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Abstract

Objective: Novel technology-based interventions have the potential to improve

motor symptoms and gait in Parkinson’s disease (PD). Promising treatments

include virtual-reality (VR) training, robotic assistance, and biofeedback. Their

effectiveness remains unclear, and thus, we conducted a Bayesian network

meta-analysis. Methods: We searched the Medline, Embase, Cochrane CEN-

TRAL, and Clinicaltrials.gov databases until 2 April 2024 and only included

randomized controlled trials. Outcomes included changes in UPDRS-III/MDS-

UPDRS-III score, stride length, 10-meter walk test (10MWT), timed up-and-go

(TUG) test, balance scale scores and quality-of-life (QoL) scores. Results were

reported as mean differences (MD) or standardized mean differences (SMD),

with 95% credible intervals (95% CrI). Results: Fifty-one randomized con-

trolled trials with 2095 patients were included. For UPDRS (motor outcome),

all interventions had similar efficacies. VR intervention was the most effective

in improving TUG compared with control (MD: �4.36, 95% CrI: �8.57,

�0.35), outperforming robotic, exercise, and proprioceptive interventions. Pro-

prioceptive intervention significantly improved stride length compared to con-

trol intervention (MD: 0.11 m, 95% CrI: 0.03, 0.19), outperforming VR,

robotic and exercise interventions. Virtual reality improved balance scale scores

significantly compared to exercise intervention (SMD: 0.75, 95% CrI: 0.12,

1.39) and control intervention (SMD: 1.42, 95% CrI: 0.06, 2.77). Virtual reality

intervention significantly improved QoL scores compared to control interven-

tion (SMD: �0.95, 95% CrI: �1.43, �0.52), outperforming Internet-based

interventions. Interpretation: VR-based and proprioceptive interventions were

the most promising interventions, consistently ranking as the top treatment

choices for most outcomes. Their use in clinical practice could be helpful in

managing motor symptoms and QoL in PD.

Introduction

With the fast aging of the world’s population, the preva-

lence of Parkinson’s disease (PD),1,2 a neurodegenerative

condition, will increase significantly. In 2016, it was esti-

mated that the 6.1 million people live with PD globally.3

From 1990 to 2016, the age-standardized rate of preva-

lence had increased by 22%, and age-standardized change

in disability-adjusted life years has also increased.4 PD

patients present with bradykinesia, defined as slowness of

movement and reduction in amplitude or speed as move-

ments, are continued, in combination with either rest

tremor, rigidity, or both.5–8 Postural instability often pre-

sent later in the course of the disease. Such symptoms

vastly affect patients’ motor ability and their quality of

life (QoL).9,10

There is increasing interest in motor-cognitive rehabili-

tation therapies for PD patients but their effectiveness

remains to be clarified.11 Pharmacologic therapies includ-

ing dopaminergic drugs such as levodopa and dopamine
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agonists2 are frequently associated with long-term compli-

cations such as dyskinesias and motor fluctuations2,6 and

can also aggravate nonmotor parkinsonian symptoms

such as hallucinations, cognitive impairment, and ortho-

static hypotension. Several motor features, including gait

and balance, do not typically respond to levodopa.12

Another common treatment is deep brain stimulation,

which involves sending electrical signals to specific brain

nuclei. While it has been proven effective in improving

quality of life and “appendicular” motor symptoms such

as limb tremor, it remains insufficient in reducing axial

motor symptoms such as gait impairment and postural

abnormalities13 and has been shown to worsen speech

intelligibility.14

Balance and gait are motor outcomes that are fre-

quently affected in PD. These alterations are often associ-

ated with diminished functional ability, poor prognosis,

and frequent falls.15 To supplement pharmacological and

surgical treatment, there has been an increasing focus on

using technology-based interventions to improve motor

outcomes and quality of life.16–19 Virtual-reality (VR)

training has been effective in improving motor function

in chronic stroke patients.20 VR technology can provide

PD patients with a safe and effective environment to

undergo training and rehabilitation.16 Rehabilitation

assisted by robotic machines also serve to help patients

achieve better motor outcomes by acting as a force multi-

plier for conventional physiotherapy and training.17 Reha-

bilitation approaches such as peripheral stimulation are

noninvasive, and they show potential in improving motor

outcomes.18 Internet-based interventions are also of note

as they improve access to care for patients,19 hence allow-

ing for better follow-up with patients that can contribute

to positive outcomes. As motor functions may be influ-

enced by one’s cognitive ability,21 interventions that inte-

grate motor and cognitive aspects have the potential to

lead to better motor outcomes in rehabilitation.22–24

Technology-based interventions, such as the addition of a

VR component to treadmill training, show promise in

delivering outcomes in both motor and cognitive

domains through an integrated motor-cognitive

approach.25 Therefore, these technology-based interven-

tions may be used to complement ongoing pharmacologi-

cal or surgical treatment and improve rehabilitation

outcomes for patients.

