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The kinetics of substrate-induced inactivation

Stephen G. WALEY
Laboratory of Molecular Biophysics, University of Oxford, The Rex Richards Building, South Parks Road, Oxford OXI 3RE,
and Oxford Centre for Molecular Sciences, Oxford OXI 3QX, U.K.

The kinetics of a branched-pathway mechanism for a simple enzymic reaction were studied. In this mechanism there is
reversible formation of an inactive form of the second complex along the pathway. This substrate-induced inactivation
typically results in the progress curve showing a burst. Three parameters can be obtained from the progress curve: the
initial rate, the final rate and the rate constant characterizing the transient. The rate constant for the conversion of the
inactive form of the complex into the active form can be obtained either from these parameters or by measuring the regain
of enzymic activity. The partition ratio can also be obtained from the three parameters; this is the ratio of the rate of
conversion of complex into product to the rate of conversion of complex into inactive form. Simulations give guidance
to the conditions required for accurate determinations of the rate constants.

INTRODUCTION

In some enzyme-catalysed reactions a substrate brings about
inactivation -of the enzyme: there is inactivation during turnover.
The inactivation may be effectively irreversible; the kinetics of
the action of such mechanism-based inhibitors (or suicide
substrates) has already been described (Waley, 1980, 1985;
Tatsunami et al., 1981; Tudela et al., 1987; Burke et al., 1990).
When the inactivation is reversible, however, the kinetics are

quite different. After the transient phase is over, normal
Michaelis-Menten kinetics are evinced. Experimentally, progress

curves typically show a burst, i.e. a rapid exponential phase
preceding a linear phase (Fig. 1). The concentration of product
formed in the rapid exponential phase is greater (typically, much
greater) than the concentration of enzyme. This signals the
likelihood of a branched pathway. Even when a burst is not
detected a branched pathway may be inferred by comparing the
rates of re-activation and turnover, as discussed below. The sole
use of initial rates would miss the signs of the operation of this
mechanism.
The kinetics of the branched-pathway mechanism:

Substrate + enzyme -.complex I -.

have not hitherto been elucidated in a practically useful form,
although the mechanism has been put forward on several
occasions. Thus this kinetic scheme in which a second inter-
mediate (here an acyl-enzyme) is reversibly converted into a
dead-end complex has been postulated for different ,-lactamases
(Fisher et al., 1978; Kiener et al., 1980; Frere et al., 1982a,b;
Fink et al., 1987; Persaud et al., 1986), and the burst has been
clearly demonstrated (Citri et al., 1976). Related mechanisms
have been put forward to account for the kinetics of sulphatase
A (O'Fagain et al., 1982; Roy & Mantle, 1989).

Unless simplifying assumptions are made, the equations are so
complex and the rate constants so numerous that there is a wide
gap between theory and practice. With the advent of site-directed
mutagenesis of enzymes that evince substrate-induced inacti-
vation it has become especially important to obtain values for
-rate constants so that the consequences of the mutagenesis can be

described quantitatively. The present paper shows how the
introduction of two assumptions enables us to obtain analytical
solutions that are simple enough to be useful.
These two assumptions are (a) that the change in the con-

centration of substrate may be neglected and (b) that the steady-
state approximation can be applied to the two 'ordinary'
intermediates, i.e. those on the unbranched pathway. The range
of validity of the first assumption is examined later below; the
basis of the second assumption is that the burst is due to the
branch, and that when the data fit a curve with only one
exponential the time variation of only one species needs to be
considered.
The reaction is written as above with the branch at the second

intermediate (complex II) partly because this is the counterpart
to the scheme considered earlier (Waley, 1980), and partly
because this seems to be more commonly put forward; the
alternatives are, however, discussed briefly at the end.

I start by showing how the kinetic mechanism leads to an
equation for the progress curve. Then the problem of evaluating
rate constants is considered, and simulations are used to see how
well certain rate constants can be determined.

complex II -. product + enzyme

dead enzyme
(inactivation) (turnover)

SIGNIFICANCE OF PARAMETERS

The burst equation
When the velocity v at time t changes exponentially from an

initial value vi to a steady-state value v. then we may write:

v = V- (v - vi) - e-t

where k is the rate constant characterizing the change, here
referred to as the burst rate constant. It is clear that when t = 0
then v = v,, and when t is much larger than 1/k then v = v. This
equation, which was put forward by Frieden (1970) in connection
with the hysteretic enzyme concept, may also be written as:

