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Abstract 

Background Skin cutaneous melanoma (SKCM) poses a significant public health challenge due to its aggressive 
nature and limited treatment options. To address this, the study introduces the Tumor Mutational Burden-Derived 
Immune lncRNA Prognostic Index (TILPI) as a potential prognostic tool for SKCM.

Methods TILPI was developed using a combination of gene set variation analysis, differential expression analysis, 
and COX regression analysis. Additionally, functional experiments were conducted to validate the findings, focusing 
on the effects of STARD4-AS1 knockdown on SKCM tumor cell behavior. These experiments encompassed assess-
ments of tumor cell proliferation, gene and protein expression, migration, invasion, and in vivo tumor growth.

Results The results demonstrated that knockdown of STARD4-AS1 led to a significant reduction in tumor cell prolif-
eration and impaired migration and invasion abilities. Moreover, it resulted in the downregulation of ADCY4, PRKACA, 
and SOX10 gene expression, as well as decreased protein expression of ADCY4, PRKACA, and SOX10. In vivo experi-
ments further confirmed the efficacy of STARD4-AS1 knockdown in reducing tumor growth.

Conclusions This study elucidates the mechanistic role of STARD4-AS1 and its downstream targets in SKCM progres-
sion, highlighting the importance of the ADCY4/PRKACA/SOX10 pathway. The integration of computational analysis 
with experimental validation enhances the understanding of TILPI and its clinical implications. Overall, the findings 
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underscore the potential of novel computational frameworks like TILPI in predicting and managing SKCM, particularly 
through targeting the ADCY4/PRKACA/SOX10 pathway.

Keywords Skin cutaneous melanoma, Tumor mutational burden, STARD4-AS1 knockdown, ADCY4/PRKACA/SOX10 
pathway, Immune landscape

Introduction
The incidence of skin cutaneous melanoma (SKCM) 
continues to rise, but the mortality from advanced 
SKCM has declined over the past decade [1]. Immuno-
therapy and targeted therapy are the preferred clinical 
approaches for treating SKCM [2]. Biomarkers such as 
tumor mutation burden (TMB), lactate dehydrogenase 
(LDH), and neoantigen load (NAL) have been used to 
predict the response of ICI to cutaneous melanoma. 
Among them, TMB is a predictive biomarker for ICI 
treatment of SKCM.

TMB indicates the mutation counts per million 
bases. FDA had approved the PD-1 antibody called 
pembrolizumab for the treatment of high TMB (≥ 10 
mutations/megabase) solid tumors (https:// www. acces 
sdata. fda. gov/ drugs atfda_ docs/ label/ 2020/ 12551 4s068 
lbl. pdf ). Several researchers have demonstrated that 
high TMB patients can achieve better effects from 
immunotherapy [3–6]. This suggests that TMB is a 
novel and independent biomarker for assessing immu-
notherapy efficacy [7, 8]. Furthermore, the predictive 
effect of high TMB extends to SKCM [9].

Long non-coding RNA (lncRNA) is over 200 bp and 
disabled to encode protein. Several pieces of evidence 
suggest that lncRNA regulates the expression of nearby 
genes. For example, lncRNAs mediate resistance to 
BRAF inhibitors in human SKCM cells and regulate 
nearby genes [10]. CDR1as depletion is connected to 
the epigenetic silencing of LINC00632, which is the 
original lncRNA of CDR1as. Moreover, the level of 
CDR1 as indicates cellular states connected with dis-
tinct effects of immunotherapy [11]. Therefore, the 
effect of lncRNA on the therapy of SKCM cannot be 
ignored.

However, the further development of TMB has 
encountered some problems in recent years. The 
accuracy of the TMB measurement method has been 
questioned, and incorporating patients’ TMB into pre-
dictive models to guide clinical decisions has proven 
to be challenging [12]. Despite an extensive literature 
review, we found no existing TMB-based computa-
tional framework for predicting patient prognosis or 
the potential benefits of immunotherapy combined 
with targeted therapy. Therefore, we hoped to contrib-
ute to the clinical application of TMB (Fig. 1).

Methods
The datasets source
In this study, we obtained RNA sequence data of 470 
SKCM samples from The Cancer Genome Atlas (TCGA) 
(https:// portal. gdc. cancer. gov/) and 812 normal skin 
samples from the Genotype-Tissue Expression (GTEx) 
(https:// gtexp ortal. org/). We also compiled clinical infor-
mation, including overall survival (OS) time, survival 
status, age, gender, pathological TNM, and pathological 
stage (Table S1). The RNA sequencing data we collected 
was in transcripts per kilobase of exon model per million 
mapped reads (TPM) format.

Identify the TMB‑derived immune lncRNA set (TILncSet)
In the initial step, we utilized the TCGAmutations pack-
age of R [13] to obtain the TMB value of 470 SKCM sam-
ples. However, only 468 SKCM samples had available 
TMB values. We then categorized these samples into 
high and low TMB groups based on the median TMB 
value. To identify different gene sets between these two 
groups, we utilized gene set variation analysis (GSVA) 
[14], a non-parametric, unsupervised method for esti-
mating gene-set enriched variation from expression data 
sets. We also obtained 2524 immune-related mRNAs 
from the ImmPort database (https:// www. immpo rt. org/) 
and the InnateDB database (http:// www. innat edb. com/).

Furthermore, we identified differentially expressed 
lncRNAs between 812 normal skin samples and 470 
SKCM samples based on the limma package of R [15]. 
We also used the normalizeBetweenArrays function 
from the limma package to remove batch effects between 
samples. We screened qualified lncRNAs using two cri-
teria: (1)

∣

∣log2FC
∣

∣ ≥ 1 and (2) False discovery rate (FDR)-
adjusted P value < 0.05 to identify oncogenic lncRNAs as 
candidate lncRNAs. We then conducted Pearson analysis 
between candidate lncRNAs and candidate mRNAs, with 
high correlation coefficients and statistical significance 
(cor > 0.4, P < 0.05) as qualifications.

Functional enrichment analysis
We employed the Metascape database to explore the 
possible functions of candidate genes. (https:// metas 
cape. org/). Firstly, we used the Molecular Complex 
Detection (MCODE) algorithm to establish a protein–
protein interaction (PPI) network. Then, we conducted 

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125514s068lbl.pdf
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enrichment analysis using the Transcriptional Regula-
tory Relationships Unraveled by Sentence-based Text 
mining (TRUST) to identify potential transcription fac-
tors associated with TIgeneSet. Additionally, enrich-
ment analysis was performed in transcription factor 
targets. We also conducted functional enrichment anal-
ysis based on the GO (http:// geneo ntolo gy. org/) and 
KEGG (https:// www. kegg. jp/) databases. We applied 
a filter of P value < 0.05 to the analysis. For KEGG and 
GO analyses, we utilized the following R packages: clus-
terProfiler for functional classification and enrichment 
analysis, org.Hs.eg.db for mapping gene IDs to biologi-
cal information specific to Homo sapiens, enrichplot 

for visualizing enrichment results, and ggplot2 for cre-
ating detailed and customizable plots.

