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Abstract
Background  Reference intervals, which define an interval in which a specific proportion of measurements from 
a healthy population are expected to fall, are commonly used in medical practice. Synthesizing information from 
multiple studies through meta-analysis can provide a more precise and representative reference interval than one 
derived from a single study. However, the current approaches for estimating the reference interval from a meta-
analysis mainly rely on aggregate data and require parametric distributional assumptions that cannot always be 
checked.

Methods  With the availability of individual participant data (IPD), non-parametric methods can be used to estimate 
reference intervals without any distributional assumptions. Furthermore, patient-level covariates can be introduced 
to estimate personalized reference intervals that may be more applicable to specific patients. This paper introduces 
quantile regression as a method to estimate the reference interval from an IPD meta-analysis under the fixed effects 
model.

Results  We compared several non-parametric bootstrap methods through simulation studies to account for within-
study correlation. Under fixed effects model, we recommend keeping the studies fixed and only randomly sampling 
subjects with replacement within each study. 

Conclusion  We proposed to use the quantile regression in the IPD meta-analysis to estimate the reference interval. 
Based on the simulation results, we identify an optimal bootstrap strategy for estimating the uncertainty of the 
estimated reference interval. An example of liver stiffness measurements, a clinically important diagnostic test 
without explicitly established reference range in children, is provided to demonstrate the use of quantile regression in 
estimating both overall and subject-specific reference intervals.
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Introduction
A reference interval, defined as “the values between 
which the test results of a specified percentage (usually 
95%) of apparently healthy individuals would fall” [1, 2], 
plays an important role in medical practice [3]. Estimat-
ing a reference interval from a single study may be lim-
ited by a relatively small sample size or not generalize to a 
broader population [4]. Therefore, synthesizing the infor-
mation from multiple studies in a meta-analysis can pro-
vide a more precise and representative reference interval.

Siegel et al., [5] recently pointed out some common 
misunderstandings in the estimation of reference inter-
vals from meta-analyses and proposed three different 
methods using aggregate data (mean, standard deviation, 
and sample size of each study) to estimate the reference 
interval from a random effects meta-analysis. Cao et al. 
[4] further proposed two methods (including the empiri-
cal method from Siegel et al.) extending the fixed effects 
meta-analysis model using the aggregate data. These 
methods assume the data within each study follow some 
parametric distribution (normal, log-normal, or other 
two parameter distributions). However, this distribu-
tional assumption often cannot be checked with only the 
aggregate data. Individual participant data (IPD) allow 
the assessment of the within-study distributional assump-
tion; the previously proposed methods for estimating the 
reference interval can then be used after aggregating IPD. 
Siegel et al. [3] also demonstrated alternative versions of 
these methods fit directly using the IPD. Alternatively, 
Khoshdel et al. [6] used fractional polynomial functions 
to estimate the age-specific reference interval for pulse 
wave velocity through a meta-analysis.

Quantile regression [7] has been widely used in eco-
nomics, statistics, and medical research [8]. It estimates 
the conditional quantile instead of the usual conditional 
mean as in ordinary linear regression [9] and does not 
require any distributional assumptions. Thus, it can be 
more flexible and robust for some non-normal scenar-
ios. See the Supplementary Material for further details. 
Quantile regression has been applied to estimate the ref-
erence interval for a single data set [8, 10]. Additionally, 
it has been used to estimate growth charts [11], normal 
response amplitudes of nerves conditions [12], and a ref-
erence interval for the Singapore Caregiver Quality of 
Life Scale (SCQOLS) [13]. We introduce quantile regres-
sion for estimating the reference interval from an IPD 
meta-analysis as a complement to the other parametric 
methods, especially when avoiding a within-study dis-
tributional assumption is desired. We also demonstrate 
how to account for patient-level differences and estimate 
personalized reference intervals using covariates such as 
age or sex.