V = v(I1-e-kt) +V;.e-kt

which makes it clear that the velocity is being regarded as a
weighted mean of v. and vi, the weights being 1 -e-1t and ekt.
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Table 1. Significance of parameters for branched pathway

Initial rate

Final rate

Burst rate constant

Burst

Fraction of enzyme
activated

2 4
Time (min)

k+2k+3eOs

s(k+2 +k+3 +k+4) +K(k+3 + k+4)

k+2k+3k-4eos
s[k.4(k+2 +k+3)+ k+2k+4] +k3k.k4K

s[k 4(k+2 +k+3) +k+2k+4] + k+3k-4K
s(k+2 + k+3 + k+4) + K(k+3 + k+4)

k+2k+3k+4eOs[s(k+2- k-4)- k4K]
{s[k_4(k+2 + k+3)+ k+2k+4] +k+3kk-4K}2

k+2k+4s
slk 4(k+2 +k+3) +k+2k+4] + k+3k-4K

Fig. 1. Progress curve showing burst

The hydrolysis of 5 mM-methicillin by 15 nM-,8-lactamase I in 0.5 M-

NaCl/l mM-EDTA at 30 °C was measured in a pH-stat by proton
production. The experimental points were fitted to eqn. (1) in the
text by the Marquardt-Nash procedure, giving vi = 0.25 mM/min,
VS = 0.075 mM/min and k = 1.28 min-'.

Table 2. Michaelis-Menten
phases

parameters for the initial and steady-state

The expressions for the rates are given in Table 1; K is defined as

(k-, + k+2)lk+,.

k, k.2 k+3
E+S v XX- Y E+P

k4 1k+4

z

Scheme 1.

Integration then gives eqn. (1) (here called the burst equation) for
the progress curve:

p = v,t-(VS-vi)(1 -e-k9)/k (1)

where the concentration (p) of product at time t is given as a

function of vi, vS and k. The progress curve (e.g. Fig. 1) then
consists of an initial exponential phase followed by a steady-state
phase, which is linear until substrate depletion intervenes. Fitting
progress curves (see, e.g., Neet & Ainslie, 1980) then provides
values for vi, vS and k at a given initial concentration (s) of
substrate. Our task now is to show how the kinetic mechanism of
Scheme 1 can lead to progress curves obeying eqn. (1). Moreover,
we wish to see which of the rate constants in Scheme I can be

determined experimentally from progress curves.

Parameters of the burst equation

Table 1 shows the expressions for the parameters in terms of
the rate constants for the mechanism in Scheme 1. There are five
rows in Table 1, corresponding to five measurable entities. The
first two rows give the expressions for the initial and steady-state
rates, vi and vS of eqn. (1). The next row gives the expression for

the burst rate constant, k of eqn. (1). Then the fourth row gives
the expression for the burst; this may be expressed in the same

units of concentration as that of the enzyme; it is characteristic
of these reactions that the burst is much greater than the

concentration (eo) ofenzyme. Finally, there are instances (referred
to later below) where it is useful to measure the extent of

inactivation of the enzyme, and this is given in the last row of

Table 1.

Initial phase

k
k +23

cat. k +k+3+k

Km
K(k+3 + k+4)
k+2+ k+3+ k+4

kcat. = k+2
Km K(l +k+4/k+3)

Steady-state phase

kc - k+2k+3k-4
ck4 (k+2 +k 3) +k+2k 4

Kk+3k-4
k.k4 (k+2 +k+3) +k+2k 4

kcat. k+2

Km K

Initial and steady-state rates

The initial and steady-state rates are hyperbolic functions of
the initial substrate concentration s. This distinguishes the present
mechanism from the more general hysteretic mechanisms where
the rate constant is a 2:2 function of s (i.e. a function containing
terms in s and s2 in the numerator and denominator) (Ainslie
et al., 1972; Cheron et al., 1990).
The variation of the initial and steady-state rates with initial

concentration of substrate gives the expressions for the Michaelis
parameters in Table 2. The extent of the difference between the
initial and steady-state phases depends on the initial concen-

tration of substrate. At low concentrations the relevant parameter
is kcat./Km, and this is decreased by a factor of 1/(l +k+4/k+3).
When k+3 > k+4, as is expected for these reactions [see (b) below],
then this factor -will be approximately 1. In other words, if the
initial concentration of substrate is too low, then the initial and
steady-state phases will have similar rates and a burst will not be
observed.
At high concentrations of substrate the relevant parameter is
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kca,t, and the equations are simpler when it is the reciprocals of
kcat for the initial and steady-state phases that are compared:

(kcat.)s (kcat)i k 4 2

This equation shows that the difference between the initial and
steady-state phases will be large when k4/k+2 < k+J4k+3; this
inequality is mentioned again below in (c).

