Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1991 Nov 1;279(Pt 3):801–806. doi: 10.1042/bj2790801

Participation of an endogenous inhibitor of fucosyltransferase activities in the developmental regulation of intestinal fucosylation processes.

D Ruggiero-Lopez 1, M C Biol 1, P Louisot 1, A Martin 1
PMCID: PMC1151517  PMID: 1953674

Abstract

During the rat weaning period (about day 19 after birth) the intestinal maturation is accompanied by a drastic increase in the fucose content of mucosal glycoconjugates, concomitant with an increase in fucosyltransferase activities. The regulation of this fucosylation process appears to be a rather complex phenomenon, which involves several systems controlling fucosyltransferase activity or substrate availability. An endogenous protein inhibitor of the fucosyltransferase activities displays an opposite developmental pattern to that of fucosyltransferase activities, since its activity is high before weaning and is decreased 5-fold after weaning. Similarly, the GDP-fucose pyrophosphatase activity markedly decreases at weaning. The transformation of GDP-mannose into GDP-fucose increases early, at day 18, preceding the increase in fucosyltransferase activities. Before weaning, and especially at days 14 and 18, high levels of GDP-4-dehydro-6-deoxymannose, the product of the GDP-mannose 4,6-dehydratase activity, are produced during the transformation of GDP-mannose into GDP-fucose, even in excess of reduced coenzyme. This fact indicates that the second step of the transformation (epimerase-reductase reaction) could be a limiting factor for GDP-fucose availability before weaning, but not after weaning. The inverse relationship between the mucosal fucose content (or the fucosyltransferase activity) and the endogenous protein inhibitor during normal postnatal development supports the hypothesis of a physiological role for this inhibitor.

