels of 
immune cell infiltration in glioma. Seven of the core genes related to nicotinamide and tryptophan metabolism were 
used to construct a risk model, and the model has good predictive ability for prognosis, immune microenvironment, 
and response to immune checkpoint therapy of glioma. We also confirmed that high expression of TGFBI can lead 
to an increased level of migration, invasion, and EMT of glioma cells, and the aforementioned effect of TGFBI can be 
reduced by FAK inhibitor PF-573,228.
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Introduction
Glioma is the most prevalent primary malignant tumor 
that originates from neuroglia cells in the central ner-
vous system. Its malignant characteristics, such as exten-
sive drug resistance, rapid postoperative recurrence, and 
extensive infiltration of surrounding tissues, contribute 
to its status as the most malignant tumor with the worst 
prognosis in the central nervous system [1]. The main 
treatment methods for glioblastoma currently include 
surgical resection of the primary lesion, combined treat-
ment with various methods such as temozolomide che-
motherapy, radiotherapy, targeted therapy, and electric 
field therapy [2]. Immunotherapy, such as immune check-
point therapy, chimeric antigen receptor T cell therapy, 
dendritic cell vaccine, and tumor-associated macrophage 
therapy, have demonstrated certain anti-tumor effects 
in many tumors and can be considered as promising 
approaches. However, the application of immunotherapy 
to glioblastoma presents serious challenges due to the 
immunosuppressive property and drug resistance caused 
by the blood-brain barrier preventing entry of most anti-
tumor drugs or cells into the brain [3, 4]. Therefore, it is 
essential to explore the pathogenesis of glioma and dis-
cover potential therapeutic targets to inhibiting glioma 
progression and improving patient prognosis.

Niacinamide is synthesized through biocatalytic events 
to produce the crucial coenzyme nicotinamide adenine 
dinucleotide (NAD+). NAD+ is involved in several criti-
cal biological activities in the human body, including 
immune cell activation, cell proliferation, DNA repair, 
and aging [5, 6]. Nicotinamide exhibits significant poten-
tial in the prevention and treatment of tumors. It can 
inhibit the growth and migration of triple-negative breast 
cancer by accelerating tumor cell death, activating ROS, 
and modulating lipid metabolism [7]. Nicotinamide 
phosphoribosyltransferase, the rate-limiting enzyme 
for NAD+ synthesis from nicotinamide, controls tumor 
immune escape by promoting the expression of pro-
grammed cell death 1 ligand 1 (PD-L1) and regulating 
CD8+ T cells activity [8]. Moreover, three clinical trials 
have demonstrated that oral nicotinamide substantially 
reduces the incidence rate of actinic keratosis and non-
melanoma skin cancer [9]. However, the involvement of 
nicotinamide in the malignancy of glioma and its poten-
tial contribution to glioma treatment require further 
elucidation.

Tryptophan, an essential amino acid, regulates immu-
nity, neuronal homeostasis and the intestinal microen-
vironment through the kynurenine metabolic pathway 
[10]. There are three rate-limiting enzymes involved in 
tryptophan metabolism: isoleamine 2,3-dioxygenase 
(IDO) 1, IDO2, and tryptophan 2,3-dioxygenase (TDO2). 
These enzymes catalyze the conversion of tryptophan to 
kynurenine and modulate the immune response against 
cancer tissues by producing metabolites that can activate 
the aryl hydrocarbon receptor [11, 12]. Previous research 
has demonstrated that tryptophan metabolism is associ-
ated with cancer progression through several pathways. 
For example, TDO2 is associated with poor prognosis in 
hepatocellular carcinoma patients and can promote the 
migration and invasion of liver cancer cells through Wnt 
signaling pathway [13]. In addition, the novel oral IDO1 
inhibitor eos200271/pf-06840003, either alone or in com-
bination with PD-L1-blocking antibodies, can reverse 
the anergy of T cells against tumor cells and effectively 
suppressing tumor progression [14]. However, the com-
bination therapy of the IDO1 inhibitor Navoximod with 
the PD-L1 inhibitor Atezolizumab applied to multiple 
advanced cancers, has not demonstrated definitive ther-
apeutic effects [15]. Thus, further studies are needed to 
determine the specific role of tryptophan metabolism in 
tumor immune escape.

Considering the close relationship between nicotin-
amide and tryptophan metabolism with tumor immune 
status, we performed a study to correlate nicotinamide 
and tryptophan metabolism with glioma immune cell 
infiltration status and immunotherapy sensitivity. 691 
glioma patients in the Cancer Genome Atlas (TCGA) 
were included in this study. We used cluster analysis to 
categorize glioma patients, and the specific metabolic 
status of each group of gliomas as well as the relationship 
between gliomas and tumor immune infiltration in each 
group was analyzed. Subsequently, we developed a risk 
model using least absolute shrinkage and selection opera-
tor (LASSO) regression, and the data in CGGA verified 
the accuracy of the model for prognostic prediction of 
glioma patients. Additionally, we explored the predictive 
value of the model for the sensitivity of glioma patients 
to immune checkpoint inhibitor (ICI) therapy. Epithelial-
mesenchymal transition (EMT) refers to the process by 
which epithelial cells acquire mesenchymal characteris-
tics. In cancer, EMT is associated with tumor initiation, 
invasion, metastasis, and treatment resistance [16]. We 

Conclusions Our study evaluated the effects of nicotinamide and tryptophan metabolism on the prognosis and 
tumor immune microenvironment of glioma, which can help predict the prognosis and sensitivity to immunotherapy 
of glioma.
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also explored the effects and potential mechanisms of the 
gene involved in modelling on migratory, invasive and 
EMT of glioma cells. In summary, our study highlights 
the potential of nicotinamide and tryptophan metabo-
lism in predicting prognosis, immune microenvironment 
status, and the response to immune checkpoint inhibitor 
therapy in glioma patients. These findings provide new 
research directions and potential targets for immuno-
therapy of glioma.

Materials and methods
Data sources and processing
This study included a total of 691 patients with glioblas-
toma, grade II and grade III glioma from TCGA database. 
The above classification of gliomas followed the 2016 
World Health Organization Classification of Tumors of 
the Central Nervous System [17]. Supplementary Table 
1 provides the specific details from TCGA. Addition-
ally, we obtained gene expression profile data and corre-
sponding clinical features from CGGA datasets, namely 
CGGA mRNAarra301, CGGA mRNAseq693, and CGGA 
mRNAseq325, to validate the risk prediction model. To 
enhance the accuracy of data analysis, we standardized 
the data in CGGA mRNAseq325 and CGGA mRNA-
seq693 using log2(x + 1) transformation. Supplementary 
Tables 2, 3, and 4 present the relevant clinical informa-
tion obtained from CGGA. We curated 42 genes related 
to nicotinamide metabolism from Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway hsa00760 and 
REACTOME pathway R-HSA-196,807. Similarly, we 
identified 40 genes associated with tryptophan metabo-
lism from KEGG pathway hsa00380.

Cluster analysis and principal component analysis (PCA)
We first employed consensus clustering to examine the 
differences in gene expression levels among different sub-
groups of gliomas. This involved applying agglomerative 
pam clustering with a 1-pearson correlation distance, 
supplemented by resampling 80% of the samples for 10 
repetitions using the ConsensuClusterPlus package in 
R. The optimal number of clusters was determined by 
analyzing the empirical cumulative distribution func-
tion plot. To validate the results of the cluster analysis, 
we conducted PCA using the stats package in R. Specifi-
cally, we first standardized the expression spectrum using 
Z-scores, and then performed dimensionality reduc-
tion analysis using the prcomp function, resulting in a 
reduced matrix.

