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Oxygen–ozone therapy for myocardial ischemic stroke 
and cardiovascular disorders

Abstract  
Cardiovascular diseases (CVDs) represent a major concern for human health worldwide. 
Emergencies in this field include wide repertories of studies dealing primarily with CVD 
prevention. In addition to dietary habits and lifestyles, medical knowledge is fully needed to 
improve public educational programs toward cardiovascular risk factors and to enrich the 
endowment of pharmaceutical options and therapies to address CVDs, particularly for ischemic 
damage due to an impairment in the endothelial–myocardial relationship. Because ozone is a 
stimulator of the endothelial nitric oxide synthase/nitric oxide pathway, ozone therapy has been 
widely demonstrated to have the ability to counteract endothelial-cardiac disorders, providing 
a novel straightforward opportunity to reduce the impact of CVDs, including atrial fibrillation. 
In this review, we attempt to establish a state-of-the-art method for the use of ozone in CVD, 
suggesting that future remarks be addressed to provide fundamental insights into this issue. The 
purpose of this study was to highlight the role of ozone in the adjunctive medical treatment of 
cardiovascular pathologies such as acute myocardial infarction due to ischemic disorders.
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Introduction
Cardiovascular disease (CVD) represents one of the leading 
causes of death worldwide, and the Global Burden of Disease 
study estimated that at least 17.8 million deaths by the last 
five years are associated with CVD.1,2 Among these cases, at 
least 50% were ischemic heart disease (IHD) and 35% were 
strokes.1 Therefore, IHD has been the most common cause 
of death in Europe since the 1980s.1-4 In Italy, the prevalence 
of CVD has been estimated to be twofold higher than the 
global estimated prevalence (12.9% vs. 6.6%); however, when 
evaluations were corrected for age confounders, estimates 
were similar (6.2% vs. 6.3%).4 The major burden of CVD 
is represented by IHD, with a prevalence estimated to be 
3.6% in Italy and 1.7% in an age-standardized evaluation, a 
value representing a crucial health alarm, as doubling the 
corresponding global estimation (1.7%).4

IHD is a generic term used for a group of closely related 
syndromes that result from myocardial ischemia, usually an 
imbalance between the supply (perfusion) and the cardiac 
demand for oxygenated blood. In 90% of cases, myocardial 
ischemia is caused by a reduction in the blood flow of the 
coronary artery, which is due mainly, yet not exclusively, 
to atherosclerosis.5-7 The conventional belief about IHD 
pathogenesis includes the causative participation of an 
obstructive plaque that inhibits or reduces blood flow 
throughout the coronary artery and causes myocardial 
ischemia.8 To date, any coronary artery disease (CAD) has 
been fairly defined by the exclusive presence of obstruction 
due to atherosclerotic plaques.9 Nevertheless, in recent years, 

major attention has been given to the ability of the coronary 
artery to regulate critical stenosis in blood flow via myogenic 
and metabolic factors.7

In the case of atherosclerotic plaque-mediated obstruction, 
over 70% of the luminal cross-sectional area is involved, thus 
reducing the coronary diameter by approximately 50%, but 
in this case, an increase in the proximal resistance leads to a 
reduction in the distal coronary perfusion pressure and elicits 
an autoregulation mechanism that is able to maintain the 
basal coronary blood flow.8 Obviously, this should lead to a 
nonsymptomatic situation only at rest, whereas insufficient 
blood flow is associated with high oxygen demand upon 
physical exercise.7

Atherosclerotic lesions, underlying IHD, in most cases have 
a slow and silent progression, which can last even decades, 
and often, their origin can be traced back to childhood or 
adolescence.10,11

Typically, IHD is present as an acute form, often with 
unstable angina, heart attack, myocardial stroke and sudden 
cardiac death, when an atheromatous plaque undergoes 
an unpredictable and abrupt transformation and, owing to 
subsequent surface erosion, ulceration, fissuring, rupture, 
etc., it loses its stability, potentially becoming life-threatening 
for the patient.12,13 The exposure of the plaque content to the 
blood affects a series of reactions that lead to the formation 
of a mural thrombus,14 which obstructs, in a more or less 
marked way, the coronary artery and can detach and enter the 
circulation in the form of an occlusive thrombus that blocks 
the flow through the coronary artery.7,8,15,16
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To better elucidate the etiopathogenesis of IHD, even 
coronary microcirculation should be considered. The existence 
of the coronary tree of arterioles with a diameter ranging 
from 50 μm to 200 μm represents a microcirculation barrier, 
which encompasses approximately 60% of coronary artery 
resistance.17 In recent years, coronary microcirculation 
abnormalities, which have been investigated as a leading 
cause of IHD, have been collectively described under the 
umbrella term of coronary microvascular dysfunction and 
related to causative factors of type II myocardial infarction.18