Full text

PDF
806

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albarracin I., Lassaga F. E., Caputto R. Purification and characterization of an endogenous inhibitor of the sialyltransferase CMP-N-acetylneuraminate: lactosylceramide alpha 2,6-N-acetylneuraminyltransferase (EC 2.4.99.-). Biochem J. 1988 Sep 1;254(2):559–565. doi: 10.1042/bj2540559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Auricchio S., Stellato A., De Vizia B. Development of brush border peptidases in human and rat small intestine during fetal and neonatal life. Pediatr Res. 1981 Jul;15(7):991–995. doi: 10.1203/00006450-198107000-00003. [DOI] [PubMed] [Google Scholar]
  3. Biol M. C., Martin A., Louisot P., Richard M. Structure and metabolism of glycoproteins: nutritional regulation. World Rev Nutr Diet. 1987;50:122–185. doi: 10.1159/000414172. [DOI] [PubMed] [Google Scholar]
  4. Biol M. C., Martin A., Oehninger C., Louisot P., Richard M. Biosynthesis of glycoproteins in the intestinal mucosa. II. Influence of diets. Ann Nutr Metab. 1981;25(5):269–280. doi: 10.1159/000176506. [DOI] [PubMed] [Google Scholar]
  5. Biol M. C., Martin A., Richard M., Louisot P. Developmental changes in intestinal glycosyl-transferase activities. Pediatr Res. 1987 Sep;22(3):250–256. doi: 10.1203/00006450-198709000-00003. [DOI] [PubMed] [Google Scholar]
  6. Biol M. C., Pintori S., Mathian B., Louisot P. Dietary regulation of intestinal glycosyl-transferase activities: relation between developmental changes and weaning in rats. J Nutr. 1991 Jan;121(1):114–125. doi: 10.1093/jn/121.1.114. [DOI] [PubMed] [Google Scholar]
  7. Büller H. A., Rings E. H., Pajkrt D., Montgomery R. K., Grand R. J. Glycosylation of lactase-phlorizin hydrolase in rat small intestine during development. Gastroenterology. 1990 Mar;98(3):667–675. doi: 10.1016/0016-5085(90)90287-b. [DOI] [PubMed] [Google Scholar]
  8. Chang S., Duerr B., Serif G. An epimerase-reductase in L-fucose synthesis. J Biol Chem. 1988 Feb 5;263(4):1693–1697. [PubMed] [Google Scholar]
  9. Chu S. H., Walker W. A. Developmental changes in the activities of sialyl- and fucosyltransferases in rat small intestine. Biochim Biophys Acta. 1986 Oct 1;883(3):496–500. doi: 10.1016/0304-4165(86)90289-8. [DOI] [PubMed] [Google Scholar]
  10. Coates S. W., Gurney T., Jr, Sommers L. W., Yeh M., Hirschberg C. B. Subcellular localization of sugar nucleotide synthetases. J Biol Chem. 1980 Oct 10;255(19):9225–9229. [PubMed] [Google Scholar]
  11. Costantino-Ceccarini E., Suzuki K. Isolation and partial characterization of an endogenous inhibitor of ceramide glycosyltransferases from rat brain. J Biol Chem. 1978 Jan 25;253(2):340–342. [PubMed] [Google Scholar]
  12. DISCHE Z. New color reactions for determination of sugars in polysaccharides. Methods Biochem Anal. 1955;2:313–358. doi: 10.1002/9780470110188.ch11. [DOI] [PubMed] [Google Scholar]
  13. Duffard R. O., Caputto R. A natural inhibitor of sialyl transferase and its possible influence on this enzyme activity during brain development. Biochemistry. 1972 Apr 11;11(8):1396–1400. doi: 10.1021/bi00758a011. [DOI] [PubMed] [Google Scholar]
  14. Freund J. N., Duluc I., Foltzer-Jourdainne C., Gosse F., Raul F. Specific expression of lactase in the jejunum and colon during postnatal development and hormone treatments in the rat. Biochem J. 1990 May 15;268(1):99–103. doi: 10.1042/bj2680099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Köttgen E., Reutter W., Gerok W. Two different gamma-glutamyltransferases during development of liver and small intestine: a fetal (sialo-) and an adult (asialo-) glycoprotein. Biochem Biophys Res Commun. 1976 Sep 7;72(1):61–66. doi: 10.1016/0006-291x(76)90960-8. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Lafont J., Roziere J. Heterogeneity dependent on age intestinal alkaline phosphatase in the rat. Comp Biochem Physiol B. 1973 May 15;45(1):135–145. doi: 10.1016/0305-0491(73)90293-9. [DOI] [PubMed] [Google Scholar]
  18. Mahmood A., Torres-Pinedo R. Postnatal changes in lectin binding to microvillus membranes from rat intestine. Biochem Biophys Res Commun. 1983 Jun 15;113(2):400–406. doi: 10.1016/0006-291x(83)91740-0. [DOI] [PubMed] [Google Scholar]
  19. Martin A., Ruggiero-Lopez D., Biol M. C., Louisot P. Evidence for the presence of an endogenous cytosolic protein inhibitor of intestinal fucosyltransferase activities. Biochem Biophys Res Commun. 1990 Jan 30;166(2):1024–1031. doi: 10.1016/0006-291x(90)90913-8. [DOI] [PubMed] [Google Scholar]
  20. Martin A., Ruggiero-Lopez D., Broquet P., Richard M., Louisot P. High-performance liquid chromatographic study of GDP-mannose and GDP-fucose metabolism. J Chromatogr. 1989 Dec 29;497:319–325. doi: 10.1016/0378-4347(89)80036-2. [DOI] [PubMed] [Google Scholar]
  21. Nsi-Emvo E., Launay J. F., Raul F. Is adult-type hypolactasia in the intestine of mammals related to changes in the intracellular processing of lactase? Cell Mol Biol. 1987;33(3):335–344. [PubMed] [Google Scholar]
  22. Ozaki C. K., Chu S. H., Walker W. A. Developmental changes in galactosyltransferase activity in the rat small intestine. Biochim Biophys Acta. 1989 May 31;991(2):243–247. doi: 10.1016/0304-4165(89)90111-6. [DOI] [PubMed] [Google Scholar]
  23. Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem. 1989 Oct 25;264(30):17615–17618. [PubMed] [Google Scholar]
  24. Quiroga S., Caputto B. L., Caputto R. Inhibition of the chicken retinal UDP-GaINAc:GM3, N-acetylgalactosaminyl-transferase by blood serum and by pineal gland extracts. J Neurosci Res. 1984;12(2-3):269–276. doi: 10.1002/jnr.490120214. [DOI] [PubMed] [Google Scholar]
  25. Quiroga S., Panzetta P., Caputto R. An endogenous inhibitor of N-acetylgalactosaminyltransferase inhibits retina neuron differentiation in culture. Brain Res. 1990 Feb 5;508(2):337–340. doi: 10.1016/0006-8993(90)90420-g. [DOI] [PubMed] [Google Scholar]
  26. RUBINO A., ZIMBALATTI F., AURICCHIO S. INTESTINAL DISACCHARIDASE ACTIVITIES IN ADULT AND SUCKLING RATS. Biochim Biophys Acta. 1964 Nov 22;92:305–311. doi: 10.1016/0926-6569(64)90187-7. [DOI] [PubMed] [Google Scholar]
  27. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  28. Shub M. D., Pang K. Y., Swann D. A., Walker W. A. Age-related changes in chemical composition and physical properties of mucus glycoproteins from rat small intestine. Biochem J. 1983 Nov 1;215(2):405–411. doi: 10.1042/bj2150405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tojyo Y. Developmental changeover in rat duodenal alkaline phosphatase. Comp Biochem Physiol B. 1984;77(3):437–441. doi: 10.1016/0305-0491(84)90256-6. [DOI] [PubMed] [Google Scholar]
  30. Torres-Pinedo R., Mahmood A. Postnatal changes in biosynthesis of microvillus membrane glycans of rat small intestine: I. Evidence of a developmental shift from terminal sialylation to fucosylation. Biochem Biophys Res Commun. 1984 Dec 14;125(2):546–553. doi: 10.1016/0006-291x(84)90574-6. [DOI] [PubMed] [Google Scholar]
  31. Yeh K. Y., Moog F. Biosynthesis and transport of glycoproteins in the small intestinal epithelium of rats. I. Developmental change and effect of hypophysectomy. Dev Biol. 1984 Feb;101(2):446–462. doi: 10.1016/0012-1606(84)90159-3. [DOI] [PubMed] [Google Scholar]
  32. Yeh K. Y., Moog F. Development of the small intestine in the hypophysectomized rat. I. Growth histology, and activity of alkaline phosphatase, maltase, and sucrase. Dev Biol. 1975 Nov;47(1):156–172. doi: 10.1016/0012-1606(75)90270-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES