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Abstract
Background Despite the development of various antiviral drugs, most of them are not effective in the treatment 
of coronavirus disease 2019 (COVID-19) as a hyperinflammatory disorder. Chemokine (C-C motif ) ligand 2 (CCL2) is 
one of the critical CC chemokines involved in the pathogenesis and severity of severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) infection. This study aimed to investigate the expression of CCL2 and CC chemokine 
receptor 2 (CCR2) in COVID-19 patients.

Methods Peripheral blood samples were collected from 60 confirmed COVID-19 patients and 60 age-matched 
healthy subjects. The ages of the subjects were categorized as follows: up to 20 years, 20 to 40 years, 40 to 60 years, 
and more than 60 years. CCL2 serum levels were measured using the enzyme-linked immunosorbent assay (ELISA). 
CCR2 gene expression in peripheral blood mononuclear cells (PBMCs) was measured employing real-time polymerase 
chain reaction (PCR).

Results In all age groups, CCL2 serum levels were significantly elevated in patients compared to healthy controls 
(P < 0.0001). CCL2 levels were higher in severe patients than in moderate patients. Moreover, CCR2 expression by 
PBMCs was higher in patients compared to control subjects. However, a significant difference between patients 
and controls over 60 years of age was identified (P = 0.0353). There was no significant difference in CCR2 expression 
between moderate and severe COVID-19 patients.

Conclusions Taken together, the findings demonstrate that CCL2 and CCR2 are upregulated in COVID-19 patients at 
protein and mRNA levels, respectively. Therefore, the CCL2/CCR2 axis may be a potential therapeutic target in order to 
improve patient outcomes.
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Background
Coronavirus disease 2019 (COVID-19) was first observed 
in Wuhan City, Hubei Province, China, in December 
2019. Then, the outbreak of COVID-19 rapidly spread to 
other provinces in China and Asian countries, including 
Japan, Korea, and Thailand. Due to international trans-
mission, the disease was discovered in different conti-
nents, such as Europe and North America [1, 2]. Due 
to the rapid spread and pandemic potential, COVID-
19 has turned into one of the most severe public health 
problems in recent years [3]. Over two years after the 
beginning of COVID-19, up to now, there are more than 
704,753,890 confirmed cases and more than 7,010,681 
confirmed deaths globally (https://www.worldometers.
info/coronavirus/). The causative agent responsible for 
COVID-19 infection is a novel coronavirus (CoV) des-
ignated as severe acute respiratory syndrome coronavi-
rus-2 (SARS-CoV-2) [4, 5].

SARS-CoV-2 binds to the host cell receptor angio-
tensin-converting enzyme 2 (ACE2). In addition to 
binding to ACE-2, the transmembrane serine prote-
ase 2 (TMPRSS2) is needed for the priming of the viral 
spike (S) protein [6]. Following SARS-CoV-2 infection, 
the virus replicates and activates immune effector cells 
resulting in the release of many pro-inflammatory cyto-
kines and chemokines, which is called cytokine storm. 
The cytokine storm leads to acute respiratory distress 
syndrome (ARDS) that is the major cause of mortality 
in patients with COVID-19 [7, 8]. ARDS is observed in 
some patients and could result in decreased blood oxy-
gen saturation and life-threatening hypoxemia [9].

The cytokine storm is marked by the unrestrained 
release of pro-inflammatory cytokines and chemokines, 
resulting in systemic hyperinflammation. In COVID-19 
patients, the cytokine storm is initiated by an exagger-
ated immunological response to SARS-CoV-2 infection, 
leading to the recruitment and activation of immune 
cells, including macrophages, neutrophils, and T cells. 
Essential cytokines implicated in this process comprise 
interleukins (e.g., IL-1β, IL-6, IL-8), tumor necrosis 
factor-alpha (TNF-α), and chemokines such as CCL2, 
CXCL10, and CCL3. These chemicals enhance the 
inflammatory response by facilitating additional recruit-
ment of immune cells to the infection site, especially in 
the lungs. Excessive infiltration of immune cells and cyto-
kine production in the lungs result in significant tissue 
damage and respiratory failure. Uncontrolled systemic 
inflammation may also impact other organs, leading to 
multi-organ failure in severe instances [10–13]. Although 
cytokines help the immune system against infections in 
normal conditions, they have potential harmful effects on 
COVID-19 course. Therefore, targeting cytokines (e.g., 
IL-6) and cytokine-like molecules (e.g., high-mobility 
group box 1 (HMGB-1)) can be attractive therapeutic 

option to alleviate the cytokine storm and reduce 
COVID-19 mortality [14, 15]. Additionally, it has been 
suggested that inflammatory cytokines polymorphisms 
may be used to identify the therapeutic response to 
COVID-19-induced ARDS [16].