In fact, coronary microvascular dysfunction causes an increase 
in coronary flow resistance, leading to reduced perfusion 
pressure and subsequently to myocardial ischemia.19 
Some studies have reported that shear stress impairment 
exacerbates endothelial dysfunction, particularly by enhancing 
thrombus formation in the epicardial arteries.20,21 When 
chronic stenosis of the coronary artery occurs, arteriole 
inward remodeling and rarefaction lead to an increased 
vasoconstriction response to endothelin (because of the loss 
of endothelin B receptor-mediated vasodilation) and a blunted 
myogenic response.22-24

The most important form of IHD is myocardial infarction 
(AMI), commonly called “heart stroke,” which is the leading 
cause of death in industrialized countries.25,26 The risk of 
developing AMI increases with increasing age and in the 
presence of predisposing factors to atherosclerosis. The 
global mortality rate in the first year from the onset of AMI is 
approximately 30% (including patients who fail to reach the 
hospital); subsequently, among survivors, the mortality rate is 
3–4% per year.25,26 The most common pathogenetic evidence 
concerning myocardial infarction is that AMI is caused by a 
coronary occlusion that leads to a loss of myocardial perfusion 
with consequent functional, biochemical and morphological 
alterations. Ischemia is considered when, on the basis of its 
extent and duration, it can cause necrosis in the anatomical 
region of the affected artery, especially at the subendocardial 
level.7,8

The occurrence of a cardiac stroke (infarction) is the final 
result of a complex milieu of triggering factors, which also 
encompass the strategic role of the microvasculature and 
coronary endothelia. The role of endothelial physiology in IHD 
may be particularly crucial in deepening IHD pathogenesis and 
preventing strokes from myocardial ischemia.27,28 Therefore, 
it is crucial to focus on the role of endothelia in IHD to 
understand the activity of oxygen–ozone therapy in these 
districts.

Finally, atrial fibrillation (AF) is considered another comorbid 
factor in AMI pathogenesis.29 AF is the most common type of 
sustained arrhythmia found in clinical practice. His prevalence 
in the general population was reported to be just under 1%: 
0.95% in the study by North American AnTicoagulation and 
Risk Factors in Atrial Fibrillation (ATRIA)30 and 0.87% in the 
Scottish study by Murphy et al.31 In two more publications 
related to data collected in the United States, the prevalence 
was higher: 1.12% and 2.5%, with a net increase compared 
with previous years.32,33 This trend would confirm forecasts of 
a 2–3-fold increase in the number of affected patients in the 
United States AF by the year 2050 (from the current 2.5–6 

million to 6–15 million).30,33 The prevalence of AF increases 
with increasing age. In the ATRIA1 study, the prevalence was 
0.1% in subjects aged < 55 years and 9% in those aged > 80 
years; in the Framingham study, the prevalence progressively 
increased from 0.5% in the age group between 50 and 59 
years to 1.8% between 60 and 69 years, 4.8% between 70 
and 79 years and 8.8% between 80 and 89 years,34 and 70% 
of patients with AF were over 65 years, with a median age of 
75 years.35 The prevalence is slightly higher in men than in 
women in all age groups (on average, 1.1% vs. 0.8%).35 Finally, 
more recent epidemiology on AF and insights into the use of 
stem cells for AF are included in this introduction survey.36,37

The pathogenetic link between AF and ischemic damage, 
leading to AMI, shares many markers with IHD,38 such 
as inflammation39 and platelet activation,40 where some 
insightful biomarkers, such as prostaglandin-F2-alpha, beta-
thromboglobulin, P-selectin and soluble CD40L, are elevated 
during AF.40 In this review, we highlight the role of ozone in 
the treatment of ischemic myocardial infarction and other 
cardiovascular pathologies. The survey included a literature 
search within PubMed, Embase, Web of Science, and Scopus 
with the term search “ozone & cardiovascular disease” from 
2001 to date.