I have compared the initial and steady-state phases, first at low
and then at high concentrations of substrate. The general
expression is:

vi = s[k4 (k+2 + k+3) + k+2k+J + k+3k-4K
VS s[k4 (k+2 + k+3) + k4k+4] + k+3k4K+ k+4k-4K

A well-marked burst requires that vi > v., and so this expression
is now used to see the conditions required.
The three conditions:
(a) k+2 > k-4
(b) k+3 > k+4
(c) (k+4/k-4) > (k+3/k+2)

are clearly sufficient for vi > v., because (b) implies that the last
term in the denominator is much smaller than the preceding
term; when this last term is dropped, the only difference between
the nurnerat6f and the denominator is that k+2 in the former is
replaced by k-4 in the latter; (c) entails this differing term not
being negligible. It is also clear that the limiting case, as s tends
to zero, is that, when (b) holds, v1/v, tends to 1. This emphasizes
the point that the substrate concentration should not be too low,
as was noted above. The three conditions (a) to (c) are now used
to give approximate forms of the equations for several of the
parameters.

Burst rate constant
The rate constant characterizing the transient burst is given in

the third row of Table 1; the value changes with the initial
substrate concentration s from a limiting low value of:

k+3k-4
1. k

k3 +k4 -4-k+3 + +4

to a limiting high value:

k+2k+4 + k4 (k+2 + k+3) +k2k+4
k+2 + k+3+ k+4 k+2 + k+3

The increase of the burst rate constant with s distinguishes this
mechanism from mechanism A in Scheme 2, in which it is the free
enzyme that is converted into an alternative form. In this
mechanism the burst rate constant decreases with increasing s
(see below).

Mechanism A
k+ k+2 k+3

E+S I± X - Y - E+P
141 -1

k1 [k+,

z

Mechanism B
k+1'1x k,2 k+3

E+S "'7 'k- I

Y E+Pk 3

k-l k+,

z
Scheme 2.

Size of the burst
The size of the burst is given in the fourth row of Table 1. The

value of the burst increases with s. An approximate value is
obtained when, as well as the three conditions (a) to (c) above,
the concentration of substrate is large enough, as judged by the
conditions: s > K k_4/k+2 and s > K (k4/k,2) (k+3/k,4). This
approximate value for the burst is (k+3/k+4) eo. Condition (b)
above may thus be correlated with the burst being much larger
than the concentration of enzyme. The partition ratio, k+3/k+4,
measures the relative tendency of the second intermediate to
form the dead-end complex Z.

Inactivation of the enzyme
Hitherto the information from progress curves has been

discussed. This may be supplemented by the information obtained
by withdrawing samples from the reaction mixture of enzyme
and inactivating substrate and diluting many-fold into assay
mixture containing non-inactivating substrate. The fraction of
enzyme that is present as dead-end complex Z when the equi-
librium concentration has been attained is given in Table 1; this
value increases with s to a plateau:

k+2k+4

The approximate value of this fraction is 1. The maximum extent
of inactivation is only attained after virtually all the substrate has
been consumed, and so the present analytical treatment does not
apply. Curves relating the maximum extent of inactivation to the
concentration of substrate have to be interpreted on the basis of
numerical solutions of the differential equations [e.g. KINSIM
(Barshop et al., 1983) or the methods indicated in the Appendix].
The initial rate of inactivation, however, will be first-order, and
the rate constant will be the same as that characterizing the
transient. These experimental features were noted by Charnas &
Knowles (1981).
The five parameters given in Table 1 have now been discussed.

Some further consideration of the relative magnitudes of the rate
constants is now given, before turning to see which can be
evaluated experimentally.

Relative magnitudes of rate constants

The reciprocal forms of kcat from Table 2 for the initial phase:

1/kcat = /k+2 + 1/k+3 + k+4/(k+2k+3)
and for the steady-state phase:

1 /kcat =_1/k+2 + 1 /k+3 + k+4/(k+3k&4)

show that both k+2 and k+3 must be greater than kca,, and, since
kcat > vi/eo, where eo is the concentration of enzyme, lower limits
for k+2 and k+3 are readily obtained from the measured v,.
Experimentally, k-4 is determined as described below. Then the
quotient k-4/k+2 << 1, a reflection of the differing time scales for
the 'horizontal' and 'vertical' parts of Scheme 1. In the steady
state, the branch step Y Z has attained equilibrium, and, for
the burst to be significant, k+4 > k-4.
The evaluation of rate constants, individually or as quotients,

is now considered.