Chemokines are a family of small proteins that have a 
crucial role in leukocyte recruitment to the site of infec-
tion during inflammatory responses and other biological 
phenomena [17–19]. These chemotactic cytokines con-
tribute to the fight against viral infections by recruitment 
of innate and adaptive immune cells and the production 
of antiviral mediators [20]. Several studies have reported 
upregulation of chemokines such as CXCL8, CXCL10, 
CCL2, and CCL3 in COVID-19 patients [21, 22]. Chemo-
kine (C-C motif ) ligand 2 (CCL2)/monocyte chemoat-
tractant protein-1 (MCP-1) acts as a chemoattractant for 
various immune cells such as monocytes, T cells, natu-
ral killer cells, and dendritic cells. CCL2 exerts its func-
tions by binding to its receptor CC chemokine receptor 
2 (CCR2). The CCL2/CCR2 axis is associated with the 
pathogenesis of inflammatory diseases such as athero-
sclerosis, rheumatoid arthritis (RA), multiple sclerosis, 
asthma, and diabetic nephropathy [23–28].

Given the crucial role of the CCL2/CCR2 axis in regu-
lating monocyte/macrophage trafficking during infection 
and inflammation, this study was designed to examine 
CCL2 serum levels and CCR2 gene expression in periph-
eral blood mononuclear cells (PBMCs) from COVID-19 
patients across different age groups. Additionally, CCL2 
levels and CCR2 expression were analyzed concerning 
patients’ gender and disease severity.

Methods
Subjects
In this case-control study, patients with SARS-CoV-2 
infection (n = 60) were recruited from Ali-Ibn Abi-
Talib Hospital in Rafsanjan between July and December 
2021. During this period, the predominant SARS-CoV-2 
strain was the Delta variant, which significantly impacts 
immune responses and chemokine levels. COVID-19 
patients were diagnosed with clinical symptoms and con-
firmed by real-time polymerase chain reaction (RT-PCR) 
on nasopharyngeal swabs. All patients were divided into 
four age groups: group 1 (0–19 years), group 2 (20–40 
years), group 3 (40–60 years), and group 4 (˃ 60 years). 
None of the subjects in the patient and control groups 
had received a COVID-19 vaccine. Patients with a history 
of inflammatory diseases, autoimmune diseases, chronic 
lung diseases, cancer, patients with co-infection by other 
pathogens, and patients on immunosuppressive thera-
pies were excluded from the study. The healthy donors 
included in this study had not a history of COVID-19 
infection. In this study, we also divided the confirmed 
COVID-19 patients into two groups (moderate and 
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severe) according to the diagnosis and treatment proto-
col for novel coronavirus pneumonia (Trial Version 7) 
released by the National Health Commission of China 
[29]. Moderate cases show fever and respiratory symp-
toms with radiological findings of pneumonia. Severe 
cases meet one of the following criteria: (1) respiratory 
distress (≥ 30 breaths/min); (2) oxygen saturation ≤ 93% 
at rest; (3) arterial partial pressure of oxygen (PaO2)/frac-
tion of inspired oxygen (FiO2) ≤ 300mmHg. In addition to 
patients, 60 healthy individuals with no COVID-19 symp-
toms were selected as healthy controls. Demographic, 
clinical, and laboratory data were summarized in Tables 1 
and 2. All participants in the study completed a written 
informed consent form before enrollment into this study. 
The research protocol was approved by the Ethics Com-
mittee at Rafsanjan University of Medical Sciences.

Chemokine assay
CCL2 serum levels were measured using a human CCL2 
DuoSet ELISA kit (R&D Systems, Catalog No: DY279) in 
serum samples from patients and healthy controls. The 

ELISA assay was performed according to the manufac-
turer’s instructions. Briefly, 96-well plates were coated 
overnight with diluted mouse anti-human CCL2 cap-
ture antibody (100 µL/well). After washing, plates were 
blocked by adding 300 µL of Reagent Diluent to each well 
and incubating at room temperature for one hour. Sam-
ples were added to wells (100 µL/well), and plates were 
incubated at room temperature for two hours. Then, a 
biotinylated goat anti-human CCL2 detection antibody, 
diluted in Reagent Diluent, was added (100 µL) to each 
well and incubated at room temperature for two hours. 
The next step was carried out by adding the working 
dilution of Streptavidin-HRP to each well. After wash-
ing, the working dilution of Streptavidin-HRP was added 
(100 µL) to each well and incubated at room tempera-
ture for 20  min. Substrate solution was added (100 µL) 
to each well, and plates were again incubated at room 
temperature for 20 min. In the final step, a stop solution 
was added (50 µL) to each well, and the optical density of 
each well was read using a microplate reader at 450 nm 