However, for technology-based interventions, there are

few large-scale randomized controlled trials evaluating the

effectiveness of available interventions, and very few stud-

ies have directly compared the interventions against each

other. Randomized controlled trials comparing several

treatments are usually not feasible26 due to sample size

limitations, and conclusions concerning the effectiveness

of these interventions are varied. To our knowledge, there

is no existing study that directly compares the effects of

these interventions. To address this gap in knowledge, we

conducted a network meta-analysis, which allows for

direct and indirect comparison26 among Internet-based,

proprioceptive, robotic, and VR interventions against

active and inactive controls, and their effects on QoL,

gait, and balance parameters. For this study,

Internet-based interventions were defined as any form of

telemedicine, or any intervention which involved the

input of healthcare professionals remotely via online

means. Proprioceptive interventions were defined as any

intervention that increased the proprioceptive input to

the patient (e.g., through mechanical pressure stimula-

tions or vibrations). Robotic interventions, inclusive of

gait and balance training assistance, utilized robotic

means to facilitate sensorimotor rehabilitation to the

patients.27 Virtual reality interventions generate an envi-

ronment in which the patient can interact in a manner

that is similar to a physical place.28

With improved understanding of the impact of these

interventions, the potential of these interventions can be

better maximized to improve overall rehabilitation

outcomes.

Methods

Search strategy

This network meta-analysis was conducted following the

Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA) guidelines (PROSPERO

CRD42022301160).29 The PRISMA checklist can be found

in Supplementary Material S1. The Medline, Embase,

Cochrane CENTRAL, and Clinicaltrials.gov databases

were searched from inception until 2 April 2024. The

search strategy involved keywords and MeSH terms syn-

onymous to “Parkinson Disease”, “robotics”,

“internet-based”, “virtual reality”, “biofeedback”, “physi-

cal stimulation”, “exergaming”, and “rehabilitation”. Ref-

erences of related reviews were screened to ensure a

comprehensive search. A copy of the search strategies can

be found in Supplementary Material – Table S1.

Study selection and data extraction

Four independent authors (CEY, ECKH, NYO, and CJKL)

carried out the eligibility assessment in an independent

and blinded manner. The authors screened the titles and

abstracts before retrieving and reviewing the full texts. A

third independent author (ASM) was involved in the res-

olution of disputes. Only randomized controlled trials

with more than 10 participants in each arm were

included. Observational studies, case–control studies,
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reviews, meta-analyses, editorials, commentaries, confer-

ence abstracts, and non-English language articles were

excluded. Studies were included if they (i) were random-

ized controlled trials that (ii) evaluated outcomes related

to balance and gait (iii) in patients with PD.

The primary study outcomes were changes in measures

for UPDRS (motor outcome), stride length, 10-meter

walk test (10MWT), timed up-and-go (TUG) test, balance

scale scores, and QoL indices.

All controls for the studies, excluding the propriocep-

tive studies, were either usual care or active controls,

where participants engaged in exercise or conventional

physical therapy. For three-armed studies with two active

controls, the more common active control was chosen.

For three-armed studies with an active control and usual

care, all three arms were included. For the proprioceptive

studies, controls were placebos. For the reporting of the

results, active controls are labeled “Exercise,” while usual

care/placebo are labeled “Control.”

Data were extracted by four authors (YCE, ECKH, NYO,

and CJKL) in an independent and blinded manner. The fol-

lowing variables were extracted: (i) baseline demographics:

age, gender, disease duration, MDS-UPDRS/UPDRS Section

III scores and (ii) changes in MDS-UPDRS/UPDRS Section

III score, stride length, 10MWT, TUG test, balance scale

scores (e.g., Mini Balance Evaluation Systems Test scores and

Parkinson Disease Questionnaire Scores), and Quality of Life

scores (e.g., SF-36 and PDQ-39).

