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Abstract

Objective: Predicting long-term functional outcomes shortly after a stroke is

challenging, even for experienced neurologists. Therefore, we aimed to evaluate

multiple machine learning models and the importance of clinical/radiological

parameters to develop a model that balances minimal input data with reliable

predictions of long-term functional independency. Methods: Our study utilized

data from the German Stroke Registry on patients with large anterior vessel

occlusion who underwent endovascular treatment. We trained seven machine

learning models using 30 parameters from the first day postadmission to pre-

dict a modified Ranking Scale of 0–2 at 90 days poststroke. Model performance

was assessed using a 20-fold cross-validation and one-sided Wilcoxon rank-sum

tests. Key features were identified through backward feature selection. Results:

We included 7485 individuals with a median age of 75 years and a median

NIHSS score at admission of 14 in our analysis. Our Deep Neural Network

model demonstrated the best performance among all models including data

from 24 h postadmission. Backward feature selection identified the seven most

important features to be NIHSS after 24 h, age, modified Ranking Scale after

24 h, premorbid modified Ranking Scale, intracranial hemorrhage within 24 h,

intravenous thrombolysis, and NIHSS at admission. Narrowing the Deep Neu-

ral Network model’s input data to these features preserved the high perfor-

mance with an AUC of 0.9 (CI: 0.89–0.91). Interpretation: Our Deep Neural

Network model, trained on over 7000 patients, predicts 90-day functional inde-

pendence using only seven clinical/radiological features from the first day post-

admission, demonstrating both high accuracy and practicality for clinical

implementation on stroke units.

Introduction

Stroke is a leading cause of morbidity and mortality

worldwide, accounting for over 100 million

disability-adjusted life years lost annually.1 The conse-

quences of stroke extend to both physical and cognitive

capabilities, in many cases significantly impairing the

patients’ ability to engage in daily activities.2,3 The extent

of the functional impairment is commonly assessed using

the modified Rankin Scale (mRS).4 Patients and family

members, with their crucial role in patient’s reintegration

into a routine life, frequently ask physicians for prognos-

tication of the patient’s future independency. Although

trained neurologists possess extensive experience in man-

aging stroke patients—from emergency admission to

poststroke follow-ups—predicting a patient’s functional

outcome shortly after admission remains challenging.

Currently, these predictions are based on a physician’s
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clinical experience, which are recalls of patterns observed

in past cases. However, memory-driven predictions may

lack the precision and objectivity offered by data-driven

approaches, due to different reasons such as cognitive

biases.5,6

Over the past decade, life sciences have made signifi-

cant advancements by establishing registries containing

large datasets.7 An advanced approach of analysis is the

application of machine learning (ML) methods, which

enable the identification of patterns imperceptible to

humans and the leverage of these patterns for predictive

purposes.8 Different ML models can be utilized, including

widely employed regression models, decision trees, and

deep neural networks (DNN). The selection of the partic-

ular model plays an important role in the accuracy of the

prediction.8 Most data-driven predictions of poststroke

functional outcomes primarily utilize risk scores or logis-

tic regression methods.9 However, a comprehensive evalu-

ation comparing different models for outcome prediction

in stroke patients undergoing thrombectomy, including

DNNs, and an in-depth analysis of feature importance,

has yet to be conducted.

In light of these considerations, our study was designed

to investigate different ML models to determine their effi-

cacy in predicting poststroke functional outcome in the

early stroke phase. We intended to develop an ML model

with an optimal trade-off between the minimum number

of input data and an adequate prediction of future func-

tional independency according to the 90-day mRS score

in patients with anterior cerebral circulation occlusions

undergoing thrombectomy.

Patients and Methods

We employed a centralized ML approach encompassing

data preprocessing, comparison of input features, select-

ing major features, and evaluation of different ML models

for prediction of functional independency (Fig. 1A). We

report our approach in accordance with the TRIPOD+AI
guidance for clinical prediction models.10

Our study utilized data derived from the German

Stroke Registry—Endovascular Treatment (GSR-ET; Clin-

icalTrials.gov Identifier: NCT03356392). We used data

from patients enrolled from May 2015 until December

2021. The GSR-ET is an ongoing, academic-led, open-

label, multicenter initiative that includes patients with

intracranial large vessel occlusion strokes (LVOS) under-

going endovascular treatment (ET). Inclusion criteria of

the GSR-ET are as follows: (1) diagnosis of acute ischemic

stroke, (2) large vessel occlusion, (3) attempted ET, and

(4) age ≥18 years. For our analysis, we included patients

with an intracranial anterior circulation occlusion and

premorbid functional independence (mRS 0–2, Fig. 1B).