Methodology
Meta-analysis models
Assume there are K  studies in the meta-analysis, where 
each study contains ni,i = 1, . . . , K, subjects. Denote 
the underlying mean of study i  as θ i . Traditionally, there 
are three meta-analysis models to explain the difference 
of the study means. The common effect model assumes a 
common true mean for each study and attributes any dif-
ferences to sampling variation. The random effects model 
assumes that the true means of each study differ and fol-
low a common (usually normal) distribution. The overall 
population is then defined hierarchically through the dis-
tribution of the study means and the subsequent distri-
bution of the measurements within each study [14, 15]. 
The number of studies in the meta-analysis is commonly 
relatively small (around 5 or less); assuming a paramet-
ric distribution for the study means in this setting may 
be undesirable, as this assumption is hard to defend [16] 
and the between study variance is difficult to estimate. 
In these cases, the fixed effects model is often prefer-
able; this also assumes that each study mean is different, 
though unlike the random effects model, it does not have 
a distributional assumption on the study means [17–19]. 
The fixed effects model instead assumes the collection of 
studies is representative of the overall population [20]. 
The overall population is thus defined as the aggregated 
population of the included studies. Then, the cumula-
tive distribution function (CDF) of the overall popula-
tion F  can be estimated as the mixture of each study’s 
distribution:

	
F̂ =

∑ K

i=1

wiF̂i∑ n
i=1wi

,where wi  is the weight for study i . Some common 
choices for the weights include sample size weights or the 
inverse variance weights. Denote the true overall popula-
tion as F ; the 95%  reference interval can then be defined 
as [L, U ] where L and U  are the 0.025 and 0.975 quan-
tiles of F  respectively.

Note that, if we use study i ’s empirical CDF F̂i  to esti-
mate its distribution function Fi , the estimated overall 
distribution F̂ =

∑ K
i=1

wiF̂i∑ n
i=1wi

 with wi = ni  as the sam-
ple size weights is the same as the empirical distribution 
of the pooled data. Therefore, since the quantile regres-
sion provides a consistent estimator of the conditional 
τ = 0.025 and τ = 0.975 quantiles for the pooled sam-
ple [21, 22], it is also a consistent estimator of the upper 
and lower bound of the 95%  reference interval defined 
previously.
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Using quantile regression to estimate the reference 
interval
We use sample size weights for each study (wi = ni)  
and let F̂i  be the empirical distribution of study i ’s 
sample. Once we have the individual participant data 
(IPD), the empirical distribution of the pooled IPD 
sample is the same as the estimated overall distribution 
F̂ =

∑ K
i=1wiF̂i/

∑ K
i=1wi . Therefore, performing quantile 

regression on the pooled IPD sample is similar to using a 
fixed effects model with respect to the study means. The 
upper and lower bounds of the 95%  reference interval can 
be estimated by setting τ = 0.025 and τ = 0.975 in two 
quantile regression models, respectively. Covariates, such 
as age, can be applied to investigate their relationship 
with the estimated reference interval. Instead of specify-
ing the mean and variance of the measurement’s distri-
bution (and estimating how covariates influence them), 
quantile regression directly estimates the quantiles of the 
target measurement’s distribution and thus more flex-
ibly describes how these covariates relate to the reference 
interval. The reference interval derived from the pooled 
IPD thus reflects the normative range of the measure-
ment across the target population, which is defined as the 
combined populations of each included study under the 
fixed effects model. If no covariates are used in the quan-
tile regression, the estimated limits of the 95%  reference 
interval are equivalent to the τ = 0.025 and τ = 0.975
sample quantiles.

Inference about the estimated reference interval
We use non-parametric bootstrap resampling methods 
to estimate the uncertainty in the limits of the estimated 
reference interval. Since the IPD are clustered by study, 
simply randomly sampling the pooled data with replace-
ment does not consider the correlation and data struc-
ture within each study. The bootstrap method should 
account for this hierarchical structure of the IPD data. 
Both parametric and non-parametric bootstrap meth-
ods for clustered data have been proposed and studied 
in recent years [23–28]. However, unlike the common 
longitudinal data situation of a relatively large number of 
clusters and small number of observations within each 
cluster, meta-analysis typically contains fewer studies 
(i.e., clusters) and a relatively large number of observa-
tions (i.e., participants) within each study. Therefore, we 
use simulation studies to examine the performance of dif-
ferent bootstrap strategies.