Identification of the differently expressed genes (DEGs) 
and functional enrichment analysis
The Limma package was utilized for identifying genes 
displaying differential expression levels among sub-
groups obtained through cluster analysis. Genes with 

an absolute log2 fold change (|Log2FC|) greater than or 
equal to 1 and a false discovery rate (FDR) lower than 
0.05 were considered as differentially expressed between 
the groups. To elucidate the cellular pathways associated 
with these differentially expressed genes among the sub-
groups, the clusterprofiler package in R was employed for 
Gene Ontology (GO) and KEGG pathway enrichment 
analysis. Data visualization was conducted using the 
ggplot2 package in R. Results were deemed statistically 
significant if the p-value was below 0.05 and the FDR was 
below 0.1.

Immune microenvironment analysis and ICI therapy 
response
ESTIMATE (Estimation of STromal and Immune cells in 
MAlignant Tumor tissues using Expression data) calcu-
lates the abundance of immune cells, stromal cells, and 
tumor cells associated with the tumor microenvironment 
based on transcriptional profiles of cancer samples. Stro-
mal Score shows the level of stroma in the tumor tissue. 
Immune Score represents the level of immune cell infil-
tration in the tumor tissue. ESTIMATE Score is a com-
posite score calculated from the Stroma Score and the 
Immune Score. The higher the ESTIMATE Score, the 
higher the level of stromal and immune cells and the 
lower the level of tumor cells in the tumor microenviron-
ment. The gene expression profile data of glioma samples 
was analyzed using the IOBR package in R to estimate 
the Stromal Score, Immune Score, and ESTIMATE Score 
for each sample. The gene expression characteristics of 28 
immune infiltrating cells in tumors were obtained from 
TISIDB. The degree of enrichment of immune infiltrating 
cells in tumor samples was evaluated using single sample 
gene set enrichment analysis (ssGSEA) with the GSVA 
package in R software. Additionally, the CIBERSORT 
tool was utilized to determine the scores of 22 immune 
cells in each sample. To assess the sensitivity of each sam-
ple to immunotherapy, the Tumor Immune Dysfunction 
and Exclusion (TIDE) approach was employed.

Protein-protein interaction (PPI) analysis
In this study, our objective was to identify key genes asso-
ciated with nicotinamide and tryptophan metabolism. To 
achieve this, we analyzed the intersecting genes between 
the differential genes in nicotinamide metabolism and 
tryptophan metabolism. The protein-protein interac-
tion network was then determined using the String data-
base. Next, the PPI network was further examined using 
the MCC algorithm of Cytohubba plugins in Cyotscape, 
allowing us to identify the top 20 Hub genes with the 
highest linkage degrees. Finally, we visualized the PPI 
network formed by these 20 Hub genes using the String 
database.
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Construction of machine learning risk model
In this experiment, we utilized the gene expression data 
of the aforementioned 20 hub genes and the survival 
information of relevant patients to construct a prediction 
model. To assess the accuracy of our model, we extracted 
gene expression data related to patient survival from 
CGGA as a test cohort. Firstly, we employed univariate 
Cox regression in the survival package of R to evaluate 
the correlation between the 20 hub genes and the prog-
nosis of glioma patients. Then, we selected the genes 
that showed a significant association with prognosis of 
patients. And the glmnet package in R was used to per-
form LASSO multivariate Cox regression algorithm with 
1000 cross-validations, enabling us to identify a robust 
prognostic model from the selected genes. The genes 
exhibiting positive results were screened based on opti-
mal penalty parameters, and risk score characteristics 
were constructed using the corresponding coefficients. 
Lastly, we utilized Kaplan Meier curves to depict the 
survival curves of both the training and test sets, while 
employing 1-year, 3-year, and 5-year receiver operating 
curve (ROC) analysis to assess the prediction accuracy of 
the developed prognostic model.

Analysis of single-cell RNAseq Data
Single-cell transcriptome data from 18 glioblastoma sam-
ples in GSE159416 were used for single-cell analysis in 
this study. Seurat package in R was used for expression 
matrix analysis. The PercentageFeatureSet function was 
used to calculate the percentage of mitochondrial genes. 
And the genes were filtered by the number of genes > 50 
and mitochondrial percentage < 5. Next, the data were 
normalized and the 1500 genes with the largest coeffi-
cients of variation were extracted for PCA downscaling. 
Twenty PCA groupings were selected for subsequent 
TSNE cluster analysis. The critical distance was calcu-
lated using the FindNeighbors function, then the Find-
Clusters function grouped the cells, and the RunTSNE 
function performed TSNE clustering for the cells. Dif-
ferential genes and characteristic genes for each clus-
ter were obtained by analysis of variance with logFC > 1 
and adjpvalue < 0.05. HumanPrimaryCellAtlasData in 
Celldex package in R was used to provide cellular anno-
tation information. SingleR package in R is used to anno-
tate clustered cells, and Cellchat package in R is used to 
analyze cellular receptor-ligand pairs and to calculate 
cellular communication relationships. In addition, tran-
scriptomic data from the Ivy Glioma Atlas were used to 
analyze the expression patterns of genes in risk models at 
the anatomical level in glioblastoma [18].

Cell culture
The human glioblastoma cell lines LN229 and U87 were 
obtained from the China Infrastructure of Cell Line 

Resource (National Science & Technology Infrastructure, 
NSTI). In vitro culture and experimentation of the cell 
lines were conducted using Dulbecco’s Modified Eagle’s 
Medium (DMEM, Biosharp) supplemented with 10% 
fetal bovine serum (FBS) and 1% penicillin-streptomycin 
solution. The cells were maintained at a temperature of 
37℃ and a CO2 concentration of 5%. To inhibit focal 
adhesion kinase (FAK), the FAK inhibitor (PF-573228) 
was purchased from MCE and applied at a concentration 
of 10µM during the in vitro experiment [19].

Transfection
The transforming growth factor beta induced (TGFBI) 
overexpression plasmid and the negative control plasmid 
were fabricated by RiboBio. To induce TGFBI overex-
pression, cells were transfected with the pEXP-RB-Mam-
TGFBI plasmid. The cDNA sequence encoding the entire 
length of TGFBI was cloned into the pEXP-RB-Mom 
vector, and its accuracy was verified by DNA sequenc-
ing. Cell transfection was conducted using Lipofectamine 
2000 (Invitrogen) in accordance with the manufacturer’s 
instructions. The protein levels of the cells were assessed 
by Western blotting 72 h post-transfection.

Western blot
Cellular proteins were lysed using Ripa lysate (Beyotime), 
supplemented with protease inhibitors. The lysates were 
then separated on SDS-PAGE gels using a voltage of 
100 V for 1.5 h. Subsequently, equal amounts of protein 
were electrotransferred to PVDF membranes. The mem-
branes were blocked with TBST in 5% nonfat milk for 2 h 
and subsequently incubated with the primary antibody 
overnight at 4℃. Following three washes with TBST, the 
membranes were incubated with secondary antibodies 
and visualized using enhanced chemiluminescence (ECL) 
reagent (Meilunbio). The primary antibodies used were 
TGFBI (Abclonal, 1:1000), N-cadherin (Affinity, 1:1000), 
Vimentin (Affinity, 1:500), and GAPDH (Abclonal, 
1:10000).

Invasion and migration assays
Glioma cell invasion was observed using transwell cham-
bers containing Matrigel (8 μm pore size, LABSELECT). 
In the upper chamber, 1000 glioma cells were sus-
pended in 250 µL of serum-free DMEM culture medium, 
while the lower chamber contained 750 µL of complete 
medium with 10% FBS. Following a 16-hour incuba-
tion, the cells on the upper surface of the chamber were 
removed, and the cells on the lower surface were fixed 
with a 4% paraformaldehyde solution (PFA) for 15  min. 
Subsequently, they were stained with 1% crystal violet 
for 10 min and then counted. For the glioma cell migra-
tion experiment, the same type and concentration of 
culture medium were used in both the upper and lower 
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chambers of the transwell chamber as in the invasion 
experiment described above. The experimental proce-
dures for glioma cell migration were similar to those for 
invasion, except that matrigel-free transwell chambers 
were used and the incubation time was reduced to 12 h. 
Each experiment was conducted three times.