This ensured that the prediction models were not biased

toward easily anticipated outcomes that are poor regard-

less of the current stroke event. One study center was

excluded due to a high amount of missing data. Further-

more, patients with a missing 90-day mRS were excluded

(Fig. 1B). Our research is compliant with the Declaration

of Helsinki’s ethical standards. The GSR-ET has obtained

centralized approval from the institutional review board

(IRB) at Ludwig-Maximilian’s University Munich (IRB

number 689-15), in addition to necessary approvals from

local IRBs. Previous publications have detailed the

methods used in the GSR-ET.11 Consent for participation

in the registry was obtained from patients or their rela-

tives, as previously described.12

The endpoint of our prediction models was the func-

tional outcome measured by the mRS 90 days after

stroke. We employed the mRS 90 as a dichotomous end-

point. We separated our study cohort in patients with

mRS scores from 0 to 2, denoting functional indepen-

dency, and scores from 3 to 6, indicating functional

dependency and mortality. The input features for predic-

tion covered a range of 30 parameters recorded until the

first day after admission (Table S1). Numeric features

were standardized, categorial variables were encoded, and

missing values in both numeric and categorical variables

were imputed using iterative methods, ensuring a com-

plete dataset for analysis. The imputation was based on a

Decision Tree Regressor as estimator and on data avail-

able until 24 h after admission (Table S1).

Uniform Manifold Approximation and Projections

(UMAPs) were used for unsupervised clustering of data.

We calculated correlations between the clinical/radiological

parameter and the UMAP components by Spearman’s rank

correlation coefficient. The applied ML models included

DNN, Logistic Regression, k-Nearest Neighbors, XGBoost,

Random Forest, Decision Trees, and Support Vector

Machines. To evaluate the performance of these models,

we utilized a 20-fold cross-validation method, employing

following metrics with 95% confidence intervals: accuracy,

recall, area under the curve (AUC), precision, and F1-score.

Hyperparameter tuning was performed within the cross-

validation. For the optimization of the DNN’s hyperpara-

meters (number of input neurons, number of layers, learn-

ing rate, L1-regularization), we utilized Keras Tuner. We

statistically evaluated differences in AUC performance

between the highest-performing model (DNN) and other

models using a one-sided Wilcoxon rank-sum test.13 Statis-

tical significance was accepted at p < 0.05.

Feature analysis was executed on the DNN model,

Logistic Regression model, k-Nearest Neighbors model,

XGBoost model, and Decision Trees model. Built-in fea-

ture importance, based on decrease in node impurity, was

utilized for Decision Trees, Random Forest, and XGBoost
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Figure 1. (A) Centralized machine learning approach for the prediction of functional independency at 90 days. (B) Inclusion of patients into our study.
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models. Logistic Regression’s feature impact was assessed

through coefficient calculations. For the DNN model, per-

mutation feature importance was applied. For the feature

selection process, we implemented a backward feature

elimination strategy on our best-performing model

(DNN). To assess the performance of the model with the

best trade-off between number of features and prediction

quality, we reserved 20% of our dataset for final testing.

This ensured that our final testing was conducted on data

that was not used during the feature selection process.

The remaining 80% of the dataset underwent a split of

80% for training/validation (80%/20%) and 20% for

interim testing of each DNN model with a different set of

input features. In each iteration of the backward feature

selection, we trained a new DNN model, removing the

least significant feature from the previous model. For final

testing, the optimal model was trained on the entire 80%

portion of the dataset designated for model development

and was evaluated using the 20% reserved test set to

assess its performance.

Median and first (Q1) as well as third (Q3) quartile

were utilized for non-normally distributed data, whereas

mean and standard deviation (SD) were used for nor-

mally distributed data. The distribution of data was

assessed through histograms or statistically.

All analyses were conducted with Python, version

3.11.5, within a Jupyter Notebook environment, version

6.5.4. We employed ChatGPT 4 (OpenAI) as assisting

tool for coding and language editing.