For the non-parametric bootstrap, generally there are 
four potential strategies for bootstrapping the clustered 
data. The first layer of the data represents each study, 
and the second layer represents individuals within each 
study. Strategy 1 fixed the first layer (each study) without 
sampling (so that all studies are included) and for each 
study randomly samples the second layer (individual 

data within each study) with replacement, therefore we 
name it as the NY method, where N refers to “without 
sampling” and Y refers to “sampling with replacement”. 
Strategies 2 and 3 both sample the first layer with replace-
ment; for each included study, strategy 2 then samples 
the second layer with replacement (named as the YY 
method) and strategy 3 without replacement (named as 
the YN method). Note that, for each included study, the 
resample of the second layer has the same sample size as 
the original study. Therefore, the sample without replace-
ment just includes all subjects in the selected study. Strat-
egy 4 ignores the structure of clustered data and simply 
samples the pooled dataset with replacement; therefore, 
we name it the “naïve method”.

For hierarchical data analyzed with random effects 
model, Ren et al. [28] advocate the use the YN strategy, 
claiming it mimics the variation properties of the data 
best. Alternatively, Field et al., [24] studied the asymp-
totic properties of different bootstrap methods and 
concluded that NY method is asymptotically consistent 
under an asymptotically infinite number of clusters under 
the random effects model. However, as mentioned ear-
lier, in practice, the number of clusters in a meta-analysis 
is often small, and thus asymptotic results may not apply. 
In addition to non-parametric bootstrap methods, we 
also consider the cluster-robust bootstrap method pro-
posed by Andreas Hagemann [29] for the quantile which 
is implemented in the R package “quantreg”. This wild 
bootstrap method does not directly resample from the 
observed data; it instead draws independent and identi-
cally distributed (iid) values with mean 0 and variance 1 
and multiplies them by the residuals of the model to gen-
erate observations. They then use the generated obser-
vations to refit the model and produce the bootstrap 
sample. We refer to this as the “Wild” bootstrap strategy.

Simulation
Simulation methods
The setting of meta-analysis can involve extreme scenar-
ios that may influence the relative performances of the 
different bootstrap methods when estimating standard 
errors and confidence intervals. For example, the number 
of studies is often very small (less than 10) with unbal-
anced sample sizes. Also, the quantiles to be estimated 
for a reference interval are typically very close to the tails 
and thus may be highly variable due to the relatively small 
sample size. Therefore, we conducted simulation studies 
to explore the performance of different bootstrap strate-
gies in estimating the uncertainty of the quantile regres-
sion estimators for the reference interval limits.

We first simulated each study mean θ i, i = 1, . . . , K  
according to a normal distribution, θi∼ N (0, τ2), where 
τ 2 = 1 represents the between study heterogeneity. 
Then, for each simulation replication, we fixed θ i  and 
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generated Yij, i = 1, . . . , K, j = 1, . . . , ni , the indi-
vidual observations from each study, according to a 
normal distribution with mean θ i  and standard devia-
tion σ 2 = 3.  Here, the data generating mechanism 
follows the fixed effects model where we do not regen-
erate the underlying study means over the simulation 
replications. We also considered cases where observa-
tions followed a gamma distribution with shape param-
eter α = θ 2

i /σ
2 and scale parameter β = σ 2/θ i . We 

considered K = 5, 10 to represent situations with a 
limited number of studies. We also included both bal-
anced and unbalanced cases for the number of par-
ticipants in each study. For the balanced study cases, 
eachni = 60× m  where m = 1, 2, 3  be the multiplier 
of the sample size within each study; for the unbalanced 
cases, the sample sizes ni i = 1, . . . , 10  were chosen as 
(20,20,40,40,60,60,80,80,100,100)× m  if K = 10 and 
(20,40,60,80,100)× m  if K = 5.

Results
The simulation results can be seen in Tables 1, 2 and 3. 
For each bootstrap method, we calculated the averages 
of the estimated bootstrap standard errors of the upper 

reference interval limits (0.975 quantile) across the 1,000 
replications. In Table  1, each result is compared with 
the empirical standard deviation of the estimated upper 
limits over the 1,000 replications. Additionally, 95% con-
fidence intervals were calculated from the sample 0.025 
and 0.975 quantiles of the bootstrap sample. The corre-
sponding coverage rates are displayed in Table 2 to show 
the performance of each bootstrap confidence interval in 
maintaining the nominal coverage probability.

