Chemical modification of a functional arginine residue in diadenosine 5',5"'-P¹,P⁴-tetraphosphate (Ap₄A) phosphorylase I from Saccharomyces cerevisiae

Angela K. ROBINSON and Larry D. BARNES*

Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78284-7760, U.S.A.

Phenylglyoxal, a reagent with high specificity for arginine residues, inactivated Ap₄A phosphorylase I from Saccharomyces cerevisity α a property which may be constant was indicated $\alpha p_i \alpha$ prospectively was 11.5 m and α and α activity was 11.5 α .5 M-1 min-1. The loss of activity was 11.5 α mini-1. The loss of activity was 11 From the incorporation of the incorporation of Γ is essential the incorporation of T and T is T of T molecular of T and T is T of T or T or T or T or T a linear function of the incorporation of $[7^{-14}C]$ phenylglyoxal. The incorporation of 1.9 ± 0.4 mol of phenylglyoxal/mol of enzyme accounted for complete loss of activity. The specificity of inactivation by phenylglyo presence of Ap. A ($n = 2-6$), ADP, ATP and P. The substrates, Ap A, Ap A, and P, protected the enzyme against resence of Ap_nA ($n = 2-6$), ADP, ATP and P₁. The substrates, Ap₄A, Ap₅A and P₁ protected the enzyme against inactivation, but Ap₂A, Ap₃A and Ap₄A did not. Ap₄A, Ap₅A and P_i reduced the rate of inactivation by about 70%, 60% and 37% respectively. The Ap₄A phosphorolysis products, ADP and ATP, also partially protected the enzyme against inactivation by phenylglyoxal. Thus Ap_4A phosphorylase I probably contains an arginine residue in the binding site for Ap_4A .

INTRODUCTION

 \overline{S} , \overline{S} , \overline{S} , \overline{S} , \overline{S} is a dinucleo-phosphate (Ap4A) is a dinucleo- $\sum_{i=1}^{\infty}$ $\frac{1}{i}$, $\sum_{i=1}^{\infty}$ intervalse present $\frac{1}{i}$ is a uniquelyside polyphosphate present in bacteria, lower eukaryotes, including Saccharomyces cerevisiae, and mammalian cells at basal levels of 10^{-8} – 10^{-6} M (Rapaport & Zamecnik, 1976; Ogilvie, 1981; Lee et al., 1983; Garrison & Barnes, 1984; McLennan & Prescott, 1984; Baker & Jacobson, 1984). Exceptions are platelets and chromaffin cells in which Ap_aA is present at $10^{-4}-10^{-3}$ M (Flodgaard & Klenow, 1982; Rodriguez del Castillo et al., 1988).

 Ap_aA is catabolized by three different types of specific enzymes. A hydrolase discovered in Physarum polycephalum (Barnes & Culver, 1982; Garrison et al., 1982), and also present in Escherichia coli (Guranowski et al., 1983; Plateau et al., 1985), symmetrically cleaves $Ap₄A$ to ADP. A hydrolase present mainly in higher eukaryotic species asymmetrically cleaves Ap_AA to AMP and ATP in the presence of a bivalent cation (Vallejo et al., 1976; Ogilvie & Antl, 1983; Prescott et al., 1989; Ogilvie et al., 1989). Ap₄A phosphorylase, discovered in Saccharomyces cerevisiae (Guranowski & Blanquet, 1985) and also present in Euglena (Guranowski et al., 1988a), catalyses the phosphorolysis of Ap_4A in the presence of P_1 and a bivalent cation to yield ADP and ATP. $ATP.$