Results

Characteristics of the study cohort

A total of 7485 patients from 27 study centers with a

median age of 75 years were included into our study

(Table S2). Half of the study cohort comprised females. A

median Alberta Stroke Program Early CT Score

(ASPECTS) of 9 indicated that the extent of early

ischemic changes was small upon admission, despite a rel-

atively high National Institutes of Health Stroke Scale

(NIHSS) score of 14; emphasizing that the patients were

suitable candidates for ET. Our inclusion criteria focused

on patients with intracranial LVOS of the anterior circu-

lation; however, we observed that 1% of the patients con-

currently exhibited an occlusion of an artery of the

posterior circulation. The middle cerebral artery was

the most occluded artery (82.4%). Cardioembolism was

the main cause of stroke (50.9% of patients). Notably,

41.5% of the patients were initially admitted to hospitals

lacking neurointerventional facilities. Regarding cardiovas-

cular risk factors, atrial hypertension emerged as the most

prevalent one, affecting 75.6% of the cohort.

Half the study cohort received intravenous thrombolysis

(IVT) in addition to ET. A successful outcome of the ET

(modified Thrombolysis in Cerebral Infarction scale [mTI-

CI] ≥ 2b) was achieved in 86.1% of patients, requiring a

median of two treatment passes. 14.7% of all patients devel-

oped an intracranial hemorrhage within 24 h of admission.

Only 28.9% of the population was discharged home after

stroke, with the remainder being transferred to neuroreh-

abilitation, nursing homes, or other hospitals. In terms of

recovery, 40.7% of the patients attained a mRS score of 0–2
after 90 days (Fig. 2). Within 3 months, 26.2% of the

patients died. Further detailed patients characteristics are

provided in Table S2.

Unsupervised learning

A UMAP analysis was performed to reduce the dimen-

sionality of the input data (Fig. 3A). The UMAP compo-

nents separated most patients with a mRS score of 0–2 at

90 days poststroke from those with a score of ≥3. Further
analysis through a correlation matrix identified several

key features that strongly impacted the UMAP compo-

nents (Fig. 3B).

These included the mRS score 24 h postadmission,

NIHSS 24 h postadmission, premorbid mRS, age, NIHSS

Figure 2. Functional outcome as measured by the modified Rankin Scale (mRS) after 24 h and at 90-day follow-up.
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Figure 3. (A) UMAP of input features, labeled according to functional outcome at 90 days poststroke. (B) Correlation matrix for input features

and both UMAP components (UMAP 1 and UMAP 2).
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at admission, final mTICI score, and ASPECTS. These

features captured relevant predictive information inherent

of this dataset. The UMAP component 2, mainly driven

by the mRS after 24 h, NIHSS after 24 h, and NIHSS at

admission, contributed even more to the prediction of

functional outcome. Combining the finding that UMAP

components were able to distinguish future functional

independency from functional dependency/mortality and

which key features contributed most two both compo-

nents, it is suggested that these key factors may be profi-

cient for a prediction model.

Supervised learning

We conducted a 20-fold cross-validation on seven distinct

ML models utilizing all input data. The models included

DNN, Logistic Regression, k-Nearest Neighbors, XGBoost,

Random Forest, Decision Tree, and Support Vector

Machine.

We first evaluated the models’ performance improve-

ments by sequentially incorporating data up to different

time points during the early treatment phase. Our analy-

sis began with data exclusively available at the time of

admission (Table S3), including imaging parameters and

IVT. Subsequently, we extended our analysis to data avail-

able up to the ET procedure (Table S4). Finally, we lever-

aged information available up to 24 h postadmission

(Table S5). This methodological approach revealed that

each additional timepoint contributed valuable insights

on future functional outcome, thereby enhancing all

models’ performance with increasing AUCs. Notably, the

DNN with data collected 24 h postadmission emerged as

the best predictive model in almost all performance met-

rics, with an AUC of 0.908 (CI: 0.901–0.914) (Fig. 4,

Table S5), closely followed by the Logistic Regression

model (AUC = 0.907 (CI: 0.900–0.914)) and Random

Forest model (AUC = 0.905 (CI: 0.898–0.912)). The AUC

of the DNN model outperformed the remaining models

(XGBoost, Support Vector Machine, k-Nearest Neighbors,

and Decision Tree, all p < 0.05, Table S5).

Furthermore, we compared the models’ performances

at 24 h after admission with a complete case set

(n = 3184) to investigate the effect of the imputation on

the performances (Table S6). All models demonstrated

higher performance metrics when applied to the dataset

containing imputed data, presenting a positive impact of

imputation on model efficacy. The DNN demonstrated

again the best performance regarding AUC.