Statistical analysis

All analyses were conducted in RStudio (Version 4.0.3). The

Bayesian network meta-analysis was performed with the

BUGSnet package. Mean differences (MD), standardized

mean differences (SMD), and 95% credible intervals (95%

CrI) were used. MD was calculated for stride length,

10MWT, and TUG test as these were continuous outcomes.

A variety of scales were used for the outcomes of UPDRS

(motor outcome), balance, and QoL scores. Hence for these

outcomes, we calculated SMD, which is often employed to

compare and meta-analyse heterogenous measures of an

outcome.30,31 Treatment groups were namely (i) Internet-

based, (ii) proprioceptive, (iii) robot, and (iv) VR. For the

purposes of analysis and reporting, we used the operational

definitions as laid out in the introduction. Additionally, bio-

feedback and physical stimulation treatment groups were

combined under the proprioceptive group as they exert their

treatment effects with the same principle of increasing the

level of proprioceptive input to the patient.32–36 Exergaming

studies were subsumed under the VR treatment group if they

had elements of immersive or nonimmersive VR (e.g., Xbox

Kinect). We conducted Markov Chain Monte Carlo simula-

tions using vague priors37 and a generalized linear model

with Gaussian family distribution and an identity link

function.38 The setting of 10,000 burn-ins, 100,000 itera-

tions, and 1,000 adaptations was used when conducting the

analysis. Trace and density plots were used to assess for

model convergence and consistency. Deviance information

criterion and individual datapoint posterior mean deviance

contribution were used to compare goodness of fit between

the consistency and inconsistency models.38 The deviance

information criterion was also used to select between a

fixed-effects or random-effects model.38 The random-effects

model was ultimately chosen for all outcomes as it mini-

mized the deviance information criterion. The output of the

network analysis was presented as a heat plot, in which a

blue cell indicates a positive value and a yellow cell indicates

a negative value. For TUG, UPDRS (motor outcome), and

QoL, a negative value indicates an improvement in the out-

come (favoring the treatment arm). For balance score,

10MWT, and stride length, a positive value indicates an

improvement in the outcome measure (favoring the treat-

ment arm). Surface under the cumulative ranking (SUCRA)

scores are presented for each outcome, ranking the interven-

tions in terms of effectiveness, with higher SUCRA scores

reflecting a higher likelihood that the treatment is most

beneficial.

Risk-of-bias assessment

The revised Cochrane Risk-of-Bias tool for randomized

trials (ROB2) was used to evaluate for risk of bias in the

included studies. The ROB2 tool evaluates bias across 5

features: (i) the randomization process, (ii) deviations

from intended interventions, (iii) missing outcome data,

(iv) measurement of the outcome, and (v) selection of

the reported result. Two independent and blinded authors

(ECKH and NYO) assessed all included studies for risk-

of-bias (Supplementary Material – Table S4), and dis-

agreements were resolved through discussion with a third

independent author.

Publication bias

Publication bias was assessed via visually inspecting for

funnel plot asymmetry, using the R packages netmeta and

dmetar. Funnel plots are presented in Supplementary

Material – Figures S1–S6. Funnel plots were largely sym-

metrical throughout the different outcomes.

Results

Summary of included studies

A total of 5146 studies were identified after the search in

the four databases. After de-duplication, 1289 studies
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were screened. Full-text reviews were done for 157 stud-

ies, and eventually, 51 randomized controlled trials were

included in this network meta-analysis, involving 2095

patients were included in the final analysis. Six Internet-

based,39–44 14 proprioceptive,18,35,36,45–55 12

robotic,17,27,56–65 and 19 VR22,66–83 studies were included

(Fig. 1). For most of the studies, the treatment effects

were measured without the technology (i.e., motor and

QoL outcomes were measured when the patients were not

receiving the intervention at the point of evaluation).

All controls for the studies, excluding the propriocep-

tive studies, were either usual care or active controls. For

the proprioceptive studies, controls were placebos.

The six most reported outcomes were changes in

UPDRS (motor outcome) score (as measured by

UPDRS-III or MDS-UPDRS-III), stride length, 10MWT,

TUG test, balance scale scores (e.g., Mini Balance Evalua-

tion Systems Test scores and Parkinson Disease Question-

naire Scores), and Quality of Life scores (e.g., SF-36 and

PDQ-39). A summary of the included trials is included in

Tables S2 and S3. The mean age of included patients ran-

ged from 53.5 to 76.1 years for the intervention arms and

53.5 to 77.7 years for the control arms. Total duration of

intervention and the duration of follow-up/ last time of

clinical assessment are reported in Table S3. Majority of

the interventions lasted between 4 and 12 weeks, with

follow-up duration lasting between 4 and 12 weeks.