 Ap_aA phosphorylase has been parified to homogeneity from S. cerevisiae (Guranowski & Blanquet, 1985), and the DTP (diadenosine tetraphosphate phosphorylase) gene encoding the enzyme has been cloned and sequenced (Plateau et al., 1989; Kaushal et al., 1990). Ap₄A phosphorylase is apparently unique in terms of catalysing the phosphorolysis of a phosphoanhydride bond between nucleoside moieties (Guranowski & Blanquet, 1985). Under certain conditions in vitro, the yeast enzyme also catalyses the formation of $Ap₄A$ from ADP and ATP (Brevet et al., 1987), but results from disruption of the gene indicate that the enzyme behaves catabolically in vivo (Plateau et al., 1989). This enzyme catalyses the exchange of the β -phosphate of nucleoside diphosphates and P_i (Guranowski & Blanquet, 1986a), and some inorganic anions, e.g. vanadate, can substitute for P_i in

the exchange reaction as well as in the cleavage of \mathbf{A} (Guranowski & Blanquet, 1986b). Yeast An Ambashorylase property Blanquet, 1986b). Yeast An Ambashorylase (Guranowski & Blanquet, 1986b). Yeast Ap₄A phosphorylase also catalyses the irreversible synthesis of $Ap₄A$ from ATP and adenosine 5'-phosphosulphate (Guranowski et al., 1988b). Recently, a second form of Ap_aA phosphorylase has been isolated from *S. cerevisiae* (Plateau *et al.*, 1990). This form of the enzyme, designated II, catalyses all of the same reactions as the first form (I), and the two forms have about 60% amino acid sequence identity. The two forms differ quantitatively in their kinetic properties (Plateau et al., 1990).

Nothing is known about the amino acid residues in the active site that participate in the reactions catalysed by the yeast Ap_AA phosphorylases. Arginine residues participate in the binding and catalysis of phosphoryl groups in substrates for a number of enzymes (Riordan, 1979). We identified a potential adenine nucleotide-binding site in Ap_aA phosphorylase I based on comparison of the deduced amino acid sequence with the sequences of several enzymes known to contain this particular sequence motif (Kaushal et al., 1990). One arginine residue is present in this potential nucleotide-binding site. Thus we tested the possibility that an arginine residue may by present in the $Ap₄A$ -binding site of yeast $Ap₄A$ phosphorylase I using phenylglyoxal, a reagent with high specificity for arginine (Takahashi, 1968, 1977).

Here we report that chemical modification of yeast Ap_aA phosphorylase I with phenylglyoxal causes loss of activity with pseudo-first-order kinetics, and that the substrates and products partially prevent this loss of activity. The loss of enzymic activity is a linear function of the stoicheiometry of incorporation of [¹⁴C]phenylglyoxal.

EXPERIMENTAL

$A = \frac{1}{2}$

 Ap_aA was purchased from Sigma Chemical Co. and was custom-labelled with tritium (Amersham Corp.). ³H-labelled Ap₄A was purified by chromatography on dihydroxyboronyI-

Abbreviations used: Ap4A, A5'pppp5'A, diadenosine ⁵',5"'-P',P4-tetraphosphate; other diadenosine ⁵',5"'-polyphosphates are abbreviated in a

Abbreviations used: Ap₄A, A5'pppp5'A, diadenosine 5',5"'-P¹,P⁴-tetraphosphate; other diadenosine 5',5"'-polyphosphates are abbreviated in a similar fashion; QAE, quaternary aminoethyl.

To whom correspondence should be addressed.

Bio-Rex 70 resin (Barnes et al., 1985) and analysed for purity by isocratic h.p.l.c. (Garrison & Barnes, 1984). Phenylglyoxal was purchased from Sigma Chemical Co. [7-'4C]Phenylglyoxal (27.8 mCi/mmol) and ['4C]methylated proteins used as molecular-mass standards were purchased from Amersham Corp. The QAE-Sepharose resin was manufactured by Pharmacia. NZ-amine A was from ICN Biochemicals, Inc. Kodak X-Omat AR film was from Eastman Kodak Co.