Following the comparison of performance metrics, we

examined the impact of features on DNN, Logistic

Regression, XGBoost, Random Forest, and Decision Trees.

On one hand, we analyzed the feature importance within

each model individually (Fig. S1); on the other hand, we

compared the features that ranked among the top 15 in

importance across the models (Fig. 5A). The most influ-

ential factor for prediction was the NIHSS after 24 h,

demonstrating the highest impact among all features in

each model. It was followed by the mRS after 24 h, which

ranked as the second most important factor in every

model, followed by age. Generally, numerical parameters

Figure 4. Comparison of performance metrics 24 h post-treatment across all models.
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Figure 5. Feature analyses. (A) Comparison of features that ranked among the top 15 in importance across the models. (B) AUC of each deep

neural network model trained within the backward feature selection pipeline.
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had a greater impact than categorical parameters. Among

categorical factors, the occurrence of intracranial hemor-

rhage within 24 h emerged as the most important.

We next aimed to optimize the tradeoff between per-

formance and number of input features. We decided to

utilize the DNN model for this purpose since it offers

several advantages: It consistently demonstrated high per-

formance in our datasets across various time points; it

exhibited the highest performance on the complete data-

set, indicating less reliance on imputed data compared to

other models; its architecture enables effective extraction

of information from high-dimensional datasets; and it is

compatible with learning frameworks such as swarm

learning.13 We investigated the performance of the DNN

with data at 24 h after admission, since it had achieved

best performances with this dataset. We applied a back-

ward feature selection (Fig. 5B), that is, an iterative pro-

cess, each time removing the least influential feature from

the model. The performance metrics and weakest features

of each model are given in Table S7. Analyzing the AUC

performance across different numbers of selected features

indicated that using seven features provides a good bal-

ance between the number of input data and model per-

formance. The features with the highest impact were, in

descending order, NIHSS after 24 h, age, mRS after 24 h,

premorbid mRS, intracranial hemorrhage, IVT, and

NIHSS at admission. Reducing the feature count below

five compromised the performance.

Prior to conducting the backward feature selection, we

reserved 20% of the data as an independent test set. We

used this dataset for a final testing of the DNN model uti-

lizing the 7 most important features, receiving an accuracy

of 0.826, recall of 0.782, F1-Score of 0.782, ROC AUC of

0.893, and precision of 0.782. We next compared all ML

models with only these 7 features using 20-fold

cross-validation (Table S8). The DNN model showed the

best performance metrics, with an AUC of 0.902 (CI:

0.894–0.909), closely followed by the Logistic Regression

model (AUC = 0.901 (CI: 0.892–0.910)) and KNN

(AUC = 0.896 (CI: 0.888–0.905)). The AUC of the DNN

model outperformed the remaining models (Random For-

est, XGBoost, Support Vector Machine, and Decision Tree)

with a p-value <0.05. Additional information including the

odds for the logistic regression model was provided in the

supplementary materials (Table S9 and Formula S1). Fig-

ure 6 summarizes the AUC values obtained from all models

across the examined key scenarios.

A recently published mRS prediction model included

patients with a premorbid mRS score of >2, while we

excluded them from our analysis.14 For comparison, we

sought to explore the performance of our models upon

the inclusion of these patients (total n = 8853,

Table S10). The models’ performances were increased by

including patients with a premorbid mRS score of >2.
However, including these patients is questionable, as

functional independence in patients with premorbid func-

tional dependency is not expected and its prediction

seems to be of limited relevance.

Discussion

Assessing long-term functional independence early after

stroke presents a significant challenge but is crucial for

various stakeholders, including patients, their families,

and physicians. While models predicting poststroke out-

comes currently rely on risk scores or logistic regression

techniques,9 a systematic comparison of different predic-

tive models, including DNNs, along with an analysis of

feature importance as conducted in our study, has not

previously been undertaken. Using a large real-world

dataset from over 7000 patients with anterior circulation

LVOS undergoing ET, we performed a comparative analy-

sis involving seven different ML models based on 30 clini-

cal parameters and radiological findings reported within

the first 24 h postadmission for prediction of long-term

functional outcome. Our findings demonstrate the robust

quality of a DNN model in predicting the mRS at 90 days

poststroke as a binary endpoint across various scenarios,

including different time points, varying numbers of input

data, and both with and without imputation of missing

data. Achieving an AUC of up to 0.915 (CI: 0.909–0.921)
(Table S10), the DNN model emerges as a viable candi-

date for implementation in clinical practice.