Immunofluorescence staining
The cultured LN229 and U87 cells were incubated with 
4% paraformaldehyde and subsequently sealed with 5% 
BSA. Following this, specific antibodies were applied 
to the cells overnight at 4℃, and secondary antibodies 
were applied for 1 h. The cells were then restained with 
DAPI for 10  min and visualized using a fluorescence 
microscope.

Statistical analysis
The data collected in this study were subjected to statisti-
cal analysis using R (version 4.3.3) and visualized using 
the online network tools Sangerbox [20]. The differ-
ences in ssGSEA scores among subgroups were analyzed 
using the chi-square test. Student’s t-test was employed 
to compare the two groups with normally distributed 
continuous indicators, while a nonparametric test was 
used for skewed distribution continuous indicators. Sur-
vival status differences between groups were assessed 
using Kaplan-Meier (KM) curves analyzed with the sur-
vival package in R. The prediction performance of the 
risk model was evaluated using the pROC package in R, 
which generated time-dependent ROC curves. A value 
of area under curve (AUC) > 0.7 indicated the accuracy 
of the prediction model. Pearson’s coefficient was utilized 
to analyze the correlation between two continuous vari-
ables. A significance level of P < 0.05 was applied.

Fig. 1 Flow chart of this study
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Results
The specific process of this study is shown in Fig. 1.

Establishment of glioma nicotinamide metabolic subtypes
To explore the potential impact of nicotinamide metabo-
lism on the biological behavior of glioma, our study used 
cluster analysis to divide glioma patients into two clus-
ters. Consensus clustering, based on 42 genes related to 

nicotinamide metabolism, was employed to achieve the 
most stable grouping, with k set to 2 (Fig. 2A). Cluster 1 
consisted of 343 glioma patients, while Cluster 2 included 
348 glioma patients. PCA confirmed the clear distinc-
tion between Cluster 1 and Cluster 2 in a two-dimen-
sional space (Fig. 2B). The heatmap exhibited substantial 
disparities in gene expression levels between the two 
subgroups (Fig.  2C). The heatmap showed that Cluster 

Fig. 2 Cluster analysis of gene expression profiles related to nicotinamide metabolism in glioma patients. (A) Consensus clustering matrix for two sub-
groups. (B) PCA of gene expression profiles for two subgroups. (C) Heat map of the expression levels of nicotinamide metabolism related genes in two 
subgroups. (D) Box plot of nicotinamide metabolism related scores for both groups. **** P < 0.0001. (E) Kaplan Meier survival curves of glioma patients 
in two subgroups
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1 contained the majority of WHO grade IV gliomas, 
more IDH wild-type gliomas and more elderly patients 
(Fig.  2C). Differences in race and gender did not show 
significant differences between the two groups (Fig. 2C). 
And ssGSEA analysis showed that the scores of nico-
tinamide metabolism genes were significantly higher in 
Cluster 1 than in Cluster 2 (Fig.  2D). Moreover, Kaplan 
Meier curves demonstrated that patients in Cluster 1 had 
a significantly worse prognosis compared to Cluster 2 
(Fig. 2E). Collectively, these findings illustrate that glioma 
patients can be categorized into two distinct molecular 
subtypes based on the expression level of nicotinamide 
metabolism.

Functional analysis of nicotinamide metabolism-related 
genes
To conduct a detailed comparison of the biological char-
acteristics of the two subtypes of glioma, we initially 
examined the variations in gene expression between 
the two clusters. Cluster 1 had 510 up-regulated differ-
entially expressed genes and 616 down-regulated dif-
ferentially expressed genes compared with Cluster 2 
(Supplementary Fig.  1A). KEGG pathway enrichment 
analysis showed that signaling pathways such as ECM-
receptor interaction, cell adhesion molecules, and Th1 
and Th2 cell differentiation were significantly enriched 
in cluster1 (Supplementary Fig. 1B), and signaling path-
ways such as cAMP signaling pathway, Calcium signaling 
pathway, and Wnt signaling pathway were significantly 
enriched in cluster2 (Supplementary Fig. 1C). In addition, 
GO enrichment analysis showed that defense response, 
external encapsulating structure and signaling receptor 
binding were significantly enriched in cluster1 (Supple-
mentary Fig.  1D-F), and cell cell signaling, synapse and 
cation transmembrane transporter activity were signifi-
cantly enriched in cluster2 (Supplementary Fig. 1G-I). In 
conclusion, our study shows that the two subgroups of 
gliomas have different biological behaviours and meta-
bolic profiles.

The relationship between nicotinamide metabolism and 
immune infiltration in glioma
To investigate the relationship between nicotinamide 
metabolism and immune status in gliomas, we exam-
ined immune infiltration in two subtypes. Firstly, we 
used ESTIMATE algorithm to assess the immune-
related scores in two subgroups of glioma patients. Our 
study found that Stromal Score (Fig. 3A), Immune Score 
(Fig.  3B) and ESTIMATED Score (Fig.  3C) of glioma 
patients in the high-risk subtype (Cluster1) were signifi-
cantly higher than those of glioma patients in the low-risk 
subtype (Cluster2) (P < 0.0001). Secondly, we employed 
the ssGSEA algorithm to evaluate the enrichment degree 
of 28 immune cells in glioma. The analysis revealed 

significant differences in the enrichment of immune cells, 
excluding effector memory CD4+ T cells and eosino-
phils, between the two subtypes (Fig. 3D) (P < 0.01). And 
CIBERSORT algorithm also demonstrated significant dif-
ferences in the infiltration levels of multiple immune cells 
between the two subtypes (Fig. 3E) (P < 0.05). In conclu-
sion, our study highlights the significant differences in 
the immune microenvironment status of glioma between 
the two molecular subtypes associated with nicotinamide 
metabolism.

Establishment of glioma tryptophan metabolic subtypes
In light of the fact that nicotinamide metabolism and 
tryptophan metabolism can both modulate the sensitivity 
of tumor immunotherapy through the regulation of T cell 
activity within the tumor microenvironment, we sought 
to investigate whether the two metabolic pathways 
have a synergistic impact on the infiltration of immune 
cells in glioma. To accomplish this, we divided glioma 
patients into two subgroups according to genes related 
to tryptophan metabolism using a consensus clustering 
approach (Fig.  4A), resulting in 332 patients in cluster 
1 and 359 patients in cluster 2. PCA showed the differ-
ence in the distribution of gliomas in two-dimensional 
space between the two subgroups (Fig. 4B). The heatmap 
showed the difference in gene expression levels between 
the two subgroups (Fig.  4C). We found that Cluster1 
contained the majority of WHO grade IV gliomas, 
more IDH wild-type gliomas, and more elderly glioma 
patients (Fig. 4C). Differences in race and gender did not 
show significant differences between the two subgroups 
(Fig. 4C). And ssGSEA analysis showed that the scores of 
tryptophan metabolism genes were significantly higher in 
Cluster 1 than in Cluster 2 (Fig. 4D). In addition, patients 
in cluster1 had a worse prognosis compared to patients 
in cluster2 (Fig. 4E).