The endothelial involvement in the ischemic heart 
diseases and the role of ozone
CAD, which leads to myocardial ischemia or, more generally, 
IHD, is also caused by disorders in endothelial function.41 
Endothelial dysfunction is one of the leading causes 
exacerbating myocardial ischemia in the daily activities of 
individuals at risk for IHD.42,43 Therefore, coronary artery 
endothelia, as well as microcirculating endothelia, may 
represent fundamental targets for therapy and preventive 
approaches against IHD and myocardial ischemic stroke.44 
Cardioprotection targeting endothelia is a leading matter of 
debate in the context of IHD.

Endothelial health is paramount for myocardial contraction, 
as the endothelium contributes to improving the sensitivity 
of myofilaments to calcium45 but, in particular, protects the 
microvasculature upon ischemia/reperfusion (I/R) injury,46,47 
preventing myocardial infarction.

In this context, mitochondrial dysfunction is a frequent 
hallmark of I/R injury in the heart and is often driven via an 
unfolded protein response (UPRmt).48 A recent gene expression 
investigation revealed that the UPRmt partially inhibits oxidative 
stress in myocardial tissue by upregulating the expression 
of mitochondrion-localized antioxidant proteins but also by 
promoting the upregulation of mitochondrial fusion-related 
genes and mitochondrial biogenesis in the reperfused heart, 
triggering FUN14 domain-containing 1-induced mitophagy 
to restore functional mitochondria during I/R injury.49 Factors 
able to elicit mild mitochondrial stress in the context of I/R 
injury, such as the lipid peroxide 4-hydroxynonenal (4-HNE), 
may overcome the stress response and lead to full recovery 
from I/R injury.50

The role of mitochondria in the healthy physiology of 
endothelia to prevent I/R injury and, subsequently, the risk 
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of myocardial ischemic stroke is paramount.51 The vicious 
shortcut leading to heart stroke includes disorders in 
microvascular perfusion, endothelial dysfunction leading to 
platelet/endothelial impairment and platelet activation and 
ultimately cardiomyocyte apoptosis caused by additional 
ischemic events during reperfusion.51,52

Endothelia contain fewer mitochondria than cardiomyocytes 
do; therefore, the effect of ischemic injury and the consequent 
increase in reactive oxygen species (ROS) is particularly 
stringent in this tissue, which is much more prone to undergo 
cellular senescence and apoptosis once ROS signals exceed 
the survival threshold.51,53

Moreover, even the role of nitric oxide (NO) must be 
considered.54 NO is widely known to play a protective role 
in I/R injury,55 and the bioavailability of endothelial NO is 
dramatically reduced upon myocardial infarction and heart 
failure.56

A recent study by Ajamieh et al.57 The authors used ozone 
oxidative preconditioning by rectal insufflation (1 mg/kg) 
on adult male Wistar rats before experimental induction of 
I/R injury and reported that ozone pretreatment exerted a 
protective effect on I/R-induced liver damage, increased the 
synthesis of endothelial NO and reduced the effect of N-ω-
nitro-L-arginine methyl ester (NAME) on endothelial NO 
synthase (eNOS) and inducible nitric oxide synthase activity.57 
Specifically, the rats were classified into six groups: the sham-
operated (control), NAME, I/R, ozone + I/R, ozone + NAME + 
I/R and NAME + I/R groups. The animals underwent surgical 
intervention involving laparotomy and surgical manipulation, 
which included the right vs. the left hepatic arteria and vein, 
without inducing ischemia; intravenous injection of 10 mg/kg 
NAME (groups B, E, and F); and 90 minutes of right hepatic 
lobe ischemia following 90 minutes of reperfusion and 15 
ozone treatments with 50 μg/mL O3.

57 Ozone reduces the 
impact of ischemia and the worsening effect of NO and 
ameliorates the oxidative stress response.57

Medical ozone, which is used at low physiological dosages 
to treat numerous disorders,58 can target many fundamental 
components in the prevention or therapy of IHDs and 
myocardial infarction, including cardiac arrhythmias.