Majority of included participants in the control and inter-

vention arms had their functional ability rated between

Hoehn and Yahr Scale Stages II and III.

Network analysis of interventions

For all interventions, differences in effect sizes are pre-

sented. SUCRA scores are presented in Table 1.

UPDRS (motor component)

All interventions performed similarly for UPDRS (motor

component) (Fig. 2). Comparing SUCRA scores, VR

(SUCRA: 79.63) performed the best, followed by robotic

(SUCRA: 72.95), Internet-based (SUCRA: 42.53), exercise

(SUCRA: 36.87), proprioceptive intervention (SUCRA:

36.26), and control (SUCRA: 31.75).

TUG

Virtual reality intervention significantly outperformed

control interventions (MD: �4.36, 95% CrI: �8.57,

�0.35) (Fig. 3). Comparing SUCRA scores, VR (SUCRA:

79.51) performed the best, followed by robotic (SUCRA:

75.93), exercise (SUCRA: 46.03), proprioceptive interven-

tion (SUCRA: 43.66), and control (SUCRA: 4.87).

Stride length

Proprioceptive intervention significantly improved stride

length (Fig. 4) compared to control intervention (MD:

0.11 m, 95% CrI: 0.03, 0.19). Comparing SUCRA scores,

proprioceptive intervention (SUCRA: 75.17) performed

the best, followed by VR (SUCRA: 68.79), exercise

(SUCRA: 51.17), robotic (SUCRA: 45.87), and control

(SUCRA: 8.99).

10-meter walk test

Proprioceptive intervention significantly improved

10MWT speed (Fig. 5) compared to control interventions

(MD: 0.14 m/s, 95% CrI: 0.05, 0.22). Comparing SUCRA

scores, robotic intervention (SUCRA: 77.78) performed

the best, followed by proprioceptive intervention

(SUCRA: 66.01), Internet-based intervention (SUCRA:

51.44), VR (SUCRA: 47.51), exercise (SUCRA: 43.05),

and control (SUCRA: 14.23).

Balance scale scores

Virtual reality improved balance scale scores significantly

(Fig. 3) compared to exercise intervention (SMD: 0.75,

95% CrI: 0.12, 1.39) and control intervention (SMD:

1.42, 95% CrI: 0.06, 2.77). Comparing SUCRA scores, VR

(SUCRA: 87.00) performed the best, followed by robotic

intervention (SUCRA: 68.66), then Internet-based inter-

vention (SUCRA: 45.03), exercise (SUCRA: 43.26), and

control (SUCRA: 15.37). Two studies by Picelli et al.57,58

reporting on balance scale scores had potentially overlap-

ping patient cohorts. A sensitivity analysis was hence per-

formed by preserving the study with a greater sample

size.57 The effect sizes and SUCRA score ranking

remained consistent, with VR outperforming other

modalities.

QoL scores

Virtual reality intervention improved QoL scores (Fig. 6)

significantly compared to Internet-based interventions

(SMD: �0.70, 95% CrI: �1.38, �0.04) and control inter-

ventions (SMD: �0.95, 95% CrI: �1.43, �0.52). Exercise

intervention also improved QoL scores significantly com-

pared to control intervention (SMD: �0.82, 95% CrI:

�1.28, �0.40). Comparing SUCRA scores, VR interven-

tion (SUCRA: 90.24) performed the best, followed by

exercise (SUCRA: 76.79), then robotic intervention

(SUCRA: 62.69), proprioceptive intervention (SUCRA:

36.73), Internet-based intervention (SUCRA: 27.9), and

control (SUCRA: 5.64).
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Quality assessment

Risk-of-bias assessment using the ROB2 tool is provided

in Table S4. Most of the studies are at low to moderate

risk of bias. For the studies with moderate risk of bias,

this was largely due to the impossibility of blinding the

patients to the intervention that they receive in most

studies (e.g., robotic intervention), hence causing the

second domain of the ROB2 tool to be flagged as “Some

concerns.”