The interrelationship between nicotinamide metabolism 
and tryptophan metabolism
Then, glioma patients were classified into three groups 
based on the status of nicotinamide metabolism and 
tryptophan metabolism: the nicotinamide metabolism 
high / tryptophan metabolism high group, the mixed 
group, and the nicotinamide metabolism low / trypto-
phan metabolism low group. The results showed that 
KM curve demonstrated that patients in the nicotin-
amide metabolism high / tryptophan metabolism high 
group had the worst prognosis, whereas patients in the 
nicotinamide metabolism low / tryptophan metabolism 
low group had the best prognosis (Fig.  5A). Addition-
ally, ESTIMATE algorithm indicated that Stromal score 
(Fig. 5B), Immune score (Fig. 5C), and ESTIMATE score 
(Fig. 5D) were highest in the high nicotinamide metabo-
lism / high tryptophan metabolism group out of the three 
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groups. And ssGSEA algorithm also revealed significantly 
highest scores for various immune infiltrating cells in 
the tumor samples of the high nicotinamide metabo-
lism / high tryptophan metabolism group compared 
to the other two groups (Fig.  5E). MCPcounter analysis 
showed different cell infiltration in different subgroups 
(Fig.  5F). For example, the level of infiltration of rest-
ing NK cells was higher in the nicotinamide metabolism 
high / tryptophan metabolism high group, whereas the 
level of infiltration of activated NK cells was lower in the 

nicotinamide metabolism low / tryptophan metabolism 
low group (Fig.  5F). In addition, the infiltration level of 
M2-type macrophages was higher in the nicotinamide 
metabolism high / tryptophan metabolism high group 
(Fig.  5F). In conclusion, our study confirms that there 
is a strong correlation between nicotinamide metabo-
lism, tryptophan metabolism and the degree of immune 
infiltration in gliomas and that the higher the degree of 
immune cell infiltration, the worse the prognosis of gli-
omas. The discovery may facilitate the establishment of 

Fig. 3 Immunocyte infiltration analysis of two subgroups related to nicotinamide metabolism. (A-C) Box plot of interstitial score(A), immune score (B), 
and ESTIMATE score (C) for patients with high and low nicotinamide metabolism subgroups. (D) Box plot of immune cell infiltration levels in high nicotin-
amide metabolism and low nicotinamide metabolism subgroups analyzed by ssGSEA. (E) Box plot of immune cell infiltration levels in high nicotinamide 
metabolism and low nicotinamide metabolism subgroups calculated by CIBERSORT. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001; -, not significant
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reliable prognostic models for evaluating the prognosis of 
glioma patients.

Identification of nicotinamide and tryptophan 
metabolism-related core genes
To establish a risk model concerning nicotinamide and 
tryptophan metabolism, we screened the core genes 
associated with these metabolic processes in glioma. 

Limma analysis revealed 616 differentially expressed 
genes within the two subgroups of tryptophan metabo-
lism, with 362 genes up-regulated and 254 genes down-
regulated (Fig. 6A). By intersecting the 616 differentially 
expressed genes of tryptophan metabolism with the 1126 
differentially expressed genes of nicotinamide metabo-
lism, we obtained a set of 554 shared genes (Fig.  6B). 
Subsequently, PPI networks were constructed using the 

Fig. 4 Cluster analysis of gene expression profiles related to tryptophan metabolism in glioma patients. (A) Consensus clustering matrix for two sub-
groups. (B) PCA of gene expression profiles for two subgroups. (C) Heat map of the expression levels of tryptophan metabolism related genes in two 
subgroups. (D) Box plot of tryptophan metabolism related scores for both groups**** P < 0.0001. (E) Kaplan Meier survival curves of glioma patients in 
two subgroups
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STRING database. The MCC algorithm in Cytoscape was 
employed to identify 20 hub genes in the PPI network 
(Fig.  6C). The univariate Cox regression analysis also 
highlighted a significant correlation between the progno-
sis of glioma patients and the 20 hub genes (Fig. 6D).

Construction and validation of machine learning risk 
model
Based on the 20 core genes mentioned above, we devel-
oped a risk model focusing on nicotinamide and trypto-
phan metabolism for assessing the prognosis of glioma 

patients. We determined the risk formula by lasso anal-
ysis (Fig.  6E and F). The risk score is computed as fol-
lows: Risk score = (0.057POSTN exp) + (0.206LOX exp) 
+ (0.056TIMP1 exp) + (0.099TGFBI exp) + (0.051MMP9 
exp) + (0.022SPP1 exp) + (0.014*CD44 exp). Figure  7A, 
D and G, and 7J showed the sample distribution of gli-
omas in each dataset sorted according to the risk score. 
The Kaplan-Meier curve for the TCGA dataset showed a 
correlation between higher risk score and poorer prog-
nosis among glioma patients (Fig.  7B). In addition, the 
area under the curve for 1-year survival, 3-year survival, 

Fig. 5 Immunocyte infiltration analysis of nicotinamide-tryptophan metabolism related subgroups. (A) Kaplan Meier survival curves of glioma patients 
of high nicotinamide-tryptophan metabolism group, mixed group, and low nicotinamide-tryptophan metabolism group. (B-D) Box plot of stromal score 
(B), immune score (C), and ESTIMATE score (D) for the three groups of patients mentioned above. (E) Box plot of immune cell infiltration levels in high 
nicotinamide-tryptophan metabolism group, mixed group, and low nicotinamide-tryptophan metabolism group analyzed by ssGSEA. (F) Box plot of 
immune cell infiltration levels in high nicotinamide-tryptophan metabolism group, mixed group, and low nicotinamide-tryptophan metabolism group 
analyzed by CIBERSORT
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Fig. 6 Identification of core genes related to nicotinamide and tryptophan metabolism and establishment of prognostic risk score signatures. (A) Volcano 
map of differentially expressed genes in two subgroups related to tryptophan metabolism. Red and green represent differentially expressed genes with 
upregulation and downregulation of gene expression. (B) Venn plot showing the overlap relationship between differentially expressed genes in two 
subgroups of nicotinamide metabolism and differentially expressed genes in two subgroups of tryptophan metabolism. Numbers represent the number 
of genes. (C) PPI network formed by 20 core genes. The network nodes are proteins. The edges represent the predicted functional associations. Purple 
line - experimental evidence. Yellow line - textmining evidence. Light blue line - database evidence. (D) Single factor Cox regression analysis of 20 core 
genes related to nicotinamide and tryptophan metabolism. (E) Lasso coefficient spectra of 20 core genes. The positive coefficient means that the algo-
rithm believes that high expression of the gene predicts a poorer prognosis for glioma. The negative coefficient means that the algorithm believes that 
high expression of the gene predicts a better prognosis for gliomas. (F) Cross validation fitting curve calculated by lasso regression method. The range 
between the two dashed lines shows the range of optimal λ values considered by the algorithm
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and 5-year survival exceeded 0.7, indicating the supe-
rior predictive ability of the model for the prognosis of 
glioma patients (Fig. 7C). To validate the accuracy of the 
risk model, we examined three glioma transcriptome 
datasets: CGGA mRNAseq693, CGGA mRNAseq325, 
and CGGA mRNAarray. The Kaplan-Meier curve of 
these datasets consistently showed a correlation between 
higher risk scores and poorer prognosis in patients 

with gliomas (Fig.  7E, H and K). In addition, the area 
under the curve for 3-year survival and 5-year survival 
exceeded 0.7 for all three datasets, and the area under 
the curve for 1-year survival exceeded 0.7 for the CGGA 
mrnaseq325 dataset (Fig.  7F, I and L). In summary, our 
findings establish the accuracy of the risk model, which 
is based on genes associated with tryptophan and 

Fig. 7 Verification of the signature of the prognostic risk score for nicotinamide-tryptophan metabolism. (A) Heat map of glioma patients in TCGA based 
on the distribution of the risk score. (B) Kaplan Meier survival curves for glioma patients in TCGA based on the risk score. (C) ROC curves for predicting 1-, 
3-, and 5-year survival of glioma patients by the risk score in TCGA. (D) Heatmap of glioma patients in CGGA mRNAseq693 based on the distribution of 
the risk score. (E) Kaplan Meier survival curves for glioma patients in CGGA mRNAseq693 based on the risk score. (F) ROC curves for predicting 1-, 3-, and 
5-year survival of glioma patients by the risk score in CGGA mRNAseq693. (G) Heatmap of glioma patients in CGGA mRNAseq325 based on the distribu-
tion of the risk score. (H) Kaplan Meier survival curves for glioma patients in CGGA mRNAseq325 based on the risk score. (I) ROC curves for predicting 
1-, 3-, and 5-year survival of glioma patients by the risk score in CGGA mRNAseq325. (J) Heatmap of glioma patients in CGGA mRNAarray based on the 
distribution of the risk score. (K) Kaplan Meier survival curves for glioma patients in CGGA mRNAarray based on the risk score. (L) ROC curves for predicting 
1-, 3-, and 5-year survival of glioma patients by the risk score in CGGA mRNAarray
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nicotinamide metabolism, in predicting the prognosis of 
glioma patients, specifically in the long term.