Purification of Ap_AA phosphorylase I

 $Ap₄A$ phosphorylase I was purified to homogeneity from S. cerevisiae CGY-339 (α his4-29 ura3-52 pep4-3) that had been transformed with the plasmid μ in μ and μ all et al., 1986) with a set al., 1986) with a set al., 1986 ransformed with the plasmid γ Ep352 (Hill *et al.*, 1986) with a 3.1 kb insert that contained the DTP gene (Kaushal et al., 1990).
The presence of this expression vector increased the yield of the he presence of this expression vector increased the yield of the
nexyme by a factor of 15 relative to untransformed yeast (L. D. Barnes & V. Kaushal, unpublished work). Yeast was grown in 0.5% (w/v) yeast nitrogen base [without amino acids and without $(NH₄)₉SO₄$, 1% (w/v) NZ-amine A and 3% (w/v) glucose to a density of 2×10^8 cells/ml. The enzyme was purified by modification of the procedure described by Guranowski $\&$ Blanguet (1985). The order of column chromatography was changed to the sequence: DEAE-cellulose (instead of DEAE-Sephacel), hydroxyapatite and Sephadex G-75 (instead of Sephadex G-100). The enzyme was then subjected to chromatography on a QAE-Sepharose column equilibrated with 20 mmpotassium phosphate, pH 6.8, 10% (v/v) glycerol and 5 mm-2mercaptoethanol. Purified enzyme was eluted at about 0.25 M-NaCl in a linear gradient. The enzyme was at least 95% pure based on SDS/PAGE analysis, and it exhibited the same physicochemical and kinetic properties as those described previously (Guranowski & Blanquet, 1985).

Assay of enzymic activity $\frac{1}{2}$ is the sum set of $\frac{1}{2}$ from S. ceres was associated by $\frac{1}{2}$

 Ap_4A phosphorylase 1 from S. *cerevisial* was assayed by measuring formation of $[^{3}H]ADP$ and $[^{3}H]ATP$ from $[^{3}H]Ap_{A}A$ and P_1 . Activity was measured in 50 mm-Hepes/NaOH (pH 7.5)/0.5 mm-MnCl₂/1 mm-KH₂PO₄ at 37 °C for 10 min in a volume of 100 μ l. The reaction products were separated from residual substrate by column chromatography on a boronatederivatized resin (Barnes *et al.*, 1985). Enzymic activity was expressed as nmol of $ADP+ATP$ formed/min per mg of protein.

In activation of $Ap₄A$ phosphorylase I with phenylglyoxal

In preliminary experiments, different combinations of Hepes and phosphate buffers, glycerol, dithiothreitol or 2-mercaptoethanol, and EGTA were examined to optimize conditions for the incubation solution with phenylglyoxal and for the subsequent dilution solution. Different concentrations of the enzyme were also tested. The effects of these components on the stability of the enzyme during incubation and dilution, inactivation by phenylglyoxal and interference in the enzymic assay were examined. Glycerol stabilized the enzymic activity in general. Phosphate partially protected the enzyme against inactivation (see the Results section), so Hepes was used as the buffer in the inactivation incubation. Phosphate, glycerol and a thiol compound stabilized the enzyme after dilution for assay of residual activity. The thiol compounds and EGTA had no significant effect on the stability of the enzyme at the enzyme concentrations used in the inactivation incubations. Dithiothreitol did not significantly affect the rate of inactivation of the enzyme by phenylglyoxal.
Ap₄A phosphorylase I (0.16–0.78 mg/ml) was incubated in

50 mm-Hepes/NaOH (pH 7.5)/10% (v/v) glycerol at 25 °C with phenylglyoxal at 0-7.5 mm. Stock phenylglyoxal was prepared in the same buffer. In ligand-protection experiments, different ligands, as described in the Results section, were also present. Samples were diluted from 1:400 to 1:2000 into 20 mmpotassium phosphate (pH 6.8)/10% (v/v) glycerol/5 mm-2mercaptoethanol at different times after addition of phenylglyoxal, and 10 μ l of the dilution was assayed for enzymic activity. The phenylglyoxal carried over into the assay (maximal final concentration of 0.4 μ M) did not interfere with the assay. The concentration of phenylglyoxal, diluted into water for me concentration of phenyigryoxal, unuted into water for $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ in $\frac{1}{2}$ i absorption coefficient is similar to a value of the value of $\frac{12600}{\pi}$ cmabsorption coefficient is similar to a value of $12600 \text{ m}^{-1} \text{ cm}^{-1}$ at 253 nm reported by Kohlbrenner & Cross (1978).