EVALUATION OF RATE CONSTANTS

The rate constant k-4
The rate constant k-4 is the most readily evaluated; from

fitting progress curves to eqn. (1) vi, v. and k are obtained, and
it may be shown that k = (vI/vi) k. When v. is very low it is
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hard to measure precisely, and then it may be better to use a
separate method for k4. The regain of activity after most (or all)
of the enzyme has been converted into the dead-end complex Z
is a more sensitive method for determining k-4 because the
enzyme rather than the substrate is being monitored. The rate
constant for regain of enzymic activity can be found from the
limiting value of the burst rate constant (Table 1) when s is very
small, since the inactivating substrate is being highly diluted in
the assay mixture; this limiting value is:

k+3k_4
k+3+ k+4

In most cases k+3 > k+4, as discussed below, and so the limiting
value becomes k4. In practice, a small portion of the solution
containing inactivated enzyme is diluted into an assay mixture
and the progress curve is recorded. The lag can conveniently be
used as described previously (Monks & Waley, 1988); it is
essential to use a high enough concentration of substrate for
there to be no significant depletion of substrate in the assay
during the time of the lag, as emphasized by Fink et al. (1987).

Comparison with suicide substrate kinetics
The rate constant k-4 has significance in the following context.

If k4 were zero, the mechanism would become that associated
with suicide substrates (mechanism-based inhibitors); the most
easily observed practical distinction is that linear progress curves
are not observed if k-4 is zero, because the concentration of
active enzyme is declining throughout the reaction. A convenient
criterion for distinguishing k-4 from zero is the magnitude of
1/k-4 compared with the time of the experiment. For instance, if
1/k-4 is, say, 100 times the time of the experiment then k4 may
be regarded as zero. On the other hand, if 1/k-4 is of the same
order of magnitude as the time of the experiment then the present
treatment holds until the concentration of substrate declines too
much; subsequently, regain of enzyme activity may be observed.
As an example, when k-4 was about 0.01 min-' and thus 1/k-4
was 100 min regain of enzyme activity (as measured in an assay
with non-inactivating substrate) was observed in an experiment
carried out over about 2 h (Monks & Waley, 1988).

The partition ratio k+3/k,4
The values of vi and v. can be utilized to determine the quotient

k+3/k+4 as follows. The expression:

(i-l_ k+4(l -k 4K/kl2s) kk
\sVI +3 -4 +3 -4

Since k4 has been determined, the k+3/k+4 ratio can be found.

The quotient k+2/K
The variation of vs with substrate concentration gives k+2/K;

the individual values can only be determined if the quotient
k+2/k+3 can be evaluated.

Limits for values of rate constants
From the lower limit for k+3 and the value of k+3/k+4 a lower

limit for k+4 can be found. The absolute values of k+2, k+3 and k+4
cannot be determined from steady-state measurements. If, how-
ever, measurements of the fraction of enzyme present as Y
(Scheme 1) can be made on a time scale short compared with
1/k+4 then the quotient k+2/k+3 can be found, and this enables all
the rate constants to be determined. Thus -knowledge of k+3/k+4
and the kcat for the steady-state phase and k+2/k+3 suffices to
obtain k+2, k+3 and k+4, and hence K from k+2/K. Some (but less)
information can be obtained if k+2 and k+3 are very different in
magnitude. If k+2 > k+3 and k+4, then k, is approximately equal

~0.2-
E

o E
0~~~~~~~~~

a-
2

0 2.5 5.0 7.5 10.0
Time (ks)

Fig. 2. Simulated progress curves for branched pathway

The points were obtained by numerical solution of the differential
equations, with errors added, and the curves were fits to the progress-
curve equation. Upper curve (0): [enzyme] = 8 nm, [substrate]
= mM, K= 50 mM, k+2 = 1250 s-1, k+3 = 250 s-', k+4 = 0.01 s-1
and k_4 = 0.0001 s-', noise with standard deviation 0.004 added;
lower curve (A): [enzyme] = 40 nM, [substrate] = 25 mM,
K= 50 mM, k+2 = 250 s-1, k+3 = 1250 s-1, k+4 = 0.01 s-,
k-4 = 0.0001 s-1, noise with standard deviation 0.05 added.

to kcat for the initial phase, and so k+3 and hence k+4 could be
found. Conversely, if there were evidence that k+3 > k+2 and k+4,
then k+2 could similarly be found, and hence K.