Among all the bootstrap methods, the NY method 
which samples the first layer without replacement (i.e., 
we take all studies) and the second layer with replace-
ment gives a mean SE closest to the empirical one and 
thus has the best performance. The YY method and YN 
method both generate estimated standard errors much 
larger than the empirical standard errors. This is not 
unexpected since the true data generating mechanism is 
under the fixed effects model and thus leaves the study 
means unchanged for each iteration. The bootstrap 
methods which sample the first layer of study means with 
replacement (YN and YY methods) tend to have larger 
variations since they account for additional variability 
in the study means compared to the fixed effects model 

Table 1  Simulation results for the estimated standard error for the estimator of the 0.975 quantile. “NY”, “YY”, “YN”, “Wild” and “Naïve” 
are the methods described in Sect. 2.3. The “Emp” SE is the standard deviation of the simulated quantiles. Column “m” represents the 
multiplier of the number of subjects within each study (60× m  subjects each study for the balanced case, for unbalanced case 
(20,20,40,40,60,60,80,80,100,100)× m  if K = 10 and (20,40,60,80,100)× m  if K = 5). “Balance” represents whether 
the sample sizes for each study is balanced or not. “Dist” represents the distribution within each study where “G” represent Gamma 
distribution and “N” represent normal distribution
m Study # Balance Dist Emp NY YY YN Wild Naïve
1 5 Balanced G 0.214 0.224 2.756 2.748 111.029 0.237

N 0.174 0.174 0.400 0.361 13.544 0.177
Unbalanced G 0.196 0.202 2.978 2.971 160.658 0.208

N 0.178 0.180 0.473 0.436 31.631 0.184
10 Balanced G 0.175 0.185 1.855 1.846 135.163 0.212

N 0.126 0.129 0.364 0.341 13.871 0.133
Unbalanced G 0.182 0.184 1.897 1.892 160.124 0.211

N 0.132 0.136 0.464 0.445 34.339 0.142
2 5 Balanced G 0.154 0.159 2.750 2.747 113.935 0.168

N 0.121 0.119 0.366 0.346 9.123 0.121
Unbalanced G 0.140 0.142 2.977 2.973 163.480 0.145

N 0.120 0.125 0.439 0.418 32.783 0.128
10 Balanced G 0.126 0.131 1.848 1.848 139.972 0.149

N 0.094 0.091 0.342 0.332 11.993 0.094
Unbalanced G 0.130 0.131 1.885 1.884 162.344 0.149

N 0.096 0.095 0.443 0.433 35.185 0.099
4 5 Balanced G 0.125 0.129 2.745 2.745 114.458 0.137

N 0.100 0.100 0.355 0.340 6.128 0.101
Unbalanced G 0.111 0.115 2.979 2.970 164.850 0.119

N 0.097 0.103 0.426 0.411 32.988 0.105
10 Balanced G 0.107 0.106 1.847 1.845 141.874 0.120

N 0.074 0.076 0.336 0.329 11.417 0.077
Unbalanced G 0.105 0.107 1.891 1.880 162.325 0.121

N 0.076 0.080 0.438 0.429 34.710 0.082
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under which the data were generated. The naïve method 
which resamples the pooled population with replacement 
has a slightly larger estimated SD compared with the 
NY method. We believe this is due to the fact that in the 
naïve method, the sample size of each individual study 
is changed for each bootstrap iteration, thus causing 
the study weights to differ across bootstrap samples and 
introducing extra variability. The wild bootstrap strategy 
tended to give extremely large standard errors under our 
simulation settings and was thus not optimal for the fixed 
effects meta-analysis.