Incorporation of $[7^{-14}C]$ phenylglyoxal into Ap₄A phosphorylase I

 $A + 1 - 1 - 1 = 1 - 2$ Ap₄A phosphorylase I was incubated with $[7 - 1]$ conditions described above. under the conditions described above. A 5 μ l sample was removed from the incubation mixture as a function of time and spotted on to a disc of Whatman 3MM paper soaked in cold 10 % (w/v) trichloroacetic acid. Discs were then washed once with cold 10% (w/v) trichloroacetic acid (10 ml per disc), twice with 5% (w/v) trichloroacetic acid at room temperature, and twice with 95% (v/v) ethanol, and dried before measurement of the radioactivity in a liquid-scintillation counter. Control experiments demonstrated that this wash procedure removed unincorporated phenylglyoxal to less than 0.1% of the total d.p.m. in the incubation mixture. Samples also were removed from the incubation mixture at the same time points for assay of enzymic activity.

 $Ap₄A phosphorylase I was subjected to electrophoresis on $Ap₄A$$ 12.5%-polyacrylamide gels containing 0.1% SDS using the discontinuous buffer system described by Laemmli (1970) and modified by Studier (1973). In experiments with [7-¹⁴C]phenylglyoxal-labelled enzyme, gels were dried and subjected to autoradiography at -70 °C using Kodak X-Omat AR film. ¹⁴Cmethylated proteins were used as molecular-mass standards on gels analysed autoradiographically.

Data analyses Representative data from repeated experiments are presented. The presented experiments are presented. The presented of the presented of the presented experiments are presented. The presented of the presented. The presented

Representative data from repeated experiments are presented. The mean value (\bar{x}) , standard deviation (s.p.), and number of experiments (n) are given for some data. Values of apparent pseudo-first-order rate constants were calculated by least-squares linear regression analysis of semi-logarithmic plots of residual enzymic activity as a function of time.

\sim

Inactivation of Ap_4A phosphorylase I by phenylglyoxal

Yeast Ap₄A phosphorylase I was inactivated by phenylglyoxal in a time-dependent manner. Inactivation was dependent on the concentration of phenylglyoxal and followed pseudo-first-order kinetics from 100% activity to less than 2% of the residual activity (Fig. 1). Enzyme incubated under the same conditions in the absence of phenylglyoxal exhibited negligible loss of activity (results not shown, but see Fig. 1 for the level of residual activity. in the presence of 0.79 mm-phenylglyoxal). A plot of the pseudofirst-order rate constants as a function of the phenylglyoxal concentrations yielded a straight line from which the value of the second-order rate constant was calculated to be $11.5 \pm 2.5 \text{ m}^{-1} \text{ min}^{-1}$ (n = 5). The value of the slope from a

macuv<mark>i</mark>

Ap₄A phosphorylase 1 (0.16 mg/ml) was incubated with 0.79 (\bullet), 1.58 (\times), 2.77 (\triangle), 3.96 (\blacksquare) and 5.10 (\bigcirc)-mm phenylglyoxal in 50 mm-Hepes/NaOH (pH 7.5)/10% (v/v) glycerol at 25 °C. At the indicated times, portions were removed, diluted 1:400 into 20 mmpotassium phosphate (pH 6.8)/10% (v/v) glycerol/5 mm-2-
mercaptoethanol, and assayed for residual enzymic activity.

Values of the pseudo-first-order rate constants, k_{obs} , were calculated from the slopes of a semilogarithmic plot of residual activity in the presence of different concentrations of phenylglyoxal versus time (see Fig. 1).

logarithmic plot of the pseudo-first-order rate constants as a function of the phenylglyoxal concentrations (Fig. 2) indicated that a minimum of 1.11 ± 0.20 ($n = 5$) mol of phenylglyoxal/mol of the enzyme accounted for the loss of enzymic activity.

logarithmic plot of the pseudo-first-order rate constants as a

The incorporation of $[7-14C]$ phenylglyoxal into Ap₄A phosphorylase I as a function of time was measured concomitantly with assay of residual activity and the results are shown in Fig. $3(a)$. The loss of enzymic activity was a linear function of the incorporation of phenylglyoxal (Fig. $3b$), and the stoicheiometry of incorporation was 1.9 ± 0.4 ($n = 5$) mol of phenylglyoxal/ mol of Ap₄A phosphorylase I.