The significance of k+2/k+3
A burst had been thought to imply that k+2 > k+3, but this is

not so; a burst is observed even when k+2 < k+3 (Fig. 2). The
quotient k+2/k+3, however, markedly affects the concentration of
substrate required to observe the burst.

Testing the validity of the assumptions
The assumption that the steady-state approximation may be

applied to Y (Scheme 1) is tested by the adherence to first-order
kinetics during the transient. An important practical point is that
(as in all cases where progress curves are utilized) product
inhibition should be tested for; product inhibition, when Ki < K,,,,
gives apparent bursts, although the later portion is not accurately
linear. The assumption that the concentration of substrate has
not changed significantly during the transient should first be
tested by looking for a trend in the residuals when the progress
curves are fitted to eqn. (1). The calculated concentration of
product may be too high if substrate depletion is significant.
However, this test is necessary, but not sufficient. A satisfactory
fit of an experimental progress curve turns out to be inadequate
as a guarantee of reliable values of the parameters. Some
guidelines are now given; it is assumed that the final (steady-
state) parameters have been measured.

NUMERICAL SIMULATIONS

Accuracy of values of the parameters
Simulations (carried out as described in the Appendix) showed

that the effects of depletion of substrate varied. When the initial
concentration of substrate was 10 times the final (steady-state)
Km, then as long as the depletion of substrate at the end of the
burst was less than approx. 25% the theoretical treatment given
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above held adequately (Fig. 3). The points, obtained by numerical
solution of the differential equations, lie on the curve obtained by
the use of eqn. (1). Moreover, when these points are used in a
non-linear regression (curve-fitting) program to find the
parameters vi, v. and k by the use of eqn. (1), the values are
reasonably close (within 10%) to those calculated, and the
inferred values of k4 and k+3/k+4 are within 2 % [Table 3, series
(a)]. When the initial concentration of substrate was only 2.5
times the final Km, however, the procedure was less tolerant; at
10% depletion of substrate, k4 was about 5 % low and k+3/k+4
was about 20 % low [Table 3, series (b)]. The last row in Table 3
gave an excellent fit to the progress curve (Fig. 3), but only poor
values of the parameters (both k4 and k+3/k+4 about 30 % low);

this illustrates the point that a satisfactory fit does not preclude
unsatisfactory values of the parameters.

These tests show the extent of systematic errors, arising from
the neglect of substrate depletion, on noise-free data. The effects
of added errors were greater for the lower concentration of
substrate. When random errors, with zero mean and standard
deviation 0.004 (a reasonable value for accurate spectro-
photometric data) were introduced into a simulated experiment
in which the absorbance change was 0.05 to 0.3) [5 nm enzyme,
Table 4], the standard deviations of the values for k4 and k+3/k+4
*were about 35 % and 20 %. The errors were considerably lower
for the higher concentration of substrate [Table 4, series (a), top
two rows]. Thus these simulations, with added noise, also serve
to show that experiments at a substrate concentration con-
siderably greater than (the final) Km are to be preferred.
The same conclusion may be drawn from the simulations

shown in Table 4, series (b), where k+2 > k+3, and in Table 4,

Table 4. Parameters from fitted progress curves with errors added

The rate constants were as in Table 3 except that in series (b)
k+2= 1250 s-' and k+3 = 250 s-1, and in series (c) k+2 = 250 s- and
k+3 =1250 s-'; the simulated progress curves, obtained by numerical
solution of the differential equations, were then modified by adding
random errors from a normal distribution with zero mean to the
concentration of product. The fitting of eqn. (1) was then carried out
by the Nash-Marquardt algorithm (Nash & Walker-Smith, 1987)
for ten curves. The dispersion in the parameters is the standard
deviation derived from these ten replicates.

Added
[Enzyme] [Substrate] standard 105 x k_4
(nM) (mM) deviation (sW) 10-4 x k+3/k+4

5
Time (ks)

Fig. 3. Effects of substrate depletion on simulated and fitted progress
curves

The points were obtained by numerical solution of the differential
equations and the curves were fits to the progress-curve equation.
Upper curve (-): [enzyme] = 2Gnm, [substrate] = 5 mm,
K= 50mM, k+2 = 500 s-1, k+3 =500 s-1, k+4 =0.01 s-' and
k4 =0.0001 s-; lower curve (M): as upper curve, except that
[substrate] = 1.25 mM.