Table 1 Demographic and laboratory parameters of controls and patients in different age groups
Age of groups (years) Subjects Age (years) Sex (m/f) WBC (/µL) CRP (mg/mL) LDH (IU/L)
Under 20 Control

n = 15
8.53 ± 6.25 4/11 6249.25 ± 1562.1 6.32 ± 2.46 198.24 ± 41.53

Patients
n = 15

6.87 ± 4.34 6/9 7028.34 ± 2761.41 26.27 ± 3.19 652.56 ± 271.14

P value 0.45 - 0.39 < 0.0001* < 0.0001*
20–40 Control

n = 15
32.54 ± 5.42 5/10 6359.15 ± 1658.94 6.13 ± 2.45 182.35 ± 46.71

Patients
n = 15

31.55 ± 4.62 8/7 9242.56 ± 5686.2 43.21 ± 18.78 704.43 ± 285.88

P value 0.82 - 0.07 < 0.0001* < 0.0001*
40–60 Control

n = 15
46.12 ± 7.11 5/10 5852.36 ± 1283.4 4.72 ± 1.35 248.62 ± 72.91

Patients
n = 15

46.98 ± 6.47 7/8 6692.27 ± 2135.74 42.47 ± 12.63 793.33 ± 318.64

P value 0.75 - 0.82 < 0.0001* < 0.0001*
Over 60 Control

n = 15
70.25 ± 6.68 9/6 6147.2 ± 1554.16 5.84 ± 1.61 252.63 ± 64.15

Patients
n = 15

71.12 ± 7.34 11/4 7758.29 ± 3934.52 35.56 ± 12.74 776.43 ± 255.36

P value 0.68 - 0.14 < 0.0001* < 0.0001*

Table 2 Clinical data of patients in different age groups
Age of groups (years) < 20 20–40 40–60 > 60 P value
Oxygen saturation (SpO2) (%) 0.92 ± 0.05 0.92 ± 0.04 0.90 ± 0.02 0.88 ± 0.05 0.001*
Severity (moderate/severe) 13/2 12/3 7/8 3/12 -
Body temperature (C°) 36.74 ± 0.56 36.51 ± 0.62 37.68 ± 0.52 37.56 ± 0.57 0.11
Respiratory rate (breaths/minute) 17.65 ± 3.22 18.55 ± 3.18 18.69 ± 4.13 20.65 ± 4.25 0.143
Heart rate (beats/minute) 105.65 ± 12.42 100.32 ± 12.53 98.71 ± 12.46 99.50 ± 12.32 0.3
Systolic BP (mmHg) 12.45 ± 1.33 12.56 ± 1.25 12.43 ± 2.18 13.24 ± 2.62 0.6
Diastolic BP (mmHg) 7.44 ± 0.63 7.19 ± 1.35 8.1 ± 1.21 8.32 ± 1.52 0.7
HCO3 (mEq/L) 19.37 ± 2.75 23.81 ± 2.25 25.14 ± 3.56 20.62 ± 3.57 0.005 *
pCO2 (mmHg) 29.25 ± 4.36 33.54 ± 6.34 33.43 ± 7.28 30.54 ± 7.58 0.14
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with wavelength correction set to 540–570  nm. Each 
standard or sample was assayed in duplicate.

RNA extraction, cDNA synthesis, and real-time PCR 
(RT-PCR)
The peripheral blood mononuclear cells (PBMCs) were 
isolated from peripheral blood samples of patients and 
healthy controls using Ficoll-Paque PREMIUM (GE 
Healthcare, USA). Total RNA was extracted using an 
RNA extraction kit (KPG, Kerman, Iran) according to the 
manufacturer’s instructions. The integrity, quality, and 
quantity of isolated RNA were determined by agarose gel 
electrophoresis and spectrophotometry. Then, comple-
mentary DNA (cDNA) synthesis was conducted using a 
cDNA synthesis kit (KPG, Kerman, Iran) according to the 
manufacturer’s instructions. The reaction was incubated 
at 42 °C for 60 min (cDNA synthesis) and terminated by 
heating at 90 °C for 5 min. In order to evaluate the expres-
sion of CCR2 gene, real-time PCR was performed using 
qPCRBIO SyGreen Mix Hi-ROX (PCR Biosystems, UK) 
on a Rotor-Gene Q 2plex System (Qiagen, Germany). The 
thermal cycling program was as follows: 2 min at 95 °C, 
followed by 40 cycles of denaturation (5 s at 95  °C) and 
annealing/extension (30 s at 60 °C). A housekeeping gene 
(β-actin) was used as an internal control to normalize the 
expression of the target gene. The relative gene expres-
sion was calculated using the 2−ΔΔCT method. The primer 
sequences used for real-time PCR are shown in Table 3.