Di Filippo et al.59 reported the antiarrhythmic effect of 
ozone on experimental animals; however, to the best of our 
knowledge, no clinical investigations on ozone and AF have 
been reported. Sprague–Dawley rats were anesthetized and 
subjected to three kinds of treatments (three groups), namely, 
saline (control), aconitine 15 μg/kg (intravenous injection), 
1.5% KCl (intravenous injection) and lidocaine, to induce two 
kinds of arrhythmias, i.e., sodium (aconitine) and potassium 
(KCl)-dependent arrhythmia.59 When rats were treated with 
100 to 300 μg/kg O3, doses ranging from 150 to 300 μg/kg O3 
greatly reduced ventricular fibrillation, ventricular tachycardia 
and mortality caused by reperfusion, whereas a dose of 
100 μg/kg O3 was ineffective.59

From a clinical point of view, the role of oxygen ozone therapy 
in patients suffering from IHD or affected by myocardial 
infarction was initially presumptive on the basis of several 
tests on laboratory animals, which were performed in 

Italy since 1991, when Lettieri and colleagues successfully 
treated a cohort of patients with AMI with oxygen-ozone 
autohemotherapy, reporting evidence on the use of ozone, 
the mechanism of which they investigated many years later in 
laboratory animals.

In 2010, Di Filippo’s group60 subjected Sprague‒Dawley rats 
to 25 minutes of occlusion of the left descending coronary 
artery, followed by 2 hours of reperfusion, whereas 30 
minutes before ischemia, three different doses of an oxygen/
ozone mixture, i.e., 100, 150 and 300 μg/mL ozone, were 
insufflated in the test group. The biomarkers used were 
myocardial infarct size and immunochemistry for endothelial 
progenitor cells (EPCs).60 A dose of 150 μg/mL ozone in the 
O2/O3 mixture reduced the infarct size by 35% (P < 0.01) and 
increased eNOS, contributing to the upregulation of EPCs.60

The purported positive use of medical ozone in IHD and other 
CVDs may lie in the ability of ozone to act in a hormetic way61 
on fundamental targets, such as mitochondrial turnover 
and biogenesis and NO release, in addition to promoting 
the proliferation of EPCs and a cardiomyocyte stem repair 
phenotype,60 an issue we address further in the manuscript.

Oxygen-ozone therapy in cardiovascular disorders: 
the evidence
Bocci et al.62 wondered if ozone could be useful in improving 
cardiovascular disorders. Recent evidence should support 
the hypothesis that ozone is able to improve cardiovascular 
disorders. A recent study by Martínez-Sánchez et al.63 
reported the effective use of ozone in 53 patients with CAD 
previously treated with an antithrombotic therapy protocol. 
In this randomized controlled trial, 27 patients were treated 
with only antithrombotic therapy (Aspirin®, acetyl-salicylic 
acid (125 mg) and Ateromixol®, policosanol (5 mg), once a 
day for 20 days), and 26 patients were treated with the same 
antithrombotic protocol plus 40 μg/mL via rectal insufflation 
of 3% ozone in 200 mL of an oxygen‒ozone calibrated 
mixture.63 Patients undergoing the ozone protocol showed 
that ozone enhanced the antithrombotic effect of acetyl 
salicylate with policosanol, improving the antioxidant status 
of patients and ameliorating their clinical status, although 
they reported mild platelet activation, which was attributed to 
the ozone effect on platelet adenosine receptors.63,64 Bocci et 
al.65 reported in past reports that the use of heparin, instead 
of calcium chelators such as sodium citrate, prior to oxygen-
ozone autohemotherapy may cause platelet aggregation 
rather than inhibiting platelet activation, whereas oxygen-
ozone autohemotherapy with 50 μg/mL O3 in the presence of 
sodium citrate as an anticoagulant did not induce spontaneous 
or adenosine-induced platelet aggregation.66 This raises the 
fundamental concern that protocols in ozone therapy must 
be particularly tailored and standardized to achieve the best 
outcome and prevent any adverse effects.

The ability of ozone to elicit eNOS and promote the 
recruitment of EPCs is a landmark of the ability of this oxygen 
allotrope to intervene in restoring healthy cardiovascular 
physiology.60 Ozone triggers NO from endothelia via a 
mechanism enhanced by NO precursors such as L-arginine and 
blunted by eNOS inhibitors such as NAME.67 This should lead 
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to the assessment that ozone, and its lipoperoxide mediators, 
act mainly on the microvasculature district to achieve positive 
outcomes in patients with myocardial disorders.