For the coverage results of 0.975 quantile (Table 2), the 
NY method yields slightly smaller coverage rates (around 
93%) in many simulation conditions while the naïve 
method has the coverage rate closer to 95% in some cases. 
We interpreted the slightly low coverage rate for the NY 
method as the effect of the extreme quantiles (0.975), 
since data points that are close to the tails of the distri-
bution are likely to not be resampled. We hypothesized 
that the higher coverage rate (closer to 95%) for the naïve 
method was a result of the additional variability in the 
bootstrap resamples due to differing study weights coun-
teracting the effect of the extreme quantiles (which can 
decrease the coverage rate). We then further conducted a 

simulation where we estimated the 0.9 quantile instead of 
the 0.975 quantile, thus significantly reducing the effect 
of the extreme quantiles. The results for the coverage rate 
can be seen in Table  3 where the coverage rate for the 
naïve method is very close to 100% in many cases while 
the NY method still has good performance. Thus, we 
concluded that the NY method is the optimal method for 
the fixed effects model. We also obtained results for the 
0.025 and 0.1 quantiles from the same set of simulations 
used to evaluate the upper quantile. The results which are 
consistent with those for the upper quantile are detailed 
in the Supplementary materials.

In addition to comparing various bootstrap methods, 
we assessed the performance of the estimated 95% refer-
ence interval itself under identical simulation conditions. 
The results are presented in Table S6 of the Supplemen-
tary Material. For each simulation iteration, we employed 
the Monte Carlo method to calculate the observed cov-
erage proportion for the estimated reference interval. 
We defined this as the proportion of values from the 
population distribution that are included in the estimated 
reference interval. Subsequently, the mean coverage pro-
portion was determined by computing the mean value 
of the coverage proportion across the 1000 simulation 

Table 2  Simulation results for the 95% coverage rate for the estimator of the 0.975 quantile. “NY”, “YY”, “YN”, “Wild” and “Naïve” 
are the evaluated methods described in Sect. 2.3. Column “m” represents the multiplier of the number of subjects within each 
study (60× m  subjects each study for the balanced case, for unbalanced case (20,40,60,80,100)× m  if K = 5 and 
(20,20,40,40,60,60,80,80,100,100)× m  if K = 10). “Balance” represents whether the sample sizes for each study is balanced or 
not. “Dist” represents the distribution within each study where “G” represent Gamma distribution and “N” represent normal distribution
m Study # Balance Dist NY YY YN Wild Naïve
1 5 Balanced G 0.936 0.991 0.985 1 0.948

N 0.917 0.981 0.921 0.988 0.923
Unbalanced G 0.937 0.98 0.951 1 0.933

N 0.92875 0.986 0.958 0.994 0.935
10 Balanced G 0.94 1 1 1 0.966

N 0.942 0.996 0.989 1 0.948
Unbalanced G 0.935 0.999 0.999 1 0.96

N 0.934 0.999 0.992 1 0.942
2 5 Balanced G 0.933 1 1 1 0.953

N 0.926 0.995 0.983 0.998 0.93
Unbalanced G 0.931 0.996 0.991 1 0.941

N 0.945 0.995 0.989 1 0.947
10 Balanced G 0.943 1 1 1 0.964

N 0.933 1 1 1 0.94
Unbalanced G 0.941 1 1 1 0.965

N 0.921 1 1 1 0.931
4 5 Balanced G 0.94 1 1 1 0.951

N 0.923 0.997 0.992 1 0.928
Unbalanced G 0.956 1 1 1 0.96

N 0.941 0.999 0.997 1 0.942
10 Balanced G 0.94 1 1 1 0.965

N 0.941 1 1 1 0.941
Unbalanced G 0.937 1 1 1 0.967

N 0.95 1 1 1 0.959
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replications. The theoretical length of the reference inter-
val was derived as the difference between the 0.025 and 
0.975 quantiles of the population distribution. Table S6 
shows that the mean coverage rate was near 95% and the 
mean width of the reference interval was near the theo-
retical length in all scenarios.

Case study
Chronic liver disease is a condition associated with 
important morbidity and mortality, often from progres-
sion to liver fibrosis (scarring) which eventually leads to 
cirrhosis, an end-stage complication with poor progno-
sis. It is challenging to monitor patients for progression 
of this fibrosis because of paucity of symptoms [30, 31]. 
The gold standard for assessing liver fibrosis is a liver 
biopsy, which usually takes a 1–3  cm specimen from 
the liver for examination [32]. This invasive procedure is 
burdensome to patients and can have serious complica-
tions, including death in some rare situations [33]. The 
FibroScan® is newly developed noninvasive approach 
for assessing liver stiffness (a surrogate of fibrosis) with 
greater safety and convenience. Liver stiffness measure-
ments of 8 and 12.5 kPa using the FibroScan® represent 

generally accepted cut-off values for F3 fibrosis (advanced 
fibrosis) and F4 fibrosis (cirrhosis) [31]. However, there is 
no consensus on the reference interval for liver stiffness 
in children.