Construction and validation of a computational framework 
for the prediction of prognosis
The TCGA database contains 470 skin melanoma sam-
ples, of which only 468 have TMB values. A single patient 
may have multiple sequencing samples, but each patient 
has only one survival time. Therefore, we retained sam-
ples with a Vial sequence number of 01A and removed 
five duplicate samples. As a result, only 463 samples were 
eventually. We randomly divided 463 SKCM samples 
with OS into two groups: the training group (n = 232) 

RNA Sequence Data of 470 Skin Cutaneous Melanoma 
Samples And 812 Normal Skin Samples
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Fig. 1 The experiment flowchart and analysis flowchart. Step I: RNA sequencing data from 470 SKCM and 812 normal skin samples were analyzed. 
Tumor Mutation Burden (TMB) was calculated to classify samples into high and low TMB groups. Bioinformatics analysis identified immune-related 
lncRNAs. Step II: Gene set enrichment analysis explored immunoinfiltration and therapy sensitivity. TILPI was established and validated. Various 
immune cells were studied, and STARD4-AS1 knockdown in B16 melanoma cell lines was performed. Scratch test and tumor growth analysis 
in nude mice were conducted. Step III: PCR, Western Blot (WB), and Immunohistochemistry (IHC) validations were performed on human samples. 
In vivo experiments included tumor growth and gene expression analyses in a nude mice model

http://geneontology.org/
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and the testing group (n = 231). The TCGA group 
(n = 463) was formed by combining the training and 
testing groups. We identified TILncSet as more likely to 
participate in SKCM progression than other lncRNAs. 
Therefore, we performed univariate and multivariate 
Cox proportional risk regression analyses to evaluate 
the TMB-derived immune lncRNA signature (TILnc-
Sig) in the training group. In multivariate Cox, we used 
the following parameters: Dependent Variable (Survival 
Time and Status): The response variable in the model is 
the patient’s survival time and status (alive or deceased). 
Independent Variables (Covariates): The predictors 
include the expression levels of the identified lncRNAs, 
adjusted for potential confounders such as age, gender, 
and clinical stage. Coefficients (β): These represent the 
estimated log hazard ratios for each covariate, indicating 
the strength and direction of the association with patient 
survival. Baseline Hazard (h₀(t)): The baseline hazard 
function represents the hazard when all covariates are 
zero. The Cox proportional risk regression analysis for-
mulas used were:

Using following formula, the value of  h0(t) can be cal-
culated.  h0(t) is the baseline hazard function. The Risk 
Score (TILncSig) is the hazard function associated with 
the covariate X at time t. After modeling with multivari-
ate Cox regression by R package survival, the risk score 
calculated using the predict () function is actually the 
Risk Score (TILncSig). By subtracting the product of the 
expression level of lncRNA and its coefficient from the 
risk score,  lnh0(t) can be obtained. Taking the exponen-
tial of  lnh0(t) gives  h0(t).

Risk Score (TILncSig) represents the prognostic index 
of each SKCM patient. We also referred to risk score 
(TILncSig) as TMB-derived immune lncRNA prognostic 
index (TILPI). The value of n is the number of lncRNA 
signatures. The coef (lncRNAi) stands for the coeffi-
cient of lncRNAi obtained by multivariate Cox regres-
sion analysis. Expr ( lncRNAi ) refers to the expression 
level of lncRNAi . In addition, we used the scatterplot3d 
package to draw a 3D PCA graph. The data was then sub-
jected to PCA analysis using the prcomp function with 
scaling. The PCA results were predicted using the pre-
dict function. Next, a 3D scatter plot of the PCA results 

Risk Score (TILncSig) = exp(ln(h0(t))+

n
∑

i=1

coef (lncRNAi) ∗ expr (lncRNAi))

lnh0(t) = ln(RiskScore
(

TILncSig
)

)−

n
∑

i=1

coef (lncRNAi) ∗ expr (lncRNAi))

was created using the scatterplot3d function, where the 
color of the points was determined by the sample groups. 
Furthermore, four lncRNA prognostic models of SKCM 
reported in the past two years were collected, including 
Ma et al. [16], Zhang et al. [17], Liu et al. [18], and Tian 
et al. [19].

Additionally, we conducted gene set enrichment anal-
ysis (GSEA) to identify the pathways enriched in differ-
ent risk subgroups [20]. The gene sets of GSEA analysis, 
including 10,647 pathways of GO and KEGG databases, 
were collected from Molecular Signatures Database 
(MSigDB, https:// www. gsea- msigdb. org/ gsea/ msigdb/). 
We utilized four R packages for Gene Set Enrich-
ment Analysis (GSEA): clusterProfiler, org.Hs.eg.db, 
limma, and enrichplot. The clusterProfiler package was 
employed to perform GSEA on custom gene sets derived 
from the MSigDB database. The org.Hs.eg.db pack-
age facilitated gene ID conversion necessary for GSEA. 
The limma package was used to generate gene rankings, 
which were crucial for subsequent GSEA. Finally, the 
enrichplot package was utilized to visualize the results of 

the enrichment analyses. Finally, we constructed a novel 
model called a nomogram to predict individual survival 
probability, which included TILPI and eight types of clin-
ical characteristics (age, gender, smoking, race, patholog-
ical stage, and pathological TNM) [21].

Cell culture and plasmid transfection
Mouse melanoma cell line B16-F10 was used in this 
experiment. All cells were cultured in 1640 medium 
containing 10% fetal bovine serum. GC cells were trans-

fected with si-NC (negative Control) and si-STARD4-
AS1 (small-interfering RNAs against STARD4-AS1). 
Si-STARD4-AS1 was used to knockdown STARD4-AS1. 
The siRNA sequence was listed in Table S2. All plasmids 
were purchased from GenePharma (Shanghai, China).

Gene expression of LINC00189, LINC00861 
and STARD4‑AS1 in human tissue
Total RNA was extracted from plasma by the QIAamp 
RNA Kit (Qiagen). After the concentration, purity and 
integrity of the total RNA were evaluated, and the total 
RNA was reversely tran‐scribed into complementary 

https://www.gsea-msigdb.org/gsea/msigdb/
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DNA using PrimeScript™ RT reagent Kit (Takara). Sec-
ond, quantitative polymerase chain reaction (qPCR) was 
performed by using  KODSYBR®qPCR Mix (Toyobo). 
GAPDH was used as an internal reference. Finally, the 
results were calculated by the  2−ΔΔCt formula. Primers 
used in the qPCR were listed in Table S3.