The relationship between risk score and immune 
microenvironment of glioma
We further explored the relationship between risk 
scores and immune cell infiltration in gliomas. The 
glioma patients were categorized into high-risk score 

group and low-risk score group based on the median 
risk score. The application of the ESTIMATE algorithm 
revealed significantly higher Immune score, Stromal 
score, and ESTIMATE score values in the high-risk score 
group compared to the low-risk score group, indicating 
a greater presence of immune cells and stroma in the 
gliomas of the high-risk score group (Fig. 8A, B and C). 
To further analyze the immune microenvironment of 

Fig. 8 Analysis of immune cell infiltration in two subgroups related to the risk score of TCGA. (A-C) Box plot of stromal score (A), immune score (B), and 
ESTIMATE score (C) for patients in the high and low-risk score groups. (D)Box plot of immune cell infiltration levels high-risk score and low-risk score 
groups analyzed by ssGSEA. (E)Box plot of immune cell infiltration levels in high-risk score and low-risk score groups analyzed by CIBERSORT. *P < 0.05; 
**P < 0.01; ***P < 0.001, ****P < 0.0001; -, not significant
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gliomas, we utilized TISIDE and CIBERSORT to assess 
the degree of infiltration by different immune cells. The 
ssGSEA score derived from immune cell markers in 
TISIDE demonstrated significantly higher infiltration lev-
els of almost all immune cell types in the high-risk score 
group compared to the low-risk score group (Fig.  8D), 
suggesting distinct immune states in these two groups. 
Additionally, the CIBERSORT algorithm showed higher 
infiltration levels of CD8+ T cells, resting NK cells, M0 
macrophages, M1 macrophages, and M2 macrophages 
in the high-risk score group, whereas activated NK cells 
exhibited lower infiltration levels (Fig.  8E). We also 
achieved similar findings when analyzing CGGA mRNA-
seq693, CGGA mRNAseq325, and CGGA mRNAarray 
data (Supplementary Fig.  2, Supplementary Fig.  4, Sup-
plementary Fig. 6). In conclusion, our study demonstrates 
that the risk model can effectively assess the immune 
microenvironment of glioma.

Risk score may be used as an indicator to predict ICI 
therapy
To further assess the predictive ability of the risk score 
for ICI treatment sensitivity in gliomas, our study inves-
tigated the relationship between the risk score and the 
expression of immune checkpoints in tumors, as well as 
the TIDE score. TIDE algorithm consists of three main 
scores: Dysfunction score, Exclusion score and TIDE 
score. The higher Dysfunction score usually means that 
the T cells in the tumor are functioning poorly. The 
higher score usually means that immune cells have dif-
ficulty engaging with tumor cells through the tumor 
microenvironment and thus exerting a killing effect. The 
higher TIDE score usually implies a poorer response to 
ICI treatment and a poorer prognosis. We found that the 
high-risk score group in TCGA exhibited significantly 
elevated expression levels of seven immunological check-
points (Fig.  9A). There was also a positive correlation 
between the expression of immunological checkpoints 
and seven genes included in the risk model (Fig.  9B). 
And we obtained similar results when analyzing CGGA 
mRNAseq693, CGGA mRNAseq325, and CGGA mRNA 
array (Supplementary Fig. 3A, B, Supplementary Fig. 5A, 
B, Supplementary Fig. 7A, B). Then, our study showed a 
significant positive correlation between TIDE score and 
the risk score (Fig.  9C, Supplementary Fig.  3C, Supple-
mentary Fig.  5C, Supplementary Fig.  7C). And the risk 
score for gliomas were significantly higher in the ICI 
treatment false responder group predicted by TIDE 
(Fig. 9D, Supplementary Fig. 3D, Supplementary Fig. 5D, 
Supplementary Fig.  7D). And there was no statistically 
difference in immune dysfunction scores for gliomas 
between the high-risk score group and the low-risk score 
group (Fig.  9E, Supplementary Fig.  3E, Supplementary 
Fig.  5E, Supplementary Fig.  7E). The immune exclusion 

score, MDSC and CAF were significantly higher for gli-
omas in the high-risk score group than in the low-risk 
score group (Fig.  9F, H, I, Supplementary Fig.  3F, H, I, 
Supplementary Fig.  5F, H, I, Supplementary Fig.  7F, H, 
I). The microsatellite instability (MSI) score for gliomas 
in the high-risk scoring group were significantly lower 
than that in the low-risk scoring group (Fig. 9G, Supple-
mentary Fig. 3G, Supplementary Fig. 5G, Supplementary 
Fig.  7G). Finally, ROC curve analysis showed that risk 
scores had high accuracy in predicting the sensitivity of 
gliomas to ICI treatment in all four datasets (AUC = 0.715 
for TCGA, AUC = 0.719 for CGGA mRNAseq693, 
AUC = 0.796 for CGGA mRNAseq325, and AUC = 0.718 
for CGGA mRNAarray) (Fig.  9J, Supplementary Fig.  3J, 
Supplementary Fig. 5J, Supplementary Fig. 7J). In conclu-
sion, our findings provide evidence that the risk model 
effectively predicts the susceptibility of glioma to ICI 
treatment.