Li et al., [34] recently performed a meta-analysis with 
individual participant data to estimate a reference inter-
val for the liver stiffness of healthy children. Specifically, 
they included studies with apparently healthy individuals 
(no obesity or known liver disease) and age less than 18 
years old. Additionally, only studies that used a standard 
small (S1 and S2) or standard medium (M) probe were 
included. With these criteria, they identified 5 stud-
ies with a total sample size 652, in which 588 (90.2%) 
were in the older group (larger than 3 years old) and 64 
(9.8%) were in the younger group (smaller than 3 years 
old). They defined the reference interval (which is 87.5% 
instead of 95%) as bounded by 2.5th and 90th percen-
tiles of the liver stiffness measure which corresponded to 
2.45–5.56 kPa for healthy children in their dataset. Here, 
we re-analyze data from the older group of their primary 
analysis cohort (age ≥ 3 years; 588 individuals from 5 
studies) using the proposed quantile regression method 
to estimate the reference interval for the liver stiffness 

Table 3  Simulation results for the 95% coverage rate for the estimator of the 0.9 quantile. “NY”, “YY”, “YN”, “Wild” and “Naïve” 
are the evaluated methods described in Sect. 2.3. Column “m” represents the multiplier of the number of subjects within each 
study (60× m  subjects each study for the balanced case, for unbalanced case (20,40,60,80,100)× m  if K = 5 and 
(20,20,40,40,60,60,80,80,100,100)× m  if K = 10). Column “Balance” represents whether the sample sizes for each study is 
balanced or not. Column “Dist” represents the distribution within each study where “G” represent Gamma distribution and “N” represent 
normal distribution
m Study # Balance Dist NY YY YN Wild Naïve
1 5 Balanced G 0.934 1 1 1 0.991

N 0.951 1 0.999 1 0.96
Unbalanced G 0.933 1 1 1 0.966

N 0.93 1 0.999 1 0.942
10 Balanced G 0.922 1 1 1 1

N 0.938 1 1 1 0.962
Unbalanced G 0.936 1 1 1 0.999

N 0.931 1 1 1 0.961
2 5 Balanced G 0.936 1 1 1 0.99

N 0.935 1 1 1 0.956
Unbalanced G 0.956 1 1 1 0.972

N 0.943 1 1 1 0.952
10 Balanced G 0.929 1 1 1 1

N 0.944 1 1 1 0.964
Unbalanced G 0.944 1 1 1 1

N 0.951 1 1 1 0.972
3 5 Balanced G 0.936 1 1 1 0.985

N 0.925 1 1 1 0.939
Unbalanced G 0.946 1 1 1 0.974

N 0.958 1 1 1 0.965
10 Balanced G 0.937 1 1 1 1

N 0.943 1 1 1 0.966
Unbalanced G 0.936 1 1 1 1

N 0.954 1 1 1 0.978
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measure both overall as well as for specific values of 
covariates. To be consistent with their analysis results, 
we use the 0.025 and 0.9 quantile as the lower and upper 
bound of the reference interval. This will lead to an 87.5% 
reference interval instead of the conventional 95% refer-
ence interval.

We focused on the following covariates identified in the 
original study: race (Caucasian or other), sex (male and 
female), probe type (S probe or M probe), BMI, age, and 
sedation status (whether the child was sedated during 
the measurement). Starting with the full model contain-
ing all six prespecified covariates, we employed backward 
selection based on the p-value of each covariate (covari-
ates with the largest p-value will be excluded unless it is 
smaller than 0.05) to obtain the final multivariable quan-
tile regression models for the upper and lower bounds of 
the reference interval. Despite selecting the upper and 
lower bounds separately, the final models both included 
age and probe type as the selected covariates (presented 
in Table 4). Figure 1 shows the estimated upper and lower 
limits of the reference interval by age and probe type. 
The results indicate that a one-year difference in age was 
associated with a 0.127  kPa higher upper limit of the 
reference interval and a 0.041  kPa higher lower limit of 
the reference interval, suggesting that older patients are 

expected to have higher liver stiffness measurements, 
while still being considered healthy. Similarly, the M 
probe type was associated with upper and lower refer-
ence interval limits of 1.296 kPa and 0.835 kPa less than 
the S probe type, respectively, indicating that healthy 
patients using the S probe are likely to have higher liver 
stiffness measures.