CCK8 assay
The procedure for the CCK-8 test was carried out in the 
following manner: After cultivating in 12-well plates filled 
with CCK-8 solution for a duration of three days, the 
proliferation rate of cells from each group was assessed. 
Into each well of the 12-well plates, a volume of 100 mL 
of CCK-8 solution was introduced for every distinct cell 
cluster. Post a two-hour interval, the optical density (OD) 
readings of the supernatant were determined using a Bio-
Tech microplate reader.

Cell migration test
To assess the migratory capabilities of B16-F10 cells 
within each batch, longitudinal incisions were made on 
the cellular surface once cell fusion within each group 
approximated 90%, followed by a cultivation period of 12 
and 24 h. Subsequently, cells that were isolated received 
a wash using PBS. In the concluding step, staining with 
Calcein AM (procured from Invitrogen, USA) was exe-
cuted, employing a confocal laser scanning microscope 
(Zeiss LSM 980, located in Germany) for observation.

Transwell cell migration assay
Cell migration was analyzed using transwell appara-
tuses. Groups of B16-F10 cells categorized into Control, 
si-NC, and si-STARD4-AS1 were subjected to a 24-h 
fasting period. Post-digestion and centrifugation, cells 
in a serum-deprived medium were tallied with the aid of 
a microscope. For each well in a 24-well plate, a 100 ml 
cell mixture was deposited at the bottom. The cell density 
was regulated to attain a count of 1 ×  105 cells/ml. Into 
every well, 600 ml of 30% FBS medium was introduced, 
followed by the addition of the cell mixture to a 96-well 
MTS plate. The optical density at OD570 was gauged 
to assess metastatic activity by incorporating 5000 cells 
into each well. After a 24-h incubation at 37 °C, an inner 
section was cleansed using a cotton swab. Cells that 
migrated were stained using a 1% crystal violet solution 
after fixation in methanol. A light microscope facilitated 
the enumeration and imagery capture of cells from three 
arbitrarily chosen fields.

Transwell cell invasion chamber experiments
To assess cell invasion levels, transwell invasion cham-
bers were utilized. B16-F10 cell populations were catego-
rized into Control, si-NC, and si-STARD4-AS1 groups. 

These cells were seeded onto fresh 24-well plates, with 
both upper and lower chambers receiving 500  ml of 
serum-free medium, and the bottom chamber an addi-
tional 100 ml of the same medium. Following a 2-h incu-
bation at 37  °C, the cell count was performed under a 
microscope, and a cell suspension devoid of serum was 
adjusted to a density of 1 ×  105 cells/ml. Preparing a new 
plate, cells were transferred, the medium from the upper 
chamber was discarded, and 500  ml of the cell suspen-
sion was introduced, with the lower chamber being sup-
plemented with 750 ml of 30% FBS medium. To serve as 
a metastasis reference, the optical density at OD570 was 
determined after distributing the cell suspension across 
a 96-well MTS plate, with an allocation of 5000 cells for 
each well. Post a 22-h incubation at 37 °C, the inner cell 
chamber remained untouched by a cotton swab. The 
invasive cells were then stained using a crystal violet 
solution. For analyzing cell invasiveness variances among 
the groups, three fields were randomly chosen for enu-
meration and imaging via a light microscope.

Western bolt
A protein extraction kit was used to extract the pro-
teins, and cells were lysed in protease inhibitors and 
phosphatase inhibitors. The BCA protein Kit was used 
to determine the protein concentrations. The proteins 
were loaded onto SDS gels, separated by electrophoresis 
for 35 min, and then transferred onto PVDF membranes 
for 30 min. Finally, they were blocked with milk and incu-
bated with primary antibodies overnight. After wash-
ing with TBST thrice, incubation with the secondary 
antibodies was conducted for 60 min at room tempera-
ture, and the protein was added to an ECL chromogenic 
solution. The results were analyzed with Image J soft-
ware, and the gray values of serum protein bands were 
calculated.

Subcutaneous tumor in nude mice
In this study, we investigated the role of STARD4-AS1 
in the development of cutaneous melanoma (SKCM) by 
establishing a subcutaneous tumor formation model in 
nude mice. Healthy male nude mice, aged 6–8 weeks and 
weighing about 20–22 g, were fed and watered freely in a 
specific pathogen free (SPF) environment. B16-F10 skin 
melanoma cell lines and si-STARD4-AS1 cell lines were 
cultured in DMEM medium containing 10% fetal bovine 
serum until logarithmic growth, then washed with PBS 
and counted. The cells were adjusted to the concentration 
of 1 ×  107 cells /mL, suspended with serum-free DMEM 
medium, and each nude mouse was injected subcutane-
ously with 1 ×  106 cells (100  μL). The injection site was 
disinfected with 70% alcohol and injected subcutaneously 
using a 1 mL syringe with a 26G needle. The health status 
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and tumor growth of the nude mice were monitored reg-
ularly after injection, and the nude mice were euthanized 
with carbon dioxide after 28 days.

Histochemical staining
The fresh tissue was fixed with 4% paraformaldehyde and 
then embedded with paraffin after gradient dehydration. 
The sections with a thickness of 5 μm were prepared by 
paraffin sectioning mechanism, and the corresponding 
antibodies were used for histochemical staining of the 
pathological sections.

Mapping of the immune landscape
We analyzed the tumor immune microenvironment 
(TIME) using eight different quantification algorithms 
to provide a detailed description of the infiltration land-
scape of immune cells. These algorithms included CIB-
ERSORT [22], CIBERSORT-absolute mode [22, 23], 
EPIC [24], MCPCOUNTER [25], QUANTISEQ [26], 
TIMER [23, 27], TISIDB [28], and XCELL [29]. Through 
intersection analyses, we identified types of immune cells 
that were more prevalent in two TILPI subgroups.

In addition to immune cells, we also examined the stro-
mal components in the TIME. We collected the TIME 
score and stroma score from XCELL and calculated the 
cytotoxicity score of MCPCOUNTER. We also obtained 
the stromal score and tumor purity using ESTIMATE 
[30]. Furthermore, we aimed to determine the immune 
subtype of samples using 6 types of immune subtypes, 
which consisted of wound healing (immune C1), IFN-γ 
dominant (immune C2), inflammatory (immune C3), 
lymphocyte depleted (immune C4), immunologically 
quiet (immune C5), and TGF-β dominant (immune C6) 
[31].