Analysis of single-cell sequencing
To obtain a more complete picture of the specific distri-
bution of risk model-related genes in glioma tissues, sin-
gle-cell RNA-seq analysis of GSE159416 was performed. 
UMAP was clustered for the cells in the dataset to form 
15 different clusters (Fig.  10A). Cell type annotation 
was performed for the above 15 clusters, yielding five 
known cell types (Fig.  10B). LOX was highly expressed 
in neurons. MMP9 was highly expressed in macrophage. 
TGFBI was highly expressed in macrophage and neurons. 
SPP1 was highly expressed in macrophage, neurons, and 
astrocyte. CD44 and TIMP1 were expressed in all five 
cell types (Fig.  10C). We also explored different cellular 
interactions in gliomas. The intercellular communication 
network showed a strong communication relationship 
between astrocyte and the other four cells (Fig. 10D-E). 
Notably, PTN-PTPRZ1 and PTN-NCL are involved in 
ligand receptor interactions in multiple cells (Fig. 10F). In 
addition, transcriptomic data from the Ivy Glioblastoma 
Atlas Project showed that POSTN was highly expressed 
in Hyperplastic blood vessels. LOX was highly expressed 
in pseudopalisading cells. TIMP1 was highly expressed 
in the perinecrotic zone. TGFBI was highly expressed 
in the TGFBI was highly expressed in perinecrotic zone, 
hyperplastic blood vessels and microvascular prolif-
eration. MMP9 was highly expressed in microvascular 
proliferation. SPP1 and CD44 were highly expressed in 
Perinecrotic zone (Fig.  10G). In conclusion, our results 
demonstrated the distribution of model-associated genes 
in different cells of glioma, laying the foundation for sub-
sequent investigation of the mechanism of action of dif-
ferent genes and the signaling of intercellular signals.
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Fig. 9 The predictive role of risk model of TCGA for ICI treatment response. (A) The box plot of immune checkpoint expression in the high-risk score 
group and low-risk score group. (B) Correlation analysis between the expression levels of risk model-related genes and the expression levels of immune 
checkpoints. (C) Correlation analysis between the risk score and TIDE score. (D) The box plot of risk score for predicting ICI treatment true responder and 
false responder gliomas using the TIDE algorithm. (E) The box plot of Dysfunction score for high-risk score group and low-risk score group. (F) The box plot 
of Dysfunction score for high-risk score group and low-risk score group. (G) The box plot of MSI score for high-risk score group and low-risk score group. 
(H) The box plot of MDSC for high-risk score group and low-risk score group. (I) The box plots of CAF for high-risk score group and low-risk score group. 
(J) The ROC curve of the risk score predicting response to ICI treatment
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Fig. 10 Results of data analysis for single-cell sequencing. (A-B) Cluster and cell type annotation of tumor microenvironment cells. (C) Expression charac-
teristics of risk model related genes in different cells. (D) Circle interaction plots showing the number of cell-to-cell communication. The size of the circle 
represents the number of cells. The thickness of the lines between the cells represents the number of times the two cells communicate. The color of the 
lines represents the type of cell that serves as a ligand. (E) Circle interaction plots showing the strength of cell-to-cell communication. The size of the circle 
represents the number of cells. The thickness of the lines between the cells represents the strength of communication between the two cells. The color of 
the lines represents the type of cell that serves as a ligand. (F) The ligand-receptor interactions between cells. X-axis shows the type of cells that interact. 
The cells in the front are the cells where the ligand is located and the cells in the back are the cells where the receptor is located. Y-axis shows the names 
of the ligand-receptors. The colors of the circles in the picture represent the average expression levels of these two genes in cells. A redder color indicates 
a higher level of expression. The size of the circle represents the size of the p-value. (G) Heat map of risk model related genes in anatomical locations of 
tumor samples according to Ivy Glioblastoma Atlas. Leading Edge is the tumor cells at the boundary of the tumor as determined by histological methods. 
Recurrence of gliomas often begins at this site. Infiltrating Tumor is the portion of tumor tissue that invades normal tissue. Cellular Tumor is the core por-
tion of tumor tissue as determined by histological method
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TGFBI mediates glioma cell migration, invasion, and EMT 
through FAK
Higher coefficient of a gene in the risk model indicates 
that the expression level of the gene has a greater influ-
ence on the risk score. The higher coefficient of TGFBI 
indicate that the expression level of TGFBI has a greater 
effect on the risk score. Therefore, we conducted a fur-
ther investigation into the impact of TGFBI on the 
specific biological behavior of glioma cells. The Supple-
mentary Fig. 8 illustrates the scenario of TGFBI overex-
pression. Our study revealed a significant enhancement 
in the migration and invasion capabilities of ln229 
cells and U87 cells due to the overexpression of TGFBI 
(Fig.  11A, B). Western blot analysis of EMT-related 
markers demonstrated a notable increase in the expres-
sion levels of mesenchymal markers, such as N-cadherin 
and Vimentin, in ln229 cells and U87 cells with TGFBI 
overexpression (Fig.  12A, B). Immunofluorescence 
examination also confirmed these alterations in EMT-
related proteins resulting from TGFBI overexpression 
(Fig. 12C, D). FAK is a non-receptor tyrosine kinase that 
promotes tumor progression, metastasis and the for-
mation of an immunosuppressive microenvironment 
in tumors [21, 22]. Notably, pretreatment with the FAK 
inhibitor PF-573,228 effectively mitigated TGFBI-medi-
ated migration and invasion of ln229 cells and U87 cells 
(Fig.  11A, B), thereby reversing the augmented expres-
sion levels of N-cadherin and Vimentin caused by TGFBI 

overexpression (Fig. 12A-D). To summarize, our findings 
strongly suggest that TGFBI promotes glioma cell migra-
tion, invasion, and EMT through FAK.

Discussion
Since the discovery of aerobic glycolysis, which is a dis-
tinct metabolic mode in tumors as compared to normal 
human cells, researchers have gradually started explor-
ing and studying its implications. In tumors, not only do 
the metabolic processes related to sugars and lipids differ 
from that of normal human tissues, but also substances 
like niacinamide and various amino acids, including tryp-
tophan, play significant roles in cell structure and metab-
olism, thus influencing the occurrence and progression 
of tumors [23]. Previous studies have indicated that nico-
tinamide induces apoptosis by reducing mitochondrial 
membrane potential and ATP production while increas-
ing the oxidation of fatty acids in triple-negative breast 
cancer [7]. Tryptophan metabolism, serving as a cru-
cial intermediate link, has been found to be involved in 
the development of liver cancer in mice due to changes 
in intestinal flora [24]. Furthermore, nicotinamide and 
tryptophan have been shown to regulate tumor immune 
escape and the response to immunotherapy by influenc-
ing the activity of immune cells in the tumor immune 
microenvironment [25–28]. Considering that the effec-
tiveness of immunotherapy in treating glioma still 
requires improvement, our study aims to enhance the 

Fig. 11 Migration and invasion experiments on LN229 cells and U87-MG cells after overexpression of TGFBI and pretreatment with FAK inhibitors. (A) 
Representative images of migration experiments and the number of transmembrane cells. (**P < 0.01, ***P < 0.001, ****P < 0.0001, n = 3, Student t test). 
(B) Representative images of invasion experiments and the number of transmembrane cells. (**P < 0.01, ***P < 0.001, ****P < 0.0001, n = 3, Student t test). 
Vector: transfect empty plasmid. OE-TGFBI: transfect TGFBI overexpression plasmid. Vector + inhibitor: transfect empty plasmid and pretreatment with PF-
573,228 for 1 h before the experiment. OE-TGFBI + inhibitor: transfect TGFBI overexpression plasmid and pretreatment with PF-573,228 for 1 h before the 
experiment. The magnification of the above image is 200×
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accuracy of predicting prognosis and immunotherapy 
sensitivity in patients with gliomas.

To investigate the role of nicotinamide and tryptophan 
metabolism in glioma, we conducted cluster analysis to 
categorize glioma patients into high and low-metabolism 
groups. The rationality of the grouping was confirmed 
using the PCA method and ssGSEA score. Considering 
the impact of IDH mutation status on glioma metabolic 
status as well as prognosis, the heatmap showed the dis-
tribution of glioma IDH mutation status with respect to 
nicotinamide metabolism and tryptophan metabolism in 

subgroups. Our results showed a higher distribution of 
IDH wild-type gliomas in the high nicotinamide metabo-
lism and high tryptophan metabolism groups. Since IDH 
mutations lead to increased consumption of NADPH in 
the tricarboxylic acid cycle of the cell [29] and nicotin-
amide is an important precursor for NADPH synthesis, 
this seems to predict that the status of IDH may influ-
ence the level of nicotinamide metabolism in gliomas. 
However, the specific relationship between IDH muta-
tion status and nicotinamide and tryptophan metabo-
lism in gliomas may still require further experimental 

Fig. 12 The expression of EMT-related proteins in LN229 cells and U87-MG cells after overexpression of TGFBI and pretreatment with FAK inhibitors. (A-B) 
Western blot was used to detect the expression levels of N-cadherin and Vimentin in LN229 cells and U87-MG cells. (C-D) immunofluorescence analysis 
showed the expression levels of N-cadherin and Vimentin in LN229 cells and U87-MG cells. The magnification of the image is 200×. Vector: transfect 
empty plasmid. OE-TGFBI: transfect TGFBI overexpression plasmid. Vector + inhibitor: transfect empty plasmid and pretreatment with PF-573,228 for 1 h 
before the experiment. OE-TGFBI + inhibitor: transfect TGFBI overexpression plasmid and pretreatment with PF-573,228 for 1 h before the experiment
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studies. Next, we examined the effects of nicotinamide 
metabolism, tryptophan metabolism, and their com-
bined effects on the prognosis of glioma patients. Our 
results revealed that patients with high levels of both 
nicotinamide and tryptophan metabolism had the poor-
est overall prognosis, suggesting that these two metabolic 
pathways may act together to cause poor prognosis in 
glioma patients. Previous studies have investigated the 
impact of nicotinamide and tryptophan metabolism on 
the biological behavior and prognosis of various tumors. 
High expression of nicotinamide N-methyltransferase is 
associated with tumor progression, metastasis and worse 
clinical outcomes [30]. Tryptophan metabolites, such as 
5-hydroxytryptamine and 3-hydroxybenzoic acid, can 
promote tumor growth by suppressing ferroptosis in 
tumor cells [31]. In short, our study reveals the correla-
tion between increased nicotinamide and tryptophan 
metabolism and poor prognosis in glioma patients. The 
research on nicotinamide and tryptophan metabolism in 
gliomas may provide new directions for glioma treatment 
and improvement of patient prognosis.