Statistical analysis
All statistical analysis was carried out using GraphPad 
Prism 9 (GraphPad Software, San Diego, CA, USA). Inde-
pendent sample t-test, Mann-Whitney U, and ANOVA/
Tukey’s test were used to evaluate differences among 
groups. The correlation matrix test was performed to 
assess the association between variables. Data are shown 
as mean ± standard error of the mean (SEM). All P val-
ues < 0.05 were considered significant.

Results
Serum levels of CCL2 in COVID-19 patients
To evaluate CCL2 serum levels in COVID-19, peripheral 
blood samples were collected from healthy individuals 
(n = 60) and patients who were PCR-positive for COVID-
19 (n = 60). Our results demonstrated that the serum 
concentrations of CCL2 were elevated in confirmed 
SARS-CoV-2-infected patients compared to healthy con-
trols (Fig. 1). In all age groups (0–19 years, 20–40 years, 
40–60 years, and ˃ 60 years), statistical analysis of data 

showed that there was a significant difference between 
patients and controls (P < 0.0001). These data indicate 
that CCL2 may play a significant role in the host response 
to SARS-CoV-2 infection.

There was no statistically significant difference between 
male and female patients regarding serum levels of 
CCL2, and CCL2 levels were also not significantly dif-
ferent between moderate and severe COVID-19 patients 
(Fig. 2C and D). Serum levels of CCL2 did not correlate 
with CCR2 expression, age, WBC, fever, oxygen satura-
tion (SpO2), and CRP (Fig. 3).

Expression of CCR2 in COVID-19 patients
In addition to serum levels of CCL2, the expression of 
its receptor, CCR2, was quantified by real-time PCR in 
PBMCs from COVID-19 patients (n = 60) and healthy 
individuals (n = 60). Our findings revealed that the expres-
sion level of CCR2 gene in PBMCs from all COVID-19 
patients (0–19 years, 20–40 years, 40–60 years, and ˃ 60 
years) was higher than that in PBMCs from control sub-
jects (Fig.  4). However, we observed a significant differ-
ence between patients and controls only in group 4 (˃ 60 
years) (P = 0.0353). These results show that CCR2 may be 
an essential chemokine receptor in inflammation during 
COVID-19.

Similar to CCL2 levels, CCR2 expression was not sig-
nificantly different between male and female patients. 
Moreover, we observed no significant difference in CCR2 
expression between moderate and severe COVID-19 
patients (Fig. 2A and B). The correlation matrix showed 
weak or near-zero correlations between most variables, 
with no significant associations. WBC had a slight posi-
tive correlation with fever, while oxygen saturation 
(SpO2) and C-reactive protein (CRP) exhibited minimal 
correlation with other variables. Chemokines CCR2 and 
CCL2 also showed negligible correlations across the 
dataset. Overall, the variables appeared largely indepen-
dent of one another based on this matrix (Fig. 3).

Discussion
Chemokines have a crucial role in combating viral infec-
tions through the recruitment of innate and adaptive 
immune cells to the site of infection and inducing the 
production of antiviral mediators. On the other hand, 
a significant recruitment of immune cells to the site of 
infection and increased antiviral responses can result 
in hyperinflammation and tissue damage [30]. There 
is some evidence that CC chemokines are more critical 
than CXC chemokines in response to respiratory viral 
infections [31]. CCL2 is a potent chemoattractant che-
mokine able to recruit monocytes and macrophages and 
initiate inflammation [32]. Numerous studies have sug-
gested the role of CCL2 in the pathogenesis of viral infec-
tions, such as those caused by human cytomegalovirus 

Table 3 The sequences of primers used in the study
Gene Forward Reverse
β-actin  A A A C T G G A A C G G T G A A G G T G  A G A A G T G G G G T G G C T T T T A G
CCR2  T C T G T T T A T G T C T G T G G C C C T  G C C T C T T C T T C T C G T T T C G A C
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(CMV), human rhinovirus (HRV), HIV, and influenza 
[33–36].