Prediction of immunotherapy sensitivity
To assess the potential response to immunotherapy, 
we calculated the expression levels of five significant 
immune checkpoint-associated proteins, including 
CTLA4, PD-L1, PD-1, TIGIT, and LAG-3. We explored 
the differential expression of these immune checkpoint 
proteins between different TILPI subgroups to determine 
which population may be more sensitive to immunother-
apy. The tumor inflammation signature (TIS) model has 
been shown to retrospectively predict the clinical benefit 
of anti-PD-1 treatment in clinical trials [32]. We con-
nected TILPI with the TIS model to predict the response 
to immunotherapy.

Prediction of sensitive drugs
We employed a selection strategy to identify drugs that 
were sensitive to different TILPI subgroups based on the 
R package called pRRophetic [33] and oncopredict [34]. 

We used the semi-inhibitory concentration (IC50) as the 
boundary to identify sensitive drugs, where lower IC50 
values indicated that the drug was sensitive to the TILPI 
subgroup. To ensure statistical significance, we applied a 
filter where the P value of the Wilcoxon test had to be less 
than 0.05. Additionally, we utilized the connectivity map 
(CMap) (https:// clue. io/) to identify drugs that inhib-
ited pathways more present in the low TMB subgroup. 
We only considered drugs with an absolute normalized 
CMap score greater than 1. Finally, we intersected the 
three derived drug lists to identify candidate drugs.

In addition, we conducted an analysis of the modes of 
interaction between the candidate drugs and their targets 
using Autodock Vina 1.2.2 [35]. We obtained the molecu-
lar structures of candidate drugs from PubChem (https:// 
pubch em. ncbi. nlm. nih. gov/) and the 3D coordinates of 
their targets from the PDB (http:// www. rcsb. org/). To 
analyze the interaction between the drugs and their tar-
gets, we constructed molecular docking models using 
Autodock Vina 1.2.2 (http:// autod ock. scrip ps. edu/).

Statistical analysis
The statistical analysis software utilized in our study 
was R version 4.2.2, which aided in analyzing data and 
generating Figure and tables (https:// www.r- proje ct. 
org). Statistical evaluations utilized SPSS Statistics 23.0 
(IBM, USA) and GraphPad Prism 8.0 (GraphPad Soft-
ware, USA). For comparing two distinct groups, unpaired 
t-tests were applied, whereas one-way ANOVA, accom-
panied by Bonferroni’s correction, was used when 
assessing three or more groups. The data from experi-
ments were expressed as the mean ± standard deviation 
(Mean ± SD). A P-value less than 0.05 indicated statistical 
significance.

Results
Identify the TMB‑derived immune lncRNA set (TILncSet)
Based on GSVA analysis, we found three gene sets that 
were differentially expressed between different TMB 
groups, namely HSA04742, HSA04964, and HSA00770 
(Fig. 2A). These gene sets were composed of 91 mRNAs. 
We then obtained 2524 immune-related mRNAs from 
the ImmPort and InnateDB databases and intersected 
them with the 91 mRNAs from GSVA analysis to identify 
TMB-derived immune mRNAs.

Furthermore, we conducted a differential expression 
analysis of lncRNAs between 812 normal skin samples 
and 470 SKCM samples using the limma package and 
identified 793 differentially expressed lncRNAs (Fig. 2B, 
C) (Table S4). We then performed a Pearson correlation 
analysis to investigate the relationship between differ-
entially expressed lncRNAs and TMB-derived immune 
mRNAs, resulting in the identification of 12 immune 

https://clue.io/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
http://autodock.scripps.edu/
https://www.r-project.org
https://www.r-project.org
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TMB-derived oncogenic lncRNAs, collectively known 
as TMB-derived immune lncRNA set (TILncSet). These 
lncRNAs include AC090559.1, AC096921.2, BACH1-
IT1, C1RL-AS1, CADM3-AS1, CARD8-AS1, FAM66C, 
LINC00189, LINC00861, LINC00996, LINC01197, and 
STARD4-AS1. We also identified a set of 10 mRNAs after 
Pearson correlation analysis, known as TMB-derived 
immune mRNA set (TImSet), which included ADCY4, 
ADCY6, ADCY8, DDOST, ITPR3, PDE1A, PRKACA, 
PRKACB, PRKACG, and PRKX. The TMB-derived 
immune gene set (TIgeneSet) consisted of TILncSet and 
TImSet.

Explore the biological functional pathways of TIgeneSet
We utilized Metascape to explore the potential func-
tions of TIgeneSet in SKCM. We set three conditions to 
screen for enriched pathways: P value < 0.01, a minimum 
count of 3, and an enrichment factor > 1.5. Eligible path-
ways were grouped based on their similarity, and we used 
Kappa scores to measure the similarity. Pathways with a 
similarity > 0.3 were considered a cluster. Based on the 
pathway clusters, a network of enriched terms was con-
structed, consisting of four pathway clusters with the 
smallest P value (Fig.  2D, E). These clusters included 
DAG and IP3 signaling, PKA-mediated phosphorylation 

Fig. 2 Comprehensive Analysis of TMB Groups, Differential Expression, Functional Pathways, and Network Interactions. A Gene Set Variation 
Analysis (GSVA) results comparing high and low TMB groups, highlighting pathway activity differences. B, C Volcano plots illustrating differential 
expression of lncRNAs between normal skin tissues and Skin Cutaneous Melanoma (SKCM), with log fold change (logFC) and adjusted p-values 
represented. D, E Network diagrams showing relationships among four functional pathways identified through pathway and process enrichment 
analysis, with nodes color-coded based on pathways. and statistical significance. F, G Protein–Protein Interaction (PPI) network visualized 
with MCODE components identified within the TIgeneSet, highlighting significant molecular interactions and gene clusters
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of CREB, calmodulin-induced events, and PID LPA4 
pathway, which were associated with metabolic pro-
cesses, multicellular organismal processes, and signal 
transmission.

We also conducted a PPI network based on three path-
ways with the smallest P value, which included DAG and 
IP3 signaling, PLC beta-mediated events, and G-protein-
mediated events. Using the MCODE algorithm, we iden-
tified the density of the network when a subset contained 
between 3 and 500 proteins. The PPI network showed 
the relationship between nine protein subsets consist-
ing of the three pathways. The six high-density protein 
subsets were represented by MCODE1 (Fig.  2F), which 
included ADCY4, ADCY6, ADCY8, PRKACA, PRKACB, 
and PRKACG. The proteins of MCODE1 had functional 
interactions between them (Fig. 2G).

Enrichment analysis in DisGeNET showed that leuko-
cyte adhesion deficiency type 1 was the most significant 
(Fig. S1A). Leukocyte adhesion deficiency has been linked 
to cancer metastasis, which corresponds to the fact that 
most sample types of SKCM are metastatic rather than 
primary. In addition, we identified eight interconnected 
targets by the enrichment analysis of transcription factor 
targets (Fig. S1B). Among them, SOX10 was the most sig-
nificant and was shown to promote angiogenesis in mela-
noma and metastatic progress.