Discussion

This network meta-analysis of 2095 patients investigated

the role of four technology-based interventions ((i)

Internet-based, (ii) proprioceptive, (iii) robot, and (iv)

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram.
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VR) in improving the physical rehabilitation and quality

of life of patients afflicted with PD. Our findings

highlighted that the different interventions are well-suited

for improving different aspects of motor function.

Virtual reality intervention, through mediums such as

Xbox Kinect or full audio-visual sensory immersion, fares

the best in terms of improving overall motor function as

measured by the UPDRS motor outcome. Robotic inter-

vention improves 10MWT results the most as measured

by the SUCRA score. Virtual reality intervention improves

TUG scores,84 a measure of functional mobility and fall

risk, and balance scale scores. Several interventions

improve mobility to differing degrees as measured by the

outcome measures stride length and 10 MWT. Virtual

reality intervention improved QoL the most significantly.

While there have been previous meta-analyses investigat-

ing the effects of exercise, VR, Internet-based, and robotic

interventions on PD patients, there has been no network

meta-analysis that compares these interventions directly,

nor has there been any form of meta-analysis aggregating

the effects of proprioceptive interventions such as periph-

eral stimulation.

Table 1. Surface under the cumulative

ranking scores for respective outcomes. Control Exercise Internet-based Proprioceptive Robotic

Virtual

reality

UPDRS 31.75 36.87 42.53 36.26 72.95 79.63

TUG timing 4.87 46.03 43.66 75.93 79.51

Stride length 8.99 51.17 75.17 45.87 68.79

10MWT speed 14.23 43.05 51.44 66.01 77.78 47.51

Balance scale scores 15.37 43.26 45.03 40.66 68.66 87

Quality-of-life

measures

5.64 76.79 27.9 36.73 62.69 90.24

UPDRS, Unified Parkinson’s Disease Rating Scale; TUG, Timed up and go.

Figure 2. League table heat plot comparing changes in Unified Parkinson’s Disease Rating Scale scores. A blue cell indicates a positive value, and

a yellow cell indicates a negative value. A negative value indicates an improvement in the outcome (favoring the treatment arm).
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Figure 3. League table heat plot comparing changes in timed up-and-go test timings (above) and balance scale scores (below). A blue cell

indicates a positive value, and a yellow cell indicates a negative value. A negative value (above) and a positive value (below) indicates an

improvement in the outcome (favoring the treatment arm).
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The highly significant improvements to TUG scores and

balance scale scores after VR intervention are supported by

existing literature, which indicate that VR intervention

improves dynamic balance.85,86 Balance is achieved and

sustained through a complex influx of sensory inputs,

involving different modalities (e.g., vestibular, audio, and

vision). These inputs are integrated, and they interact with

motor planning to finally give a motor output. It is

hypothesized that VR rehabilitation most significantly

improves balance as it is a global intervention that stimu-

lates many senses at once and hence, when integrated,

improve balance tremendously.67 PD patients are twice as

likely to have falls and fractures as non-PD subjects.87

Thus, restoring balance and postural stability is vital.

The improvement to 10MWT results after robotic

intervention could be explained through a variety of

mechanisms. It is hypothesized that robotic gait training

improves gait parameters and walking capacity by facili-

tating repetitive gait-like movements, synchronizing the

walking pattern and strengthening the neuronal circuits

contributing to gait pacing.59 Proprioceptive interventions

via biofeedback and peripheral stimulation improve the

amount of proprioceptive sensory input, which has been

demonstrated to play a vital part in the production and

coordination of movements.88 Proprioceptive

interventions through pressure or vibratory stimulation

may be crucial in patients in the most advanced stages of

the disease. In that stage, patients may be severely com-

promised cognitively and can no longer undergo treat-

ments which involve explicit learning strategies (e.g.,

cueing and decomposition of movements).47

Current therapeutic options such as pharmacotherapy

and deep brains stimulation have proven sub-optimal in

improving motor outcomes such as postural abnormality.

Pharmacological interventions can even aggravate nonmo-

tor parkinsonian symptoms such as hallucinations and

orthostatic hypotension.

In terms of cost, Internet-based interventions have been

shown to be largely cost-effective in various settings,89 and

with increased Internet connectivity, it is expected to be

increasingly utilized at low cost. Carpino et al.90 have dem-

onstrated that robotic interventions using operational

machines such as the ones studied in the included

studies57–59 cost the same as conventional rehabilitation.