To investigate the role of nicotinamide metabolism in 
the pathophysiology of gliomas, we conducted KEGG 
enrichment analysis analysis to identify potential sig-
naling pathways associated with this metabolism. Our 
findings elucidated the close relationship between nico-
tinamide metabolism and multiple signaling pathways, 
including cell adhesion molecules (CAMs), Th1 and Th2 
cell differentiation, and Th17 cell differentiation. Previ-
ous studies have demonstrated the significance of these 
signaling pathways in the biological behavior of differ-
ent tumors. Alterations in cell adhesion molecules in the 
tumor microenvironment are not only directly involved 
in tumor invasion and distant metastasis, but also con-
tribute to malignant transformation and immune evasion 
of tumors [32, 33]. Th1 and Th2 cells, regulated by cyto-
kines produced by themselves as well as other immune 
cells, have a crucial role in regulating specific immune 
responses within tumors and are thus a focal point of 
current immunotherapy research [34]. The observed 
association between nicotinamide metabolism and sig-
naling pathways implicated in different malignancies fur-
ther suggests the involvement of this metabolism in the 
development and immune escape of gliomas.

Afterwards, we classified gliomas into the nicotinamide 
metabolism high / tryptophan metabolism high group, 
the mixed group, and the nicotinamide metabolism low 
/ tryptophan metabolism low group based on nicotin-
amide and tryptophan metabolism status and analyzed 
the prognostic status and immune cell infiltration sta-
tus of the three groups of glioma patients. Our results 
showed that the high nicotinamide tryptophan metabo-
lism group exhibited more infiltrating immune cells and 
poorer prognosis. And the group with more immune cell 

infiltration had a worse prognosis. This is because the 
killing effect of immune cells on tumor cells in the tumor 
microenvironment is influenced by multiple factors. The 
cells in glioma tissue mainly include tumor cells, stro-
mal cells and immune cells. A portion of immune cells 
play tumor-killing roles, such as CD8 + T cells and NK 
cells [35, 36], and some cells play immunosuppressive 
roles, such as Treg cells and Th17 cells [37, 38]. And the 
immunosuppressive microenvironment of tumor tissues 
can inhibit the killing effect of immune cells. In addi-
tion, stromal cells in tumor tissues can also inhibit the 
killing effect of immune cells by hindering the contact 
between immune cells and tumor cells [39]. Tumor cells, 
immune cells and the tumor immune microenvironment 
together determine the efficacy of the immune system in 
tumor clearance. It has also been shown that high lev-
els of immune cell infiltration in gliomas are associated 
with poor prognosis [40], which is consistent with our 
results. In conclusion, our study reveals a close relation-
ship between high nicotinamide tryptophan metabolism 
and poor prognosis and high immune cell infiltration in 
gliomas.

In a subsequent study, we aimed to validate a prognos-
tic risk model by identifying core genes associated with 
tryptophan and nicotinamide metabolism. Our results 
showed that the expression of the seven genes involved 
in modelling are all highly elevated factors for gliomas. 
And the data in the CGGA also showed that the model 
can more accurately predict the prognosis of patients 
with gliomas. It has also been shown that seven genes 
associated with model establishment are closely associ-
ated with poor prognosis of various malignancies and 
are involved in the development and progression of dif-
ferent tumors. For instance, POSTN activates the PI3K/
Akt pathway through interaction with integrins αVβ3, 
promoting EMT and facilitating migration and invasion 
of ovarian cancer cells [41]. LOX-1 inhibits autophagy in 
esophageal cancer by binding to RACK1 and activating 
the MAPK-ERK signaling pathway [42]. TIMP1 stimu-
lates the FAK-AKT signaling pathway, promoting the 
proliferation and invasion of colon cancer cells, which 
can adversely affect patients’ prognoses [43]. MMP9, a 
well-known secretory endopeptidase, has been exten-
sively studied due to its involvement in critical biological 
processes such as cell migration, neovascularization, and 
immune response [44]. The inclusion of these genes in 
our model indirectly supports its accuracy, as they play a 
crucial role in controlling different aspects of tumor biol-
ogy. Moreover, these genes may serve as potential targets 
for understanding glioma incidence, progression, and 
immune evasion.

Previous research has shown that the abundance of 
immune cells in tumors affects the response to immuno-
therapy in cancer patients [45]. Our study also explored 



Page 20 of 24Wang et al. BMC Neurology          (2024) 24:419 

the correlation between risk scores and the degree of 
immune cell infiltration in gliomas in the hope of find-
ing potential predictive targets for glioma immunother-
apy. The results of the ESTIMATE algorithm suggest that 
tumor stroma and immune cell infiltration are also higher 
in gliomas with higher glioma risk scores. Additionally, 
using the ssGSEA score based on immune cell markers 
obtained from TISIDB, we observed that gliomas in the 
high-risk score group exhibited higher levels of infiltra-
tion from immune cells such as regulatory T (Treg) cells 
and Th17 cells. It is worth noting that Treg cells [37] and 
Th17 cells [38] have been shown to have immunosup-
pressive effects on various malignancies. Thus, high-risk 
scores may indicate greater immunosuppression and 
immune evasion in glioma. However, CD8+ T cells, NK 
cells and dendritic cells were also more abundant in the 
high-risk scoring group. The three cells are thought to 
promote killing effect in immune responses against can-
cer cells [46–48]. This may be explained by the immuno-
suppressive microenvironment created by tumor cells, 
which hampers the function of these cells in antigen pre-
sentation and tumor killing by reducing self-antigens or 
changing the antigen type [35, 49], making it difficult for 
immune cells to exert their tumor-killing effects. More-
over, CIBERSORT analysis revealed an increased abun-
dance of resting NK cells and a decreased abundance of 
active NK cells in the high-risk score group. The high-risk 
score group also showed a significantly higher abundance 
of M2 macrophages, which are known to promote tumor 
growth, angiogenesis, and immunosuppression [50]. NK 
cells release cytotoxic particles, such as granzyme and 
perforin, that directly lyse tumor cells [51], thus suggest-
ing a correlation between high-risk score and enhanced 
immunosuppressive effects of the glioma microenviron-
ment. To summarize, our results indicate a correlation 
between risk score and immune cell infiltration in glioma. 
These findings suggest that tryptophan and nicotinamide 
metabolism may regulate the tumor microenvironment 
of glioma and could be potential targets for future glioma 
immunotherapy research.

The immune checkpoint plays a crucial role in regulat-
ing the immune system, maintaining autoimmune toler-
ance, and controlling the duration and extent of immune 
responses in peripheral tissues. However, cancer cells can 
evade immune surveillance and induce immune toler-
ance through immune checkpoints. Immune checkpoint 
inhibitor therapy is used to block the immunosuppressive 
effects of immune checkpoints, thereby regulating the 
activity of normal immune cells to exert an anti-tumor 
effect [52]. Nevertheless, the low response rate of this 
therapy remains a major obstacle to achieving its desired 
effects [53]. Thus, it is imperative to identify appropri-
ate markers that can predict individual responses to 
immune checkpoint therapy. Considering that immune 