Series (a)
20
20
5

Theoreti

5 0.004 9.84+0.18
5 0.02 9.88 +0.70
1.25 0.004 11.8 +3.45

ical values 10.0
Series (b)

8 1
Theoretical values

Series (c)
40 25

Theoretical values

0.004 9.91+1.0
10.0

0.05 10.1 +0.5
10.0

Table 3. Results of fitting simulated progress curves

The concentration of substrate was 5 mM in series (a) and 1.25 mm in series (b); K = 50 mM, k+2 = 50O s-i, k+3 = 500 s-', k+4 = 0.01 s-5 and
k_4 = 0.0001 s'. The values for depletion of substrate (second column), which are approximate, refer to a time of 5/k s, i.e. after the exponential
term has become small. The values for the initial rate, the final rate and the transient rate constant were obtained by fitting eqn. (1) to the simulated
progress curves, and k_4 and k+3/k+4 were derived from the initial and final rates and the transient rate constant as described in the text.

[Enzyme] Depletion of 104x vi 105 x vs 10 x k 105 x k4
(nM) substrate (%) (mM -s1) (mM s-') (s-1) (s-1) 10-4 x k+3/k+4

Series (a)
2
5
10
20

Series (b)
5

l0
20

2.5
6
12
24

6
10
18

0.829
2.05
4.06
7.92

0.586
.J65

2.26

0.890 9.30 9.98
2.21 9.23 9.95
4.38 9.2t 9.94
8.54 9.10 9.81

1.60 3.54 9.67
2.91 3.80 9.49
4.00 3.88 6.87

4.99
4.98
4.93
4.88

4.55
4'09
3.54

i
E

0

0~

CL

4.88 +0.04
4.83 +0.15
4.45 + 1.0
5.0

2.45 + 1.3
2.5

12.1 +0.25
12.5
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series (c), where k+3 > k+2; in both series the initial substrate
concentration was 10 times the (final) Km and the parameters k-4
and k+3/k+4 were obtained satisfactorily, except that the standard
deviation of the latter in series (b) was high.

CONCLUSIONS

Detection of branched-pathway mechanism from progress curves
The initial and steady-state rates have to be sufficiently different

to detect a burst. Conditions for the initial rate being much larger
than the final rate have been given above.

conditions just mentioned. When the rate constant for the regain
of enzymic activity is less than kcat then a branched pathway is
indicated. This is a useful and widely applicable criterion. Finally,
when the kinetics give an unexpectedly low kcat and Km,
perhaps with a high kcat./Km ratio (as with some proteinase
inhibitors), then the possibility of a branched pathway should be
kept in mind.

Progress curves with two exponentials
Progress curves that show two exponentials can be accounted

for by a more complex treatment in which dy/dt (see the
Appendix) is not put equal to zero. This can be shown to lead to:

kp4 + a _-k'(14 e-a1t)+ a k-4 (1-e-at)
a1a2 al2 (a2-a1) a2 (a1- a2)

A second requirement for the observation of a burst concerns
k-4, in particular the value of l/k_4 relative to the time of the
experiment; this was discussed above. The enzyme concentration
is another factor, and it may be shown that the ratio of the
enzyme concentration to the substrate concentration must not be
too different from k 4/kcat, so that the time scales for the
transient and the steady state are not too different. At times
much longer than I/k normal steady-state kinetics are observed
(see, e.g., Kiener et al., 1980); the time range can be extended if
stopped-flow measurements are made, or if low temperatures are
used. This point (see, e.g., Crompton et al., 1988) also applies to
the kinetics of slow-binding inhibition (Morrison & Walsh,
1988), which are somewhat similar to the kinetics considered
here.

Detection of branched-pathway mechanism from regain of
activity
The branched-pathway mechanism may operate even when no

burst is observed, perhaps owing to failure of one or more of the

where k'+2 is k+2 (1 + K/s), and:

a1a2 = k'+2 (k+4 + k4) +k4 (k+3 + k+4)-k+3k+4
al+a2 =k'+2+ k+3+ k+4+ k_4

In general this expression seems too cumbersome to be useful.