To further explore the potential functions of TIgeneSet 
in SKCM, we conducted GO and KEGG functional enrich-
ment analysis. We identified 40 significant pathways in the 
GO analysis, including 27 pathways for biological process 
(BP), two for cell component (CC), and 11 for molecular 
function (MF). We showed 10 pathways to draw intuitive 
diagrams (Fig. S1C-D). The BP pathways were related to 
the cAMP biosynthetic process, cyclic nucleotide meta-
bolic process, protein kinase A signaling, negative regula-
tion of posttranscriptional gene silencing, and adenylate 
cyclase-modulating G protein-coupled receptor signaling 
pathway. The CC pathway was associated with the cAMP-
dependent protein kinase complex, while the MF pathways 
were related to protein kinase A regulatory subunit bind-
ing, protein serine/threonine kinase activity, protein kinase 
C binding, and pre-mRNA binding. We also obtained 92 
functional pathways in the KEGG analysis and showed 16 
significant pathways (Fig. S1E, F). These pathways were 

divided into the cell cycle, signaling pathway, and protein 
production. The cell cycle part included apoptosis, the Ras 
signaling pathway, cellular senescence, and so on. The sign-
aling pathway consisted of the cAMP signaling pathway, 
cGMP-PKG signaling pathway, phospholipase D signal-
ing pathway, Wnt signaling pathway, Rap1 signaling path-
way, and MAPK signaling pathway. Ribosome biogenesis 
in eukaryotes and protein processing in the endoplasmic 
reticulum belonged to protein production. Overall, the 
potential functions of TIgeneSet were mostly based on the 
ADCY and PRKA protein families, which were related to 
cAMP-dependent protein kinase and adenylate cyclase.

Construct the TILPI computational framework 
in the training group
In this section, we present the TILPI computational frame-
work that we constructed in the training group to predict 
the prognoses of SKCM patients. Firstly, we randomly 
divided all samples (n = 463) from the TCGA group into 
the training group (n = 232) and the testing group (n = 231). 
We performed statistical analysis to ensure that the clini-
cal characteristics of patients in each group were evenly 
distributed (Table S1). We then conducted univariate Cox 
proportional risk regression analysis in the training group 
and identified four lncRNAs that were closely associated 
with SKCM patients’ OS (STARD4-AS1, LINC00189, 
LINC00861, LINC00996) (Fig. 3A). Additionally, we accu-
rately obtained three TMB-derived immune lncRNA 
signatures (TILncSig) by multivariate Cox proportional 
risk regression analysis (STARD4 − AS1, LINC00189, 
LINC00861) (Fig.  3B). Among these lncRNAs, two coef-
ficients were negative (protective factors), and one coef-
ficient was positive (risk factor). We then constructed the 
computational framework to assess the risk score result-
ing from the expression of TILncSig in each patient. The 
framework was as follows:

For a certain patient, their TILPI was calcu-
lated as expression (0.1842 + 0.1686 * expression 

TILPI = exp(lnh(t0)+

n
∑

i=1

coef(lncRNAi) ∗ expr (lncRNAi))

ln (h(t0)) = 0.1842

Fig. 3 Identification and Validation of TILncSig and TILPI in Training, Testing, and TCGA Groups. A, B In the training group, TILncSig was identified 
by univariate and multivariate Cox proportional hazards regression analyses. C–E 3D PCA was conducted to visualize the separation of samples 
based on the TILPI, demonstrating its discriminative power. Survival analysis was performed to evaluate the prognostic significance of TILPI, 
showing a clear distinction in survival outcomes between different risk groups. The ROC curve was used to assess the predictive accuracy of TILPI, 
confirming its reliability and robustness as a prognostic tool. F The different expression of TILncSig in the high-risk group and the low-risk group 
(***P < 0.001). G–J We verified the reliability of TILPI in the testing group. (K-N) We verified the reliability of TILPI in the TCGA group

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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(STARD4-AS1)—0.0295 * expression (LINC00189)—
0.1050 * expression (LINC00861)). We used the median 
TILPI of the training group as the boundary to divide 
all patients into high-risk (TILPI > 1.1338) and low-risk 
(TILPI ≤ 1.1338) subgroups. We used 3D PCA to verify 
the reliability of the grouping, and the result showed 
that our grouping had high reliability (Fig. 3C). In addi-
tion, the OS of the low-risk subgroup was signally higher 
than the high-risk subgroup (P = 0.001) (Fig.  3D). The 
5-year survival rate in the low-risk subgroup (41.7%) was 
significantly better than the high-risk subgroup (22.2%). 
The area under curve (AUC) value of TILPI in the train-
ing group was 0.676 (Fig. 3E). We also evaluated the pre-
dicted ability of other clinical characteristics such as age 
(AUC = 0.569), gender (AUC = 0.553), pathological stage 
(AUC = 0.675), pathological T (AUC = 0.755), pathologi-
cal N (AUC = 0.702), and pathological M (AUC = 0.507) 
(Fig.  3E). Furthermore, we found that the expression of 
LIN00189 and LIN00861 in the low-risk subgroup was 
significantly higher than that in the high-risk subgroup 
(P < 0.001) (Fig. 3F). However, the expression of STARD4-
AS1 was not statistically significant between high-risk 
and low-risk subgroups (P > 0.05) (Fig.  3F). Therefore, 
LIN00189 and LIN00861 may be beneficial for patients.

Verify the reliability of the TILPI computational framework 
in the testing group and the TCGA group
In our previous study, we demonstrated the potential of 
TILPI in predicting the prognoses of SKCM patients in 
the training group. However, it was necessary to conduct 
rigorous experiments to further validate our findings in 
the testing groups. We also used 3D PCA to verify the 
reliability of our grouping, which showed high reliability 
(Fig.  3G). Furthermore, we found a statistically signifi-
cant difference in OS between the low-risk subgroup and 
high-risk subgroup (P = 0.005) (Fig. 3H). The AUC value 
of TILPI in the testing group was also satisfactory, and 
it performed better than other clinical features, includ-
ing age, gender, pathological T, N, M, and stage (Fig. 3I). 
Additionally, we found that STARD4-AS1, LINC00189, 
and LINC00861 were differentially expressed in different 
risk subgroups (P < 0.05) (Fig. 3J).

In the TCGA group, we also found that the TILPI com-
putational framework grouping was reliable based on 
3D PCA (Fig. 3K). Furthermore, we found that the OS of 
patients in the low-risk subgroup was significantly higher 
than that of patients in the high-risk subgroup (P < 0.001) 
(Fig.  3L). The AUC value of TILPI in the TCGA group 
was also satisfactory, and it outperformed other clinical 
features (Fig.  3M). Compared with prognostic lncRNA 
markers of SKCM reported by several other researchers 
in the past two years, including Ma et  al. (AUC = 0.615, 
2024), Zhang et  al. (AUC = 0.64, 2023), Liu et  al. 