In peripheral occlusive arterial disease, oxygen–ozone 
autohemotherapy ameliorated both the rheological properties 
of circulating blood and oxygen release to tissues.68-70 In 
Giunta et al.’s clinical trial,68 27 patients with peripheral 
occlusive arterial disease, clinical stage II−III (La Fontaine 
criteria), underwent major oxygen-ozone autohemotherapy. 
Ozone treatment reduced blood viscosity (P < 0.01) and 
fibrinogen, whereas hematocrit and 2,3-diphosphoglycerate 
did not change significantly.68 Protocols should often be 
debated to achieve the best performance possible. The use 
of ozone therapy to treat cardiovascular and myocardial 
disorders needs to be reappraised and debated at a consensus 
conference to tailor the most correct and suitable protocol for 
these pathologies.

In heart failure with a reduced ejection fraction, Buyuklu and 
coworkers71 treated 40 patients undergoing conventional 
heart failure therapy with three major additional treatments 
of 20–50 μg/mL oxygen-ozone autohemotherapy and one 
minor treatment with 20–40 μg/mL intramuscular O3 for 5 
weeks, matching the results with 40 patients treated with only 
heart failure therapy as controls. In this study, ozone increased 
the plasma levels of antioxidant enzymes, i.e., superoxide 
dismutase, catalase, glutathione and glutathione peroxidase.71 
The left ventricular end-systolic and diastolic volumes were 
significantly reduced by ozone treatment, whereas the 
left ventricular ejection fraction (LVEF) was only modestly 
increased but not significantly (P = 0.567). Furthermore, 
ozone treatment reduced plasma NO and malonyl-dialdehyde, 
in addition to the heart failure marker N-terminal pro-brain 
natriuretic peptide.71 The 6-minute walk distance exercise, 
performed by patients undergoing ozone therapy, was notably 
improved.71

The complex pattern of results from this study suggests that a 
sound and rigorous protocol of oxygen–ozone therapy for IHD, 
CAD and general CVDs is particularly crucial.

Pandolfi and colleagues72 reported, in a significant case report, 
that a 76-year critically ill patient suffering from IHD with 
some episodic occurrences of myocardial infarction improved 
his LVEF under 33% for 14 months upon 40 μg/mL ozone 
treatment, despite several medical treatments and coronary 
angioplasty, to an LVEF of 50%, only after two oxygen‒ozone 
autohemotherapy sessions on a weekly basis, according to 
protocols from the Italian Society of Oxygen Ozone Therapy.

Cecilio Cespedes-Suarez et al.73 succeeded in increasing the 
LVEF in a cohort of six patients with Class II–III chronic heart 
failure from 33% to 50%, following a protocol of ozone rectal 
insufflation arranged in four weeks, each with 5 sessions and 
with constantly 5 μg/mL weekly increasing dosages of ozone 
from 25 to 40 μg/mL. In Cespedes-Suarez et al.’s study,73 all 
twelve patients underwent conventional heart failure therapy, 
whereas only a cohort of six patients were additionally 
treated with ozone. In this group, 66.7% of patients had class 
III heart failure, whereas following ozone therapy, patients 
were no longer classified as class III heart failure; however, 

16.6% were class I heart failure, and 83.3% were class II heart 
failure, which improved their clinical stage.73,74 Furthermore, 
ozone-treated patients presented 50% lower levels of the 
heart failure marker natriuretic peptide N-terminal pro-brain 
natriuretic peptide.73 In this research study, the authors used 
rectal ozone via insufflation via a 20-session protocol and 
increasing concentrations every 5 sessions, starting from 
25 μg/mL in 200 mL to 40 μg/mL in 300 mL.73

The promising action of ozone on endothelia may be a 
possible reason for the myocardial physiology in response 
to ozone therapy. For example, the role of NO signaling in 
heart failure with preserved ejection fraction (HFpEF) is 
crucial74, and in HFpEF, the function of endothelia may be 
deranged, as shown recently by comparisons of serum NO-
derived metabolites in heart failure patients with a reduced 
ejection fraction and HFpEF patients.75 If NO is a stringent 
factor in heart failure, the role of ozone should be particularly 
tuned to the most functional protocol available thus far. NO 
clearly has a beneficial effect on heart failure, improving left 
ventricular function.76,77 The activity of ozone, as well as its 
lipid mediators, such as the electrophile 4-HNE, on endothelia 
indirectly affects full myocardial physiology. The role of 4-HNE 
is particularly intriguing. This lipid hydroperoxide byproduct, 
which ozone may form by the oxidation of lipids with ω-6 
fatty acids, is particularly abundant in the vascular district, 
where it exerts a hormetic effect on the arterial lining of the 
endothelium and smooth musculature, depending on the 
fine balance between the rate of lipid peroxidation by ROS 
and the scavenging action of 4-HNE adducts by glutathione-
S-transferases.78 Therefore, 4-HNE represents an outstanding 
signaling molecule involved in the interplay between 
inflammation, immune surveillance, the stress response, 
mitochondrial biogenesis and cell turnover, all of which are 
functional districts where the hormetic activity of ozone is 
clearly demonstrable.61,79