Fig. 3. Correlation of inactivation of $Ap₄A$ phosphorylase I with incorporation of phenylglyoxal into the enzyme

(a) Ap₄A phosphorylase I (0.31 mg/ml) was incubated in 50 mm-Hepes/NaOH (pH 7.5)/10% (v/v) glycerol in the presence of 2.99 mm-[7-¹⁴C]phenylglyoxal at 25 °C. At the times indicated, samples were removed for measurements of the incorporation of phenylglyoxal (\bullet) and enzymic activity (x) as described in the Experimental section. (b) The residual activity $(\%)$ of Ap_AA phosphorylase I as a function of the stoicheiometry of phenylglyoxal incorporated into the enzyme.

Effect of ligands on inactivation of $Ap₄A$ phosphorylase I by phenylglyoxal

The substrates Ap_4A and Ap_5A partially protected against inactivation by phenylglyoxal (Table 1). $Ap₄A$ at a concentration of 1 mm, i.e. about 16 times the value of the K_m for Ap_4A (Guranowski & Blanquet, 1985), reduced the rate of inactivation by about 70%. Ap₅A reduced the rate of inactivation by about 60% . Autoradiographic data of the time-course of incorporation of [7-¹⁴C]phenylglyoxal into the enzyme are shown in Fig. 4. This Figure also demonstrates a decrease in incorporation of [7-¹⁴C]phenylglyoxal in the presence of $Ap₄A$. The protection provided by Ap_aA and $Ap₅A$ was specific among the diadenosine polyphosphates tested. $Ap₂A$, $Ap₃A$ or $Ap₆A$ at a concentration of 1 mm did not protect the enzyme against inactivation by 4.2 mm-phenylglyoxal based on the values of $k_{obs.}$ (Table 1).

The substrate, P_i , at 10 mm, decreased the rate on inactivation by 4.2 mm-phenylglyoxal by about 37% . The products, ADP

Table 1. Effect of diadenosine polyphosphates on inactivation of Ap_AA phosphorylase I by phenylglyoxal

Ap₄A phosphorylase I (0.16 mg/ml) was incubated with 4.2 mm phenylglyoxal in the absence (control) or presence of the indicated diadenosine polyphosphate, each at a concentration of 1.0-1.2 mM. Samples were removed from the incubations as a function of time (0-60 min) and assayed for activity. The rate constants were calculated from a semilogarithmic plot of residual activity versus time. $n =$ the number of experiments with duplicate assays in each experiment. Values for k_{obs} are expressed as the mean (\bar{x}) and standard deviation (S.D.) for the indicated number of experiments.

Fig. 4. Incorporation of $[7^{-14}C]$ phenylglyoxal into Ap₄A phosphorylase I as a function of time and protection by $Ap₄A$

Ap₄A phosphorylase I (3.1 mg/ml) was incubated at 25 °C in 50 mm-Hepes/NaOH (pH 7.5)/10% (v/v) glycerol in the presence of 4.3 mM-[7-14C]phenylglyoxal and in the absence or presence of 4.2 mM-Ap₄A. Samples (6 μ g of enzyme) were removed at 0, 30, 60 and 90 min, dissociated in SDS, and subjected to electrophoresis on a polyacrylamide gel containing SDS as described in the Experimental section. The gel was dried and subjected to autoradiography. Lane 1, 14C-methylated proteins as molecular-mass standards: bands in descending order from the top of the gel: myosin (200 kDa), phosphorylase b (92.5 kDa), BSA (66 kDa), ovalbumin (45 kDa) and carbonic anhydrase (30 kDa). Lanes 2-9, Ap₄A phosphorylase ^I incubated with [7-14CJphenylglyoxal for 0 (lanes 2, 3), 30 (lanes 4, 5), 60 (lanes 6, 7) and 90 (lanes 8, 9) min. Lanes 2, 4, 6 and 8, incubation in the absence of Ap_aA ; lanes 3, 5, 7 and 9, incubation in the presence of $Ap₄A$.

and ATP, each at ¹ mm, decreased the rate of inactivation by about 60% and 20% respectively.