(AUC = 0.674, 2023), and Tian et al. (AUC = 0.677, 2023), 
the average AUC value of TILPI was higher (0.685). 
Similarly, we found that STARD4-AS1, LINC00189, 
and LINC00861 in the TCGA group were differentially 
expressed in different risk subgroups (P < 0.05) (Fig. 3N).

To evaluate the independence of TILPI on patients’ 
prognoses, we conducted an independence analysis 
based on univariate Cox analysis. We found that TILPI 
was an independent factor of prognosis (P = 0.003) (Fig. 
S2A). Age and pathological T were also independent fac-
tors (Fig. S2A). And the further multivariate Cox analysis 
also confirmed the independence of TILPI on prognosis 
(P = 0.007) (Fig. S2B). Age, pathological T, N, and stage 
were also independent factors in prognosis (Fig. S2B). 
Through GSEA analysis, we found patients of the high-
risk group were more enriched in oxidative phospho-
rylation, cell adhesion, and keratinocyte differentiation 
(Fig. S2C), indicating that oxidative phosphorylation and 
tumor cell migration may be the conditions required for 
cancer cells to adapt to changes in the metabolic environ-
ment. Therefore, inhibiting the specific oxidative phos-
phorylation and migration antigens of cancer cells may 
be a potential treatment for SKCM patients. In contrast, 
the low-risk group was more related to the immunity 
(Fig. S2C), suggesting that activation of immune path-
ways may be a protective factor in the low-risk group. 
Additionally, we combined TILPI with several clinical 
feares (age, gender, pathological TNM, and stage) to con-
struct a new computational model that connects progno-
sis with clinical characteristics (Fig. S2E). The predicted 
ability of the new model in the prediction of OS looked 
well-matched with the actual 1, 2, and 3-year OS (Fig. 
S2F-H). We believe that the new model is more conveni-
ent for clinicians to evaluate SKCM patients’ prognoses 
based on clinical characteristics.

Genes and proteins are expressed in human samples
The above enrichment analysis suggests that TIgeneSet 
was highly enriched in the ADCY-PRKA pathway, and 
this biological correlation may extend to TILPI. Based on 
the aforementioned PPI network analysis, we reviewed 
the literature and found that there were few studies 
on the role of ADCY4 and PRKACA in SKCM, so we 
decided to further explore their mechanisms of action. 
In this study, PCR detection found that STARD4-AS1 
expression was higher in human melanoma samples than 
in normal skin tissues. The expression of LINC00189 
and LINC00861 in human melanoma samples was lower 
than that in normal skin tissue (Fig. 4A). In addition, the 
expression of ADCY4 and PRKACA in human mela-
noma samples was higher than that in normal skin tissues 
(Fig. 4B, C). Furthermore, ADCY4 and PRKACA showed 
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Fig. 4 Analysis of Gene and Protein Expressions in Human Samples. A Column graph displaying the PCR results for the expression of three lncRNAs, 
STARD4-AS1, LINC00189, and LINC00861, in human samples (n = 3). B Western Bolt analysis detected the protein expressions of PRKACA and ADYC4 
in human samples. C Quantitative analysis of Western Bolt (mean ± SD, n = 3). D Immunohistochemistry analysis detected the protein expressions 
of PRKACA and ADYC4 in human samples. For all panels, unpaired two-tailed Student’s t test was used for betweengroup comparisons. Data are 
expressed as mean ± SD. (***P < 0.001)
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similar trends to western bolt in histochemical staining 
(Fig. 4D).

Effects of STARD4‑AS1 Knockdown on Tumor Cell Behavior
In this study, we used siRNA to knockdown STARD4-
AS1 expression in B16 melanoma cell lines (Fig.  5A). 
Subsequently, CCK8 results showed no significant dif-
ference between the Control group and the si-NC group 
after 1, 3, and 7  days, while the proliferation of the si- 
STARD4-AS1 group decreased significantly compared 
with the Control group and the si-NC group (Fig.  5B). 
PCR results showed that the gene expressions of ADYC4, 
PRKACA and SOX10 in the si-STARD4-AS1 group 
were significantly lower than those in the Control and 
si-NC groups (Fig.  5C). Similarly, immunofluorescence 
results showed significantly reduced protein expression 
of ADYC4, PRKACA, and SOX10 in the si-STARD4-
AS1 group compared to the Control and si-NC groups 
(Fig. 5D). Further, the results of the scratch test showed 
that the tumor proliferation ability of the si-STARD4-
AS1 group was lower than that of the Control and si-NC 
groups in 12 h and 24 h (Fig. S3A, B). The tumor migra-
tion (Fig. S3C) and invasion (Fig. S3D) experiments in 
each group showed that the migration and invasion abil-
ity of tumor cells in si-STARD4-AS1 group and si-NC 
group decreased significantly compared with Control 
group and si-NC group.

In addition, tumor cells in the Control group and the 
si-STARD4-AS1 group were injected into the subcu-
taneous skin of nude mice for 28  days to observe the 
tumor growth of each group. The results showed that 
the tumor size in the si-STARD4-AS1 group was signifi-
cantly smaller than that in the Control group (Fig.  6A, 
B). Immunohistochemical results showed that Ki67, 
ADCY4, PKACA and SOX10 in si-ST group were sig-
nificantly reduced compared with those in Control group 
(Fig. 6C–F).

Mapping of immune landscape based 
on the computational framework
In this study, we collected immune cells from 8 algo-
rithms and mapped the immune landscape of SKCM. The 
CIBERSORT algorithm showed that more immune cells 
existed in the low-risk subgroup (Fig. S4A-D) (Table S5). 
Similarly, 7 other algorithms, more immune cells existed 

in the low-risk subgroup (Fig. S4E-F) (Fig. S5A-E) 
(Table S5). We then identified the types of immune cells 
that were more distributed in different TILPI subgroups 
through intersection analyses. CD8 T cells, memory B 
cells, and M1 macrophages were more distributed in the 
low TILPI subgroup, while uncharacterized cells were 
more distributed in the high TILPI subgroup (Table S5). 
Furthermore, we explored the correlation between TILPI 
and the immune subtype and found that TILPI was cor-
related with the immune subtype (Fig. S5F). The popula-
tion with low TILPI was classified more often as immune 
C2, while the high TILPI subgroup was classified more 
often as immune C1 (Fig. S5F).