The cost-effectiveness of VR rehabilitation is still being

investigated, with studies estimating that VR incurs extra

cost, but this increase may be counterbalanced when time

for therapist supervision is reduced.91 For proprioceptive

interventions, few studies have estimated their cost-

effectiveness. However, with 3D printing, it is predicted

Figure 4. League table heat plot comparing changes in stride length. A blue cell indicates a positive value, and a yellow cell indicates a negative

value. A positive value indicates an improvement in the outcome (favoring the treatment arm).
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that interventions utilizing plantar stimulation will have

greatly reduced cost.92 Safety profiles of these interventions

are nascent, but preliminary findings for VR interventions

indicate that it is feasible and safe.93 As for robotic inter-

ventions, ensuring safety is a great challenge. A mismatch

in the positioning of the patient and the machine may

cause unintended, unsafe interaction forces at the patient’s

joints.94 In terms of wearable robots, translation from con-

trolled laboratory settings to uncontrolled environments

such as a patient’s home proves challenging.95

Conventional rehabilitation is considered an adjuvant

to medical interventions, such as medications and surger-

ies, in PD treatment as it can attenuate the symptoms or

even delay the disease progression.96 This network

meta-analysis has given credence to the idea that a neu-

rorehabilitation program, utilizing a mix of interventions

that most effectively target and improve various QoL,

gait, and balance parameters, would be ideal. It should be

cautioned that with the relative nascence of the field, pro-

vider experience is limited. Despite this, and the possibly

high start-up cost of setting up such programs, more

research should be done utilizing these interventions and

observing how these programs can be safely implemented

at a low cost and monitored virtually. More cohort stud-

ies should be done to combine these approaches with

traditional pharmacological approaches and establish the

long-term effects of these interventions on QoL, gait, and

balance parameters of PD patients.

Strength and limitations

This network meta-analysis is the first to compare four

technology-based interventions: (i) Internet-based, (ii) pro-

prioceptive, (iii) robot, and (iv) VR. The results provide

information on how the four interventions fare against

active and inactive controls. The recent safety and cost-

effectiveness studies suggest that these four interventions

may be implemented at scale. However, more thorough

safety protocols when designing and testing the interven-

tions are required. It is noteworthy that with increasing

Internet connectivity, reduced cost of 3D printed proprio-

ceptive interventions and highly portable VR setups, a

home-based rehabilitative approach might be viable for PD,

further increasing their convenience and reducing barriers

to healthcare access. However, the reliability of this study is

affected by a few factors: (i) There are few nonpropriocep-

tive studies that utilize inactive controls (ii) included studies

of the same intervention do not always use the same set of

outcome measures, reducing the amount of data points that

can be aggregated per outcome (iii) heterogeneity was

Figure 5. League table heat plot comparing changes in 10-meter walk test. A blue cell indicates a positive value, and a yellow cell indicates a

negative value. A positive value indicates an improvement in the outcome (favoring the treatment arm).
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introduced due to the different final timepoints and

follow-up durations for the included studies. In some stud-

ies, it was noticed that the effects of the interventions sub-

side after a longer time-period, causing effect sizes to be

insignificant. More cohort studies can be done to investi-

gate the changes in effect size with time (iv) patients were

aware of the intervention that they received in most studies,

and this could have led them to adopt behaviors

(health-related or otherwise) that could influence the rela-

tively subjective measurements of QoL. Future studies

should track longitudinally if the effects of these

technology-based interventions persist after the intervention

has stopped. Future studies can investigate if there exists a

synergistic effect between conventional therapies and the

technology-based interventions outlined here. Lastly, future

work should include studies on the impact of various

technology-based interventions on cognitive outcomes, in

view of the potential of integrated motor-cognitive methods

for PD rehabilitation.

Conclusion

This Bayesian network meta-analysis demonstrated that

four technology-based interventions (Internet-based, pro-

prioceptive, robotic, and VR) can significantly improve

QoL, gait, and balance parameters in PD patients, with

each intervention being the most effective in different

outcome measures. The results suggest that with current

technology, a multi-modality rehabilitative approach

using a combination of conventional therapies (e.g., phar-

macotherapy) and the four technology-based interven-

tions should be explored. With the proliferation of

telemedicine technology, perhaps future studies can also

investigate implementing these approaches at home to

improve outcomes while increasing patient convenience

and satisfaction. Research looking into the longer-term

effects of these technology-based interventions and their

interactions with conventional therapies can facilitate

individualized management specific to different motor

subtypes of PD.
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