checkpoint molecules are major targets for ICI therapy 
[54], our study explored the correlation between immune 
checkpoint expression and risk scores to assess the pre-
dictive value of risk scores for ICI therapy sensitivity. Our 
study showed that the high-risk score group exhibited 
higher levels of immune checkpoint molecule expres-
sion. This suggests that the higher risk score predicts a 
better response to ICI therapy in glioma patients. But our 
TIDE algorithm showed the higher risk score in patients 
predicted to be non-responders to ICI treatment, and 
Pearson coefficient also showed a significant positive cor-
relation between TIDE and risk score. Thus, the results 
of TIDE algorithm showed poor sensitivity to ICI treat-
ment in the high-risk score group, which contradicts the 
conclusions of the analysis of the expression of immune 
checkpoint molecules. The antitumor immune response 
is not only influenced by immune checkpoints, but also 
by other factors involved in regulating the dynamic pro-
cess of tumor immunity and the response of the immune 
checkpoint blockade. Tumor-intrinsic factors such as 
tumor mutation burden, MSI and extracellular vesicles, 
stromal and immune cell status in the tumor microen-
vironment, metabolic status of the tumor microenviron-
ment, and host systemic factors such as systemic immune 
response, gut microbiota, and hormone levels also have 
an impact on the level of response to ICI therapy [39, 
55]. Because multiple factors influence the sensitiv-
ity of ICI therapy, it is not rigorous enough to judge the 
sensitivity of ICI therapy solely by the expression level 
of immune checkpoint molecules. Then, the dysfunc-
tion score did not show significant differences between 
the high-risk score and low-risk score group, suggesting 
that the functional status of T cells was similar in both 
groups. The exclusion score of the high-risk score group 
were significantly higher than that of the low-risk score 
group, suggesting that the tumor microenvironment of 
the high-risk score group had a higher degree of rejection 
of immune cells, and that it was difficult for immune cells 
to play their killing role in the tumor microenvironment. 
And MSI score of the high-risk score group was signifi-
cantly lower than that of the low-risk score group, sug-
gesting that gliomas in the high-risk score group were 
less likely to be recognized by the immune system and 
responded poorly to ICI. Myeloid-derived suppressor 
cells (MDSCs) and cancer-associated fibroblasts (CAF) 
can prevent T-cell infiltration in tumor tissues by secret-
ing extracellular matrix and suppressor factors [56, 57]. 
MDSC scores and CAF scores were higher in the high-
risk score group suggesting that the immunosuppressive 
state of the tumor microenvironment of gliomas in the 
high-risk score group was stronger, which was not con-
ducive to the anti-tumor effects of the immune system. In 
conclusion, our study suggests that the risk score might 
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serve as a valuable predictor of ICI treatment sensitivity 
in gliomas.

Single-cell sequencing analysis is able to analyze the 
interior of a tumor at the individual cell level, allow-
ing for a more profound study of tumor heterogeneity, 
immune microenvironmental status, and other factors 
that influence the degree of tumor malignancy. In this 
study, single-cell RNA analysis was performed for seven 
genes involved in risk modeling. Our study shows that 
five of the seven genes are expressed at high levels in 
macrophages. And TIMP1 and CD44 were expressed 
at high levels in mesenchymal stem cells (MSCs). In the 
immune microenvironment of glioblastomas, tumor-
associated macrophages and microglia are the most cel-
lular immune cells in the tumor [58]. Macrophages in the 
glioblastoma immune microenvironment play an impor-
tant role in promoting tumor progression and inducing 
tumor immune escape [59]. Blocking TAM infiltration 
and inhibiting the immunosuppressive polarization state 
of TAM by chemical agents and activating TAM-medi-
ated phagocytosis against tumor cells have emerged as 
therapeutic strategies for glioblastomas targeting mac-
rophages in the tumor microenvironment [60]. The role 
of MSCs in glioma development and progression is more 
complex. Some studies have shown that MSCs can sup-
press the migration and invasion of U251 cells by inhib-
iting EMT [61]. However, it has also been shown that 
MSCs inhibit apoptosis in glioblastoma cells by promot-
ing chemokine expression [62]. In addition, MSCs are 
being explored as drug carriers in the treatment of IDH 
wild-type and mutant gliomas due to their advantage of 
crossing the blood-brain barrier to enter the interior of 
the tumor [63].

Given the high-risk coefficient of TGFBI in our risk 
model, we investigated its unique function in glioma 
cells and its potential involvement of FAK in regulating 
the biological behavior of TGFBI. TGFBI is an extracel-
lular matrix protein that binds to various ECM proteins, 
including fibronectin, laminin, glass connexin, and sev-
eral collagens, thereby contributing to the formation of 
the tumor microenvironment [64]. Epithelial-mesenchy-
mal transition refers to the process by which epithelial 
cells acquire mesenchymal characteristics. It gives cells 
the ability to metastasize and invade and is involved in 
the processes of cancer development, metastasis, drug 
resistance and immunosuppression [16]. FAK, a non-
receptor tyrosine kinase, is involved in a variety of cel-
lular activities, including growth factor signaling, cell 
motility, and cell cycle progression [21]. FAK can pro-
mote tumor progression, metastasis, and the formation 
of a tumor-immunosuppressive microenvironment by 
affecting the interaction of cancer cells with cells in the 
tumor microenvironment [21, 22]. Our research revealed 
that high levels of TGFBI expression significantly 

enhance the migratory, invasive, and EMT abilities of gli-
oma cells. Importantly, the addition of an FAK inhibitor 
counteracted the beneficial effects of TGFBI, indicating 
that TGFBI facilitates these processes by phosphorylating 
FAK. Numerous studies have demonstrated the involve-
ment of TGFBI in various biological activities associ-
ated with tumors. For example, the RNA binding protein 
LIN28B promotes the migration and epithelial-mesen-
chymal transition (EMT) changes of cholangiocarcinoma 
cells through TGFBI [65]. The interaction between DKK3 
and TGFBI in the extracellular matrix controls cell adhe-
sion and motility via signaling through focal adhesion 
kinase [66]. In breast cancer, TGFBI affects blood perfu-
sion and tumor tissue hypoxia, leading to its participation 
in tumor stemness and metastasis [67]. Moreover, the 
role of TGFBI in various cancers through the FAK path-
way has been extensively studied. TGFBI has been iden-
tified as a promoter molecule in gastrointestinal cancer 
and is involved in the regulation of survival and prolifera-
tion of liver cancer cells via activation of the FAK-AKT 
pathway [68]. Furthermore, TGFBI induces microtu-
bule stability and sensitizes ovarian tumors to paclitaxel 
through FAK and Rho-dependent microtubule stabiliza-
tion [69]. Given the high-risk coefficient of TGFBI in our 
risk model, we investigated its unique function in glioma 
cells and its potential involvement of FAK in regulating 
the biological behavior of TGFBI. Our research revealed 
that high levels of TGFBI expression significantly 
enhance the migratory, invasive, and EMT abilities of gli-
oma cells. Importantly, the addition of an FAK inhibitor 
counteracted the beneficial effects of TGFBI, indicating 
that TGFBI facilitates these processes by phosphorylating 
FAK. These findings validate the dependability of our risk 
model and suggest that TGFBI plays a role in the malig-
nant progression of gliomas.

In this study, a risk model related to nicotinamide and 
tryptophan metabolism in glioma was developed based 
on bioinformatics. The model has good predictive ability 
for the prognosis of glioma patients, the immune micro-
environmental status of glioma, and the effect of ICI 
treatment. However, this study still has some limitations. 
First, in the analysis of the seven genes involved in model-
ling with scRNA dataset, we used only the scRNA dataset 
for IDH wild-type gliomas for the analysis due to the lack 
of single-cell sequencing data for IDH mutant gliomas in 
the GEO database. This led to a lack of rigor in this study 
in determining the distribution of model-building-related 
genes in glioma cells. Second, there is a lack of further in 
vitro and in vivo experiments to validate the effects and 
potential mechanisms of the modelling related genes in 
the metabolism of nicotinamide and tryptophan of gli-
oma cells and in the clearance of glioma cells by immune 
cells. Therefore, the next step of this study aims to collect 
tumour samples from IDH wild-type and mutant gliomas 
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for single-cell sequencing analysis, supplemented by in 
vivo and in vitro experiments to explore the specific rela-
tionship between glioma metabolism and immunother-
apy, as well as the underlying mechanisms.

Conclusion
In summary, our study unveiled the notable elevation of 
nicotinamide and tryptophan metabolism was associated 
with increased malignancy and increased immune infil-
tration in gliomas. And we developed and validated prog-
nostic models based on these metabolic pathways. These 
findings offer a novel and targeted approach to predict 
the prognosis of glioma patients and their responsiveness 
to immunotherapy. Moreover, they open up potential 
avenues for identifying immunotherapy targets in glioma 
patients.
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