Our previous study showed that there was no signifi-
cant difference between serum levels of interleukin-1β 
(IL-1β) in COVID-19 patients and normal subjects [37]. 
In the present study, we found significantly elevated 
serum concentrations of CCL2 in confirmed COVID-
19 patients compared to the age-matched healthy con-
trol groups. Several chemokines (e.g., CCL2, CCL3) are 
among proinflammatory mediators involved in SARS-
CoV-2 infection. It has been shown that infection of mice 
with murine coronaviruses (mouse hepatitis virus) leads 
to similar chemokine responses [38]. In patients with 
severe COVID-19, lung macrophages expressed high 
levels of several chemokines, such as CCL2 and CCL3 
[39]. Transcriptome analysis of bronchoalveolar lavage 
fluid (BALF) from COVID-19 patients identified sev-
eral chemokines (e.g., CCL2, CCL8) induced by SARS-
CoV-2 infection [40]. Serum levels of chemokines have 
been investigated in COVID-19 patients (asymptomatic, 
symptomatic) [41]. A higher level of CCL2 was found 

in symptomatic COVID-19 patients than in healthy 
controls.

Additionally, severe COVID-19 patients showed higher 
serum levels of CCL2 compared to mild cases. Another 
study showed that fatal COVID-19 patients had a signifi-
cantly elevated plasma level of CCL2 compared to severe 
and mild COVID-19 patients [42]. Transcriptional anal-
ysis of lung samples from COVID-19 patients showed 
upregulation of chemokines, including CCL2, CCL8, 
and CCL11. A significant increase was also observed in 
serum levels of chemokines such as CCl2 and CCL8. This 
increase in these chemokines was associated with gener-
alized inflammation in patients with COVID-19 [43]. It 
was also revealed that ICU patients showed an increased 
plasma level of CCL2 in comparison to non-ICU patients 
[44]. It should be noted that increased levels of CCL2 
could be used as a biomarker for mortality in COVID-19 
patients [45].

All these data indicate that CCL2 is upregulated in dif-
ferent samples from COVID-19 patients, such as serum, 
plasma, and BALF. Our findings are consistent with these 
studies and show that serum concentrations of CCL2 are 

Fig. 1 Serum levels of CCL2 in COVID-19 patients and healthy controls of different age groups. (A) < 20 years (B) 20–40 years (C) 40–60 years (D) > 60 years. 
Differences were considered statistically significant when P < 0.05 (P < 0.0001)
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significantly elevated in COVID-19 patients of different 
age groups. We also observed an increase in CCL2 lev-
els in severe COVID-19 patients compared to moderate 
patients, but this increase was not significantly different 
between both groups. Similar to our results in the pres-
ent study, Tincati et al. showed that severe COVID-19 
patients had higher plasma levels of CCL2 (without sta-
tistical significance) than mild patients [46]. Among 
chemokines involved in COVID-19, CCL2 and CXCL10 
show the most substantial upregulation. According to the 
available studies, CCL2 is a chemokine that has a vital 
role in the initiation of the COVID-19 cytokine storm 
[47]. In addition to COVID-19 lung pathology, CCL2 
may have a pathogenic role in heart damage. It was found 
that cardiomyocytes infected with SARS-CoV-2 can 
secrete CCL2 and recruit CCR2+ monocytes [48]. Taken 
together, these outcomes suggest that the inflammatory 
chemokine CCL2 is of great importance in the pathogen-
esis of SARS-CoV-2 infection.

CCL2 functions are mediated through its receptor, 
CCR2, which is expressed in various cells, including 
monocytes, dendritic cells (DC), and T cells. CCR2 is 

associated with several disorders, including atheroscle-
rosis, central nervous system (CNS) inflammation, and 
diabetes [49]. The absence of CCR2 in influenza A virus 
infection has been examined using CCR2-deficient mice. 
The study showed that defective migration of mono-
cytes/macrophages led to protection against influenza-
induced tissue damage [50]. Excessive accumulation of 
CCR2+ inflammatory monocytes in the lungs has been 
reported during influenza A virus infection. Moreover, 
CCR2-deficient mice showed a reduction in leukocyte 
infiltration and cytokine storm [51]. During influenza 
virus infection, CCR2 also contributes to the migration 
of NK cells [52]. An increase in the transcription of CCR2 
and CCR5 (CCL3 receptor) has been observed in BALF 
samples of COVID-19 patients [40]. High expression of 
CCR2 was shown to be involved in severe COVID-19 
using transcriptome-wide association in lung tissue [53]. 
The expression of CCR2 at mRNA levels was increased 
in peripheral blood samples of patients with COVID-19, 
and severe COVID-19 patients had higher expression 
than moderate and critical patients [54].