Based on a backward feature selection, the DNN model

was simplified by minimizing the number of input fea-

tures to seven while maintaining robust performance met-

rics. These features were NIHSS at admission and after

24 h, age, mRS after 24 h, premorbid mRS, intracranial

hemorrhage within 24 h, and IVT. Most of these features

were critical for differentiating the mRS in both unsuper-

vised and supervised learning approaches and ranked high

in feature importance analyses across all models, under-

scoring their robust value in providing information across

various mathematical algorithms. Intriguingly, minimizing

the initial 30 input features to these seven key variables

had only a minor impact on the performance of the

DNN model, reducing the initial AUC of 0.908 (CI:

0.901–0.914) (Table S5) to an AUC of 0.902 (CI: 0.894–
0.909) (Table S8). This observation suggests that the 30

features, including clinically considered important data

such as preexisting medical conditions or medications, do

not add additional relevant predictive information beyond

what is captured by the selected seven features. Interest-

ingly, apart from NIHSS after 24 h, the mRS after 24 h

also enriched the model, even though both scores mirror

functional outcome. While NIHSS primarily provides an
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assessment of specific neurological deficits, predominantly

associated with infarctions in the left territory of the mid-

dle cerebral artery,15,16 the mRS broadly evaluates the

patient’s ability to perform daily physical activities such

as self-care and walking.4 This distinction underscores the

complementary nature of the information provided by

NIHSS and mRS to our model. Both scores have a strong

impact on predicting long-term functional independence.

This is likely not only because they reflect short-term

functional outcome but also because they represent a

composite of symptoms instead of a single distinct symp-

tom, thereby increasing the amount of provided informa-

tion. In addition to these scores, age, IVT, and

intracranial hemorrhage were of importance for the per-

formance of the reduced DNN model. These parameters

reflect main information about stroke patients’ trajecto-

ries such as time to acute care (IVT), complications

(intracranial hemorrhage), and rehabilitation potential

(age).

By comparing models at three different time points (at

admission, immediately after ET, and 24 h after

admission), we demonstrated that optimal predictions are

obtained using data up to 24 h postadmission, hereby

including the acute phase of the disease and surpassing ML

models restricted to earlier time points.17 This approach

aligns with research by Chalos et al., who indicated that

including post-treatment data from the following day sig-

nificantly enhanced their regression model for the predic-

tion of mRS after stroke.14 Their proposed model utilized

nine parameters including brain collateralization assessed

by CT-angiography, which might not routinely be available

at all centers.14 As illustrated by the similar performance

metrics of our model, it is suggested that robust outcome

prediction is already possible with less and easier accessible

variables. Further improvements could potentially be

achieved by integrating additional data layers, such as

molecular multi-omics or deep clinical/radiological

phenotyping.18–20 Of note, the mRS is subject to

inter-observer variability, which may limit the maximal

achievable performance of prediction models.4 Therefore,

the current benchmark of technical performance might

approach its upper limit near an AUC of 0.92.20

Figure 6. Spider plot of AUCs from all models in key scenarios.
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A limitation of our study was the absence of an exter-

nal validation cohort. Instead, we employed a 20-fold

internal cross-validation method, which is as robust

method for validation.21 The retrospective nature of our

analyses, limited to study centers from one country (Ger-

many), coupled with missing data in the GSR-ET dataset,

represents additional constraints. Future studies should

further validate the models on comprehensive datasets

from international cohorts.

Assessing the impact of 30 clinical and radiological fea-

tures evaluated during the first 24 h across seven ML

models, we developed a ML model based on DNN for the

prediction of functional independence at 90-day

follow-up in acute stroke patients undergoing ET. This

model, which utilized data from over 7000 patients,

includes seven relevant and easily accessible features—
NIHSS after 24 h, age, mRS after 24 h, premorbid mRS,

intracranial hemorrhage within 24 h, IVT, and NIHSS at

admission. Achieving an AUC of 0.9 (CI: 0.89–0.91), its
high predictive performance coupled with the simplicity

of its feature set makes this DNN model an ideal candi-

date for implementation in clinical routine.
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