Role of ozone oncell precursors to prevent cardiac 
ischemic stroke and treat cardiovascular diseases
Cell therapy is a leading, straightforward and modern 
approach to repair tissue damage following AMI and allowing 
myocardial functionality to restore health status.80

As cardiologists know in depth, despite some similarities, 
HFpEF (with an ejection fraction ≥ 50%) is quite different from 
heart failure with a reduced ejection fraction (ejection fraction 
< 50%), therefore representing a challenging cardiovascular 
syndrome because it is particularly refractory to medicines 
and medical therapies.81-84 In addition to sodium glucose 
cotransporter 2 inhibitors and the promising effect of ozone 
along with conventional therapy,85 improvements in morbidity 
or mortality due to HFpEF seem to be overcome by the use 
of cardiosphere-derived cells, a type of stromal/progenitor 
cells that are distinct from c-kit-positive cells but that exhibit 
clonogenicity and multilineage potential and are active via 
indirect mechanisms.80 Myocardial cell therapy can potentially 
have beneficial effects, but long-term studies on its safety 
and efficacy are important. In particular, with regard to its 
effectiveness, it is necessary to identify its weaknesses and try 
to address this issue in further studies.
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The enormous bulk of knowledge acquired thus far suggests 
that to overcome the problems of cell therapy, a more 
complex approach is needed, one that involves more innate 
biological mechanisms and the other that enhances current 
strategies. In addition, researchers need approaches that 
associate the use of stem cells with mechanisms that increase 
the body’s ability to recall cells and allow their insertion 
and survival in the damaged area. Homing approaches and 
engineering are essential to allow stem cells to perform their 
functions in damaged tissue, particularly when systemically 
infused. Hypoxic stimuli, which characterize ischemic 
preconditioning, have been proposed as a therapeutic strategy 
to improve the survival and engraftment of stem cells.86,87

Chacko and colleagues86 reported that rat mesenchymal 
stem cells (MSCs) under hypoxia for 24 and 48 hours 
optimally expressed proteins essential for survival and 
engineering of the cells in the infarcted heart. The authors 
used cryopreserved primary rat MSCs, which were positive 
for CD29 and CD54 and were isolated from the bone marrow 
of adult Fisher rats treated with hypoxic preconditions (0.5% 
O2) for 24, 48 and 72 hours. Hypoxic preconditions reduced 
apoptosis due to severe hypoxia and enhanced the ability 
of MSCs to differentiate into cardiomyocytes or endothelial 
precursors.86 The authors concluded that the results obtained 
provided indications of possible methods for the preparation 
of MSCs capable of enhancing the effectiveness of in vivo 
cellular therapy.86

In 2005, Tang and colleagues87 reported in an in vivo 
mouse model that MSCs engineered to overexpress, in a 
hypoxic context, the heme oxygenase-1 (HO-1) gene, one 
of the effectors activated during the late phase of ischemic 
preconditioning, presented increased survival and viability in 
the ischemic heart. Other research groups have shown that 
the cardioprotection conferred by ischemic preconditioning 
(IPC) is also linked to the mobilization of stem cells and to 
the production of cardioprotective cytokines that enhance 
recovery following damage from I/R and chronic ischemia.88,89 
During both the early and late stages of IPC, stem cells are 
mobilized from the bone marrow to the site of damage via 
the bloodstream, which is likely attracted by the secretion 
of cytokines and other chemoattractive substances from the 
damaged organ.