The observed impact of age appears to be more pro-
nounced on the upper limit of the reference interval. 
To investigate this further, we explored its effect on the 
median liver stiffness measurement (0.5 quantile); the 
findings presented in Table  4. While age remains sig-
nificantly associated with median liver stiffness, its slope 
(0.03) is considerably smaller than for the upper refer-
ence limit (0.127). This suggests that the increase in age 
predominantly affects the upper bounds of the reference 
interval rather than the median of the population.

Discussion
In this paper, we introduce quantile regression as a 
method for estimating the reference interval from an 
IPD meta-analysis without assuming a specific within-
study distribution. We adopted the fixed effects model 
which assumes the samples from different studies are 
independently distributed and they together form a rep-
resentative population. For the fixed effects model, we 
found that the best performing bootstrap method keep 
the studies fixed and only randomly sampling subjects 
with replacement within each study to incorporate the 
clustered data structure. This is different from previ-
ous recommendations under the random effects model, 
where the optimal choice is to sample the first layer with 
replacement and the second layer without replacement 
(the YN method; see Ren et al., 201028) As illustrated in 
Table 2, other bootstrap methods can lead to likely over-
estimated standard errors, greatly reducing power. If 
the meta-analysis has a large number of studies (usually 

Table 4  Multivariable quantile regression results for reference 
interval limits. Lower and upper bound are estimated as 0.025 
and 0.9 quantile from the regression. Standard errors are 
estimated using the NY bootstrap strategy
Bound Covariates Coefficients Standard Error P-value
Lower M probe -0.834 0.135 < 0.001

Age 0.041 0.017 0.017
Upper M probe -1.296 0.271 < 0.001

Age 0.127 0.043 0.003
Median M probe -0.807 0.119 < 0.001

Age 0.030 0.015 0.046

Fig. 1  Scatter plot for relationship of the liver stiffness measure and BMI. Two dashed lines at the top are the fitted 97.5% quantile regression lines, two 
dashed lines at the bottom are the fitted 2.5% quantile regression lines. Red dashed lines are the reference interval for M probe and the blue dashed lines 
are the reference interval for the S probe
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larger than 15), a random effects model can be applied 
to estimate the between study heterogeneity [35]. Then, 
the bootstrap method should be modified to reflect ran-
dom effects modeling assumption that the study means 
are sampled from some distribution. Further study can 
explore the best bootstrap method for the random effects 
model in the meta-analysis setting where the cluster 
number is relatively small.

Compared with the methods for estimating the refer-
ence interval from aggregate data meta-analysis, using 
the quantile regression with IPD not only has flexible dis-
tributional assumptions but also enables researchers to 
explore the heterogeneity of the reference interval within 
the population. In the case study, we identified several 
covariates (such as the type of used probe) that may 
potentially influence the upper or lower bound of the 
reference interval for the liver stiffness measure. These 
findings allow for the creation of personalized reference 
intervals based on individual patient characteristics, 
increasing the accuracy of estimated reference intervals 
in medical practice. For simplicity, we used backwards 
selection based on the p-value to identify covariates to 
include in the final case study models. In practice, it may 
be advisable to consider other methods of variable selec-
tion, such as those using the AIC. Further work could 
also explore the use of penalized quantile regression 
methods [36–38]. Although the estimation of the subject 
specific reference interval depends on the correct specifi-
cation of the quantile regression model, researchers have 
shown the robustness of quantile regression in estimating 
the conditional quantile [39].

One limitation of this method for estimating the refer-
ence interval is that it is highly dependent on the included 
population. With the use of the fixed effects meta-analy-
sis model, we implicitly assume that the population from 
the included studies reflects the true population of inter-
est. Thus, the estimated reference interval is based on the 
aggregated study populations which, in some scenarios, 
may not reflect the exact population of interest. Although 
this may be mitigated by including covariates, research-
ers should carefully consider the target population.
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