Comparison of schemes
The three branched pathways for a kinetic mechanism in

which there are two intermediates (e.g. a non-covalent
enzyme-substrate complex and a covalent acyl-enzyme) differ
according to whether the branch is at the free enzyme (Scheme 2,
mechanism A) or at the first intermediate (Scheme 2, mechanism
B) or at the second intermediate (Scheme 1). Hitherto it is the last
that has been discussed. The kinetics of the other two schemes
have also been elucidated, and the expressions for the initial rate,
the final rate, the transient rate constant and the burst are given
in Table 5. Expressions for kcat and Km, and approximate
expressions, may readily be calculated from the expressions in
Table 5. In practice, it would be hard to distinguish by kinetics

Table 5. Expressions for branched-pathway mechanisms A and B

Mechanisms A and B of Scheme 2 have parameters with the significance shown.

Mechanism A
Vi

k+2k+3e0s
s(k+2 + k+3) + k+3K
Rate constant

k-4s(k+2 + k+3)+ k+3K(k+4 + k

s(k+2 + k+3)+ k+3K

vs

k+2k+3k 4eos
k-4s(k+2 + k+3) + k+3K(k+3 + k+4)

Burst
c_4) k+2k+32k+4KeOs

[k-4s(k+2 +k+3) +k+3K(k+4 +k_4)]2
Fraction of enzyme as Z

k+3k+4K
k-4s(k+2 +k+3) +k+3K(k+4 +k4)

Mechanism B
Vi

k+2k+3eOs
s(k,2 +k+3) +k+3K
Rate constant

[k-4(k+2 +k+3) +k+3k+4] +k+3k-4K
s(k+2 +k+3) +k+3K

vs

k+2k+3k-4eos
s[&k4 (k+2 +k+3) +k+3k+4] +k+3k4K

Burst

k+2k+32k+4e4s2
{s[k_4(k+2 +k+3)+k+3k+4] +k+3k4K}2

Fraction of enzyme as Z
k+3k+4s

s[k_4(k+2 + k+3)+ k+3k+4] + k+3k_4K
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alone mechanisms in which partition is at the first or the second
intermediate. Similarly, mechanisms in which Z is formed
irreversibly from X or Y and converted into E (free enzyme) and
P (product) are similar kinetically to the schemes discussed above
(e.g. Bicknell & Waley, 1985). If the complex Z can be isolated,
e.g. by rapid centrifugal Minigel chromatography (Fink et al.,
1987), then it may be possible to decide whether it regenerates
free enzyme directly or via X or Y. The distinction will rest on
whether or not Z is deemed to be active.
The mechanism in which the free enzyme isomerizes (Scheme

2, mechanism A) is rather different, in that the substrate does not
induce inactivation but merely reveals it. Preincubation of the
enzyme on its own eliminates the burst in this mechanism.
Moreover, there may be a burst when the reaction is started by
adding enzyme and a lag when the reaction is started by adding
substrate (e.g. Cheron et al., 1990). This mechanism is also
distinguished by the decrease of transient rate constant with
increasing concentration of substrate.
Mechanisms in which there are branches at more than one

species yield more complex equations (e.g. Frere, 1981). The
difficulty of distinguishing between such mechanisms have been
noted (Persaud et al., 1986). There is much to be said for
interpreting experimental findings by the simplest mechanism
that fits, and this has been the motivation for the present paper.

I thank Dr. J.-M. Frere and Dr. Catherine Crawford for helpful
comments and criticisms.
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APPENDIX
Derivation of progress-curve equation
The stoicheiometry for the enzyme (total concentration e0) is:

eo = e+x+y+z (A1)

The steady-state concentration of intermediate X (Scheme 1 of
the main paper) is:

x = e*s/K

where K = (k_1 + k+2)/k,,, and this is used to eliminate e from
eqn. (Al):

eO = x(I +K/s)+y+z (A2)
For intermediate Y we have:

dy/dt = k+2x+ k4z-(k+3 + k+4)y = 0

whence:
x = [(k+3 + k+4)y-k-4z]/k+2 (A3)

Now this value for x is substituted in eqn. (2) to get:

eO = (1 + Kls) [(k+3 + k+4)y- k4z]/k+2 +y+ z
whence:

w eO-z[l-k-4(1 + K/s)/k+2] (A)
1 +(k+3 +k+4) (I + K/s)/k+2

Now substitute for y in the equation for the rate of change of z
(concentration of dead enzyme):

dz/dt = k+j-k-4Z (A5)

hence the form of dz/dt is:

dz/dt = a-b z (A6)
z = a(l- e-bt)/b (A7)

where a and b are k+4eO/N and L/N respectively,
M = [1-k-4(1 + K/s)/k+2]
N = 1 +(k+3 +k+4) (I + K/s)/k+2

and

L = k 4N+k+4M
Now this value for z may be substituted in eqn. (4), and used in:

dp/dt = k+3y (A8)
to obtain:

dp/dt = k+3eo (k-4N+ k+4M * e-bt)/NL (A9)
Hence:

p = k+ Ik-4t+ (1-e-LtIN (AIO)