DISCUSSION

 $Ap₄A$ phosphorylase I contains an arginine residue in the substrate-binding site for Ap_AA based on the correlation of loss of activity with the stoicheiometry of phenylglyoxal incorporation and the partial protection by specific substrates and

products against inactivation by phenylglyoxal. The specificity of protection by Ap_aA and Ap_sA among Ap_aA (n = 2-6) reflects the substrate specificity of Ap_aA phosphorylase I. The rate of phosphorolysis of Ap_4A is greater than for Ap_5A , and Ap_2A and $Ap₃A$ are not substrates for the enzyme (Guranowski & Blanquet, 1985). Ap_sA has not been tested as a substrate, but our results suggest that it is not a substrate.

The presence of an essential arginine residue in this enzyme is compatible with results indicating that arginine residues are often components of binding sites in enzymes with phosphatecontaining substrates (Riordan, 1979). Riordan (1979) also observed that arginine oocurred infrequently in enzymes in which arginine was present in binding sites for anionic substrates. The relative scarcity of arginine in Ap_aA phosphorylase I, only five arginines in a total of 321 amino acids (Plateau et al., 1989; Kaushal et al., 1990), is in agreement with the observations of Riordan (1979). In addition, Holler (1984) has demonstrated that Ap_aA and L-arginine can form a 1:1 stoicheiometric complex.

The dependence of the pseudo-first-order rate constants on the concentration of phenylglyoxal supports the conclusion that modification of one arginine residue is sufficient to account for the loss of activity. Complete inactivation of $Ap₄A$ phosphorylase ^I on incorporation of 2 mol of phenylgloyoxal/mol of enzyme (Fig. 3b) is also compatiable with the modification of one arginine residue because Takahashi (1968) demonstrated that two phenylglyoxal moieties are incorporated per guanidino group. However, this 2:1 stoichiometry of phenylglyoxal to arginine residue does not always occur (Borders & Riordan, 1975; Koland et al., 1982; Konishi & Fujioka, 1987). Thus we cannot at present dismiss the possibility that two different arginine residues in Ap_aA phosphorylase I are modified by phenylglyoxal, but with only one being essential for activity. Attempts to distinguish these possibilities, to demonstrate conclusively that an arginine residue has been modified and to identify the specific arginine that is modified have been unsuccessful. The phenylglyoxal-arginine product formed in $Ap₄A$ phosphorylase ^I is unstable under the conditions required for amino acid analysis and isolation of phenylglyoxal-labelled peptides. Similar instability of phenylglyoxal-arginine products in other enzymes has been reported (Jornvall et al., 1977; McKee & Nimmo, 1989). However, the stability of the inactivated enzyme to high dilution, precipitation with trichloroacetic acid and dissociation in SDS support the kinetic data that phenylglyoxal acts as an irreversible inhibitor of $Ap₄A$ phosphorylase I.

The results support the proposal that an arginine residue is present in the potential nucleotide-binding site in Ap_4A phosphorylase I (Kaushal et al., 1990). This information on the Ap_aA -binding site will be essential in elucidating the mechanism of catalysis by this enzyme.

This work was supported by National Institutes of Health grant GM 27220. We thank Dr. Jon S. Nishimura for his critical reading of this manuscript.