As TIME includes not only immune cells but also stro-
mal components, we planned to connect TILPI with 
other stromal components. We found that the cytotoxic-
ity score of MCPcounter was negatively correlated with 
TILPI (R = − 0.41, p < 2.2e − 16) (Fig. S6A), which was also 
supported by the result of grouping (P < 0.001) (Fig. S6B). 
We obtained the stroma score, immune score, and TIME 
score based on XCELL, and found that the immune 
score and TILPI had a negative correlation (R = −  0.56, 
P < 0.05) (Fig. S6C), while the correlation between TIME 
and TILPI was not statistically significant (R = −  0.018, 
p = 0.7) (Fig. S6D). Furthermore, we found a negative cor-
relation between TIME and TILPI (R = −  0.54, P < 0.05) 
(Fig. S6E). We then performed correlation analyses to 
verify the above results by grouping. The TIME score and 
immune score were higher in the low-risk group, while 
the stroma score was significantly higher in the high-risk 
group (P < 0.001) (Fig. S6F). The stroma score, immune 
score, and estimate score were all negatively correlated 
with TILPI (R = −  0.24, P = 0.05) (R = −  0.46, P < 0.05) 
(R = −  0.4, p < 0.05) (Fig. S6G-I). Moreover, we found a 
positive correlation between tumor purity and TILPI 
(R = 0.42, P < 0.05) (Fig. S6J), which was consistent with 
the result of grouping (Fig. S6L-K). In summary, our find-
ings suggest that more immune cells are present in the 
immune landscape of the low TILPI subgroup, which 
may correspond to the good prognosis of SKCM. Further 
exploration of this finding is warranted.

Prediction of immunotherapy sensitivity
We aimed to evaluate whether the TILPI computa-
tional framework could predict the immune landscape 

Fig. 5 Analysis of Gene Expression and Tumor Cell Proliferation. A The expression of STARD4-AS1 gene was detected by PCR. B CCK8 was used 
to detect the proliferation of tumor cells in each group. C The expression of ADCY4, PRKACA and SOX10 genes were detected by PCR. D The 
expression of ADCY4, PRKACA and SOX10 in tumor cells were detected by immunofluorescence (Scale bar represents 50 μm). Statistical differences 
were determined by utilizing One-way ANOVA with Bonferroni’s multiple comparison tests when comparing three groups. When comparing two 
groups, the unpaired t-test was utilized. Data are expressed as mean ± SD (*P < 0.05, **P < 0.01, and ***P < 0.001) 

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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of TIME and its potential role in predicting immuno-
therapy efficacy. Therefore, we measured the expression 
levels of five well-known immune checkpoint-associated 
proteins in our SKCM samples. Our findings showed 
that TILPI was negatively correlated with PD-L1, PD-1, 
TIGIT, and LAG-3 (R = − 0.19, P = 5.2e−05) (R = − 0.35, 
P = 3.7e − 15) (R = −  0.46, P < 2.2e − 16) (R = −  0.27, 
P = 6e − 09) (Fig. S7A–D). Although CTLA4 was not 
associated with TILPI, it was highly expressed in the low 
TILPI subgroup (R = −  0.073, P = 0.11) (P < 0.001) (Fig. 
S7E-F). Similarly, other immune checkpoint-associated 
proteins, including PD-L1, PD-1, TIGIT, and LAG-3, 
were overexpressed in the low TILPI subgroup (P < 0.001) 
(Fig. S7F). Furthermore, TILPI was negatively correlated 
with TMB (R = −  0.11, P = 0.015) (Fig. S7G), and TMB 
was higher in the low TILPI subgroup (P = 0.017) (Fig. 
S7H). We also investigated the correlation between TILPI 
and TIS, which is a biomarker that predicts the clinical 
benefit of PD-1 targeted therapy based on 18 genes. Our 
results showed a negative correlation between TIS and 
TILPI (R = −  0.33, P = 3.2e − 13) (Fig. S7I), and TIS was 
higher in the low TILPI subgroup (P < 0.001) (Fig. S7J). 
Overall, our results suggest that the low TILPI subgroup 
may respond better to immunotherapy. This finding war-
rants further investigation.

Prediction of sensitive drugs
We performed drug sensitivity analyses using the pRRo-
phetic package and identified 73 drugs that were more 
sensitive in the low-TILPI subgroup and only 12 drugs 
for the high-TILPI subgroup. We further conducted drug 
sensitivity analyses using the oncopredict package. We 
found 41 drugs that were more sensitive in the low-TILPI 
subgroup and 27 drugs for the high-TILPI subgroup. 
These findings suggest that the low-TILPI subgroup may 
be more responsive to certain drugs, and further studies 
are needed to validate these results. Additionally, we used 
the CMap database to identify drugs that inhibited path-
ways more prevalent in the low TMB subgroup, with a 
positive connectivity score greater than 1. In addition, we 
intersected the results of drug sensitivity analyses based 
on pRRophetic, oncopredict, and CMap for the popula-
tion with a good prognosis, specifically the low-TILPI 
subgroup. We identified three drugs that were sensitive 

in this population, including dasatinib, gemcitabine, and 
ruxolitinib. These findings provide potential treatment 
options for SKCM patients with a good prognosis, but 
further research is needed to validate these results.

Furthermore, we used molecular docking models to 
evaluate the affinity of these candidate drugs to their tar-
gets. The best binding energy of gemcitabine to RRM1 
was −  66.741  kcal/mol (Fig. S7K), indicating low affin-
ity. In contrast, the best binding energy of dasatinib to 
ABL14 was −  1.921  kcal/mol (Fig. S7L), and the best 
binding energy of ruxolitinib to JAK1 was − 8.173 kcal/
mol (Fig. S7M). These findings suggest that dasatinib and 
ruxolitinib have excellent binding energy for their tar-
gets, indicating high stability and potential. Overall, these 
three sensitive drugs for the low-TILPI subgroup warrant 
further exploration.

Discussion
Skin cutaneous melanoma (SKCM) remains a signifi-
cant cause of mortality. and understanding its molec-
ular mechanisms is crucial for developing effective 
treatments. Long non-coding RNAs (lncRNAs) play an 
important role in various biological processes [36, 37]. 
In this study, we aimed to identify better signatures to 
reduce the mortality rate of SKCM. We utilized Gene Set 
Variation Analysis (GSVA) to identify different pathways 
between high and low tumor mutation burden (TMB) 
groups and intersected TMB-derived mRNAs of differ-
ent pathways and immune-related mRNAs to determine 
candidate mRNAs. By comparing oncogenic lncRNAs 
between 812 normal skin samples and 470 SKCM sam-
ples and identified candidate mRNAs and oncogenic 
lncRNAs through Pearson analysis, we then obtained 
TILncSet. Gene ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) functional enrichment 
analyses showed that TIgeneSet was involved in SKCM 
primarily through the cAMP-dependent protein kinase 
and adenylate cyclase pathways. DisGeNET analysis also 
revealed a relationship between TIgeneSet and leukocyte 
adhesion deficiency type 1, a condition linked to cancer 
metastasis. This finding aligns with the observation that 
most SKCM samples are metastatic rather than primary. 
Notably, SOX10 emerged as a significant transcrip-
tion factor target of TIgeneSet, promoting melanoma 