This equation is of the same form as that put forward by Frieden
(1970):

p = vSt-(vS-v)(I -eIkt)/k (A 1)
where v. and vi are the final and initial rates respectively and k is
the parameter (time constant) characterizing the burst.
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Sinulation of progress curves
The differential equations for the kinetic mechanism of Scheme

1 of the main paper for dy/dt, dz/dt and dp/dt have been given
above. Their solution by the trapezoidal method (see, e.g., Fox
& Mayers, 1987) is now outlined. The advantage of this procedure
is that the method is so transparent that it can readily be
understood, and hence applied to other mechanisms. The binding
of substrate is assumed to be an equilibrium step, i.e. E, S and X
are present at their equilibrium proportions so that the initial
value for x is given by:

Xo = 0.5 [w-V/(w2-4eOSO)]
where w = eo + so + K8, K. being the dissociation constant for the
first complex, X. In the procedure used there was an equilibrium-
updating subroutine given by:

Si = So-Pi-Yi-Zi-xi (A12)
x, = (eo-y1-z1)/(1 + K./s) (A13)

iterated until convergence; here the suffix 1 in s1, x1 etc. refers to
the value at the end of a step (i.e. time interval). In the trapezoidal
method, with a step size h, the approximations to:

dy/dt = k,2x+ k4z- (k,3 + k+4)y
dz/dt = k+4y-k 4z

are:

(Y1-yo)/h = k+2 (xo+ xj)/2 +k4 (zo+ zl)/2 -(k+3 + k+4) (yo +y1)/2
(Z1-Zo)/h = k+4(yo+y1)/2 -k-4(zo+zl)/2
The values of y1 and z1 were obtained from:

y, = {yO + H(k+2(x0 + x1) - (k+3 + k+4)y0 + k-4(ZO+ Z1)]}/ Y (A14)
Z, = {zo + Hjk+4(V0+y1)-k4Zo]}/Z (A15)

where Y= I +H(k+3+k+4) and Z = 1+Hk&4, and H = h/2, h
being the step size. Eqn. (A12) to eqn. (A16) gave the next value in
the iteration for y, z and p, and were followed in the subroutine
by the 'updating' assignment statements:

Yo-0 Y1;z0o z;po pi;;xe =xi (A16)

The essence of the program, which has been implemented both
in FORTRAN and BASIC, is that a large number, usually 104,
small time steps are taken first, followed by the same number of
steps with a much larger step size. The size of the small steps was
usually 1/104 of the later steps. Thus, in eqns. (A14) to (A16), the
step size h was set to (10-4h) for the first call of the subroutine,
and to h for the second. This simple manoeuvre sufficed for the
simulations carried out above, and has been useful in other
instances; it depends on the fact that very small steps are
required for the early stages of enzymic reactions while steady
states are being set up; subsequently much larger steps may be
taken. The simplest check on the accuracy of the values obtained
for p was to compare the results from two simulations, the
second having step sizes half the first. The results were considered
acceptable when the two sets agreed to three significant figures.
The trapezoidal method with the equilibrium assumption for

substrate binding outlined above was compared with a program
based on a more elaborate backwards differentiation method of
solution of the differential equations (Scraton, 1987); in this
program the equilibrium assumption was no longer made. The
results were identical, to three significant figures, in examples
where the constant K [defined as (k-1 + k2)/k,1] was 50 mM or
0.05 mm, with k-,/k,2 2000 or 1 respectively; the substrate
concentration was 50 mm in these two examples, and the same
held when K was 0.05 mm, k-1/k,2= 1, and the substrate
concentration was 5 mm. That the assumption of equilibrium in
substrate binding should make so little difference when k 1 = k+2
was not expected.

REFERENCES
Fox, L. & Mayers, D. F. (1987) Numerical Solution of Ordinary

Differential Equations, pp. 44-62, Chapman and Hall, London
Frieden, C. (1970) J. Biol. Chem. 245, 5788-5799
Scraton, R. E. (1987) Further Numerical Methods in BASIC, pp.

191-199, Edward Arnold, London

Received 7 January 1991/26 March 1991; accepted 17 April 1991

1991