Ii et al.88 using an in vivo mouse model, reported that one 
classical preconditioning ischemic stimulus could recruit cells 
into myocardium medullary-derived EPCs within 3 hours. They 
“imported” cardioprotective mediators, such as inducible 
nitric oxide synthase and eNOS, in the area of   damage.88

Furthermore, when volunteers are subjected to repeated 
tests for 1 month with cycles of I/R in the arm (remote 
ischemic preconditioning), an increased level of circulating 
EPCs and improved endothelial function have been observed 
in humans,90 but the contribution of EPCs to the improvement 
of endothelial function has not yet been fully clarified. In this 
study, upper limb ischemia (by cuff inflation of over 200 mmHg 
lasting 5 minutes) was performed 6 times a day within 1 
month in 30 young healthy men to induce the late phase of 
IPC and investigate its effect on endothelial function.90 The 
IPC stimulus increased plasma vascular endothelial growth 

factor, circulating levels of EPCs and the forearm blood flow 
response to acetylcholine, suggesting that repetition of late 
IPC enhances endothelia-mediated vasodilation by increasing 
NO and EPCs.90

Furthermore, Kamota et al.89 demonstrated that remote 
IPCs had beneficial effects in an in vivo mouse model. In fact, 
researchers have reported a reduction in the size of the heart 
attack and preservation of the ejection fraction of the left 
ventricle. During the early stage, the serum levels of vascular 
endothelial growth factor and SDF-1α increase, but during 
the late phase, there is an increase in the peripheral levels of 
CD34+ and CD34+/flk– stem cells and an accumulation of bone 
marrow stem cells in the ischemic risk zone.89 In addition, 
the use of antibodies directed against stem cells abolished 
cardioprotective effects.89

Gyöngyösi and colleagues91 showed, in a model of a heart 
attack in an animal of large size (pig), that the IPC was able to 
promote mobilization and the recruitment of MSCs and heart 
stem cells from the circulating sector to the infarcted area 
and border areas. MSCs seemed to head faster into damaged 
areas. In addition, during the early phase of IPC, they reported 
an increase in the levels of some circulating cytokines and 
growth factors, including vascular endothelial growth factor. 
These studies have potential clinical implications for cardiac 
cell therapy, as they suggest that ischemic preconditioning, 
as well as strategies such as the administration of exogenous 
cytokines,82 can promote the mobilization and integration of 
stem cells in ischemic areas.

Di Filippo and colleagues60 reported that oxygen-ozone 
therapy has a myocardial protective effect against infarction 
by triggering endothelial expression of eNOS and NO release 
and by inducing the activity of EPCs and CD34- and CD117/
c-kit-positive cells.

Ozone promotes progenitor clonogenetic cells, which are able 
to repair myocardial damage; however, its activity is broader 
than its well-known antioxidant and anti-inflammatory 
effects. EPCs represent a new, encouraging frontier in the 
improvement of cardiac stress and damage and cardiovascular 
problems.92 The mechanism by which ozone can regulate 
the fate and turnover of EPCs may be driven by the same 
eNOS, which ozone and 4-HNE are able to target. When 
eNOS is uncoupled, as occurs during diabetes, it produces 
ROS instead of NO, causing endothelial dysfunction and 
impairing both the mobilization and function of EPCs, whose 
biology is controlled by eNOS.93 Under ischemic conditions, 
pleiotrophin induces angiogenesis in vivo but recruits not only 
endothelial cells but also EPCs,94 including NO.95 Interestingly, 
the activity of pleiotrophin, a heparin-binding growth factor, 
is concurrent with that of the initial pro-oxidant action of 
ozone and 4-HNE or lipoperoxides, as pleiotrophin is involved 
both in the formation of ROS as signaling molecules and in 
being a target of ROS in EPC migration,96 even inducing the 
transdifferentiation of monocytes into endothelial cells.97 This 
intriguing ozone-pleiotrophin-ROS-EPC circuit, which also 
involves eNOS and NO, may be the fundamental hallmark 
of how ozone can induce EPCs and actively participate in 
myocardial repair and the recovery of healthy endothelial 
function in the cardiovascular system.
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Conclusions
Figure 1 summarizes the major impact of ozone in the 
complex milieu of CVD. The role of ozone in cardiovascular 
disorders has been debated for several years,62 and to date, 
novel biomedical data can encourage the use of ozone 
adjunct treatment in this field. Further insights are needed 
to assess the fundamental role of ozone in cardiovascular 
disorders, including IHD and myocardial infarction. Promising 
clinical and experimental studies, which need to be further 

implemented, should expand the debate about the correct 
protocols of ozone therapy to be applied in singular and 
defined cardiac and cardiovascular disorders to optimize 
clinical outcomes and provide patients with more favorable 
perspectives and life expectance. Ozone has been widely 
demonstrated to target important components of cardiac 
physiology, both in vitro and in vivo, and in this sense, 
research on oxygen-ozone therapy is still attractive and 
encouraging for clinical cardiology.
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