Fig. 2 CCR2 expression and CCL2 levels in COVID-19 patients according to gender and stages of disease. (A) The expression level of CCR2 gene in male 
and female COVID-19 patients. (B) The expression level of CCR2 gene in moderate and severe COVID-19 patients. (C) Serum level of CCL2 in male and 
female COVID-19 patients. (D) Serum level of CCL2 in moderate and severe COVID-19 patients. ns: not significant
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In our study, we also reported that the expression 
level of CCR2 in PBMCs from COVID-19 patients was 
upregulated compared with control subjects. It is inter-
esting to note that we observed a significant difference 
between patients and controls above 60 years of age. Fur-
thermore, there was no significant difference in CCR2 
expression between moderate and severe COVID-19 
patients. Targeting the CCL2/CCR2 axis has been inves-
tigated in several diseases, such as cancer and athero-
sclerosis. For example, blocking the CCL2/CCR2 axis 
by a CCR2 antagonist or CCL2 neutralizing antibody 
could have therapeutic effects on hepatocellular carci-
noma [55, 56]. Pharmacological targeting of the CCL2/
CCR2 axis also could inhibit atherosclerosis [57]. In the 
context of COVID-19, we suggest that the CCL2/CCR2 
axis may have beneficial or detrimental roles depending 

on the stage of the disease. A CCR2 and CCR5 antagonist 
(cenicriviroc) was able to inhibit SARS-CoV-2 replication 
[58]. On the other hand, CCR2 has been demonstrated to 
control SARS-CoV-2 infection and inflammation in the 
lung through the infiltration of monocytes into the lung 
and the expansion of monocyte-derived cells [59].

This study has various limitations that must be recog-
nized. The sample size was limited, impacting the gener-
alizability of the findings. This limitation stemmed mainly 
from the rigorous inclusion criteria, which mandated 
unvaccinated persons devoid of a history of inflamma-
tory or autoimmune illnesses, alongside the difficulties of 
participant recruitment during the pandemic. Secondly, 
although the study detected increased levels of CCL2 and 
CCR2 in COVID-19 patients, it needed more protein-
level validation by techniques such as Western blot owing 

Fig. 3 The heatmap displays the correlation coefficients between various parameters, including Age, White Blood Cell count (WBC), Fever, Oxygen 
saturation (O2), C-reactive protein (CRP), CCR2, and CCL2. The color scale on the right represents the strength of the correlation, ranging from − 1 (red, 
strong negative correlation) to + 1 (blue, strong positive correlation). Most variables showed weak or negligible correlations with one another, indicating 
minimal associations across the dataset
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to financial and resource limitations. The investigation 
was undertaken during a period when the Delta variation 
was prominent, perhaps restricting the application of our 
findings to other SARS-CoV-2 variants.

Subsequent studies should endeavor to incorporate a 
more significant, more heterogeneous cohort to corrobo-
rate and enhance these findings. Integrating protein-level 
analysis, such as Western blotting, with gene expression 
studies would yield a more thorough comprehension of 
the functions of CCL2 and CCR2 in COVID-19. Further-
more, analyzing these chemokines in relation to vari-
ous viral variations and vaccinated cohorts may provide 
insights into the evolution of the immune response to 
SARS-CoV-2. Additional research on the molecular path-
ways connecting CCL2 and CCR2 to illness severity and 
progression will be beneficial for the development of tar-
geted treatment methods.

Conclusions
In conclusion, the findings of our study showed that the 
circulating levels of CCL2 were significantly elevated in 
patients with COVID-19. The expression of its receptor, 

CCR2, was also higher in PBMCs of patients. Our results 
emphasize the importance of the CCL2/CCR2 axis in 
SARS-CoV-2 infection among different age groups. This 
chemokine axis could have a protective role in the early 
stage of COVID-19 by recruitment of monocytes/mac-
rophages into the lung. However, excessive recruitment 
of immune cells into the lungs may cause hyperinflam-
mation and tissue damage at the late stage of the dis-
ease. Therefore, targeting the CCL2/CCR2 axis should 
be investigated in the different stages of SARS-CoV-2 
infection.
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