(See figure on next page.)
Fig. 6 Tumor Analysis in Nude Mice with Control and si-STARD4-AS1 Treatments. A Tumor status of nude mice in control group and si-STARD4-AS1 
group after 28 days of injection. B The size of tumor after removal in two groups of nude mice. C Immunohistochemical analysis of Ki67 expression 
in tumor tissue of two groups of nude mice (Scale bar represents 200 μm). D Immunohistochemical analysis of ADCY4 expression in tumor 
tissue of two groups of nude mice. E Immunohistochemical analysis of SOX10 expression in tumor tissue of two groups of nude mice (Scale 
bar represents 200 μm). F Immunohistochemical analysis of PRKACA expression in tumor tissue of two groups of nude mice (Scale bar represents 
200 μm)
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Fig. 6 (See legend on previous page.)
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angiogenesis and metastatic progression. These findings 
provide new insights into the molecular mechanisms of 
SKCM, but further research is needed to validate our 
findings [38].

Based on Kaplan–Meier analysis, univariate Cox 
proportional risk regression, and multivariate Cox 
proportional risk regression, we identified TILncSet 
(STARD4-AS1, LINC00189, LINC00861) that closely 
correlated with patients’ overall survival (OS). STARD4-
AS1 is a risk factor, whereas LINC00189 and LINC00861 
are protective factors. Our comprehensive in  vitro and 
in  vivo experiments demonstrated that STARD4-AS1 
knockdown significantly inhibited tumor cell prolifera-
tion, migration, and growth, reinforcing its role as a key 
regulator of SKCM development and a potential thera-
peutic target. These results are consistent with existing 
literature on the role of lncRNAs in regulating tumor 
cell behavior [39]. In particularly, our results suggest 
that STARD4-AS1 may play an important role in SKCM 
tumor cell proliferation and migration by influenc-
ing the activity of ADCY and PRKA protein families, 
thereby regulating CAMP-dependent signaling path-
ways. In  vivo experiments, we further confirmed that 
STARD4-AS1 knockdown significantly inhibited SKCM 
tumor growth. This finding not only confirms the biologi-
cal relevance of the results of the in vitro experiment, but 
also provides direct in vivo evidence for the function of 
STARD4-AS1 in the development of SKCM. This sug-
gests that STARD4-AS1 may promote the proliferation 
and spread of SKCM by activating a specific signaling 
pathway, and its knockdown therefore inhibits tumor 
growth. Some researchers have found that TILncSet has 
known functions related to skin diseases [40, 41]. In addi-
tion to identifying prognostic markers for SKCM, we also 
developed a new computational framework called TILPI 
based on TILncSet. The framework effectively divided 
SKCM patients into good and bad prognostic groups, 
with higher TILPI associated with worse prognosis. The 
reliability of TILPI was verified through survival analyses 
and time-dependent ROC curves, and correlation analy-
ses showed that age, pathological stage, and pathologi-
cal T were correlated with TILPI. However, the specific 
relationship and mechanism between TILPI and clinical 
characteristics require further investigation. The con-
struction of the prognostic model is of great significance 
to clinical decision-making and medical care, but an 
unverified or adjusted model cannot be applied to clini-
cal practice [42]. Moreover, we identified 31 significantly 
enriched pathways through GSEA, with 13 immune path-
ways correlating with prolonged OS.There was reported 
that immune escape was one of the most significant 
problems leading to the progression and therapeutic 
resistance of SKCM [43, 44] and immune activation may 

be protecting these patients [45]. We used 8 algorithms 
to describe the immune infiltration landscape of SKCM 
and found that CD8 T cells, memory B cells, and M1 
Macrophages were more prevalent in the population with 
good prognoses. In contrast, uncharacterized cells were 
more prevalent in the bad prognosis population.

Immunotherapy has become an important adju-
vant therapy for SKCM [46–48], and selecting sensi-
tive groups before treatment can maximize its efficacy. 
Failure of SKCM targeted therapy has become com-
mon in recent years, and these patients often choose to 
receive immunotherapy as an alternative [49]. Based on 
our computational framework, we proposed identify-
ing the SKCM population sensitive to immunotherapy. 
We found that a low TILPI population expressed more 
immune checkpoint-associated proteins and had higher 
TIS scores, indicating it is likely more sensitive to immu-
notherapy. Targeted therapy and chemotherapy are also 
important treatment options for SKCM. Additionally, we 
identified dasatinib targeting Kit mutation and ruxoli-
tinib inhibiting JAK as potential targeted therapies, and 
gemcitabine as a potential cytotoxic agent. There have 
been clinical trials of dasatinib in treating melanoma [50]. 
Nevertheless, ruxolitinib has been reported to induce 
skin cancers [51, 52]. Chemotherapy is the secondary 
therapy to SKCM, and we found that gemcitabine may be 
an effective cytotoxic agent. It was reported that gemcit-
abine promotes antitumor immunity against melanoma 
[53]. However, these findings need to be confirmed in 
subsequent clinical trials before being applied in clinical 
practice.

Overall, our study provides new insights into the 
molecular mechanisms and potential treatment options 
for SKCM, but further research is needed to validate our 
findings.

Conclusion
We developed a computational framework called TILPI 
based on TILncSig, which we identified using TMB-
derived immune genes and oncogenes in SKCM. TILPI 
successfully divided SKCM patients into two populations 
with different prognoses. CD8 T cells, memory B cells, 
and M1 Macrophages were more prevalent in the popu-
lation with a good prognosis. We also found that the low 
TILPI population with a good prognosis was sensitive to 
a combination immunotherapy and targeted therapy.

To validate the findings, the researchers conducted 
functional experiments. The results demonstrated that 
knockdown of STARD4-AS1 reduced tumor cell pro-
liferation and impaired migration and invasion abili-
ties. These experimental findings provided mechanistic 
insights into the role of STARD4-AS1 and its down-
stream targets in SKCM progression, emphasizing the 
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significance of the ADCY4/PRKACA/SOX10 pathway. 
The combination of computational analysis and experi-
mental validation enhanced the understanding of TILPI 
and its clinical implications. This study reveals underly-
ing biology and validates the prognostic and predictive 
capabilities of novel computational frameworks like 
TILPI, emphasizing the significant changes observed 
in the ADCY4/PRKACA/SOX10 pathway following 
STARD4-AS1 knockdown. These treatment options 
provide potential treatment options for SKCM, but fur-
ther research is needed to validate them.
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