REFERENCES

- Baker, J. C. & Jacobson, M. K. (1984) Anal. Biochem. 141, 451-460
- Barnes, L. D. & Culver, C. A. (1982) Biochemistry 21, 6123-6128
- Barnes, L. D., Robinson, A. K., Mumford, C. H. & Garrison, P. N. (1985) Anal. Biochem. 144, 296-304
- Borders, C. L., Jr. & Riordan, J. F. (1975) Biochemistry 14, 4699-4704 Brevet, A., Coste, H., Fromant, M., Plateau, P. & Blanquet, S. (1987) Biochemistry 26, 4763-4768
- Flodgaard, H. & Klenow, H. (1982) Biochem. J. 208, 737-742
- Garrison, P. N. & Barnes, L. D. (1984) Biochem. J. 217, 805-811
- Garrison, P. N., Roberson, G. M., Culver, C. A. & Barnes, L. D. (1982) Biochemistry 21, 6129-6133
- Guranowski, A. & Blanquet, S. (1985) J. Biol. Chem. 260, 3542-3547
- Guranowski, A. & Blanquet, S. (1986a) J. Biol. Chem. 261, 5943-5946
- Guranowski, A. & Blanquet, S. (1986b) Biochimie 68, 751-760
- Guranowski, A., Jakubowski, H. & Holler, E. (1983) J. Biol. Chem. 258, 14784-14789
- Guranowski, A., Starzynska, E. & Wasternack, C. (1988a) Int. J. Biochem. 20, 449-455
- Guranowski, A., Just, G., Holler, E. & Jakubowski, H. (1988b) Biochemistry 27, 2959-2964
- Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. (1986) Yeast 2, 163-167
- Holler, E. (1984) Biochem. Biophys. Res. Commun. 120, 1037-1043
- Jornvall, H., Lange, L. G., III, Riordan, J. F. & Vallee, B. L. (1977) Biochem. Biophys. Res. Commun. 77, 73-78
- Kaushal, V., Avila, D. M., Hardies, S. C. & Barnes, L. D. (1990) Gene 95, 79-84
- Kohlbrenner, W. E. & Cross, R. L. (1978) J. Biol. Chem. 253, 7609-7611
- Koland, J. G., ^O'Brien, T. A. & Gennis, R. B. (1982) Bichemistry 21, 2656-2660
- Konishi, K. & Fujioka, M. (1987) Biochemistry 26, 8496-8502
- Laemmli, U. K. (1970) Nature (London) 227, 680-685
- Lee, P. C., Bochner, B. R. & Ames, B. N. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 7496-7500
- McKee, J. S. & Nimmo, H. G. (1989) Biochem. J. 261, 301-304

Received 19 February 1991/3 April 1991; accepted 5 April 1991

- McLennan, A. G. & Prescott, M. (1984) Nucleic Acids. Res. 12, 1609-1619
- Ogilvie, A. (1981) Anal. Biochem. 115, 302-307
- Ogilvie, A. & Antl. W. (1983) J. Biol. Chem. 258, 4105-4109
- Ogilvie, A., Luthje, J., Pohl, U. & Busse, R. (1989) Biochem. J. 259, 97-103
- Plateau, P., Fromant, M., Brevet, A., Gesquire, A. & Blanquet, S. (1985) Biochemistry 24, 914-922
- Plateau, P., Fromant, M., Schmitter, J.-M., Buhler, J.-M. & Blanquet, S. (1989) J. Bacteriol. 171, 6437-6445
- Plateau, P., Fromant, M., Schmitter, J.-M. & Blanquet, S. (1990) J. Bacteriol. 172, 6892-6899
- Prescott, M., Milne, A. D. & McLennan, A. G. (1989) Biochem. J. 259, 831-838
- Rapaport, E. & Zamecnik, P. C. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 3984-3988
- Riordan, J. F. (1979) Mol. Cell. Biochem. 26, 71-92
- Rodriguez del Castillo, A., Torres, M., Delicado, E. G. & Miras-Portugal, M. T. (1988) J. Neurochem. 51, 1696-1703
- Studier, F. W. (1973) J. Mol. Biol. 79, 237-248
- Takahashi, K. (1968) J. Biol. Chem. 243, 6171-6179
- Takahashi, K. (1977) J. Biochem. (Tokyo) 81, 403-414
- Vallejo, C. G., Lobaton, C. D., Quintanilla, M., Sillero, A. & Sillero, M. A. G. (1976) Biochim. Biophys. Acta 438, 304-309