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Abstract 

Background:  Stochastic modelling plays a crucial role in comprehending the dynam-
ics of intracellular events in various biochemical systems, including gene-expression 
models. Cell-to-cell variability arises from the stochasticity or noise in the levels of gene 
products such as messenger RNA (mRNA) and protein. The sources of noise can stem 
from different factors, including structural elements. Recent studies have revealed 
that the mRNA structure can be more intricate than previously assumed.

Results:  Here, we focus on the formation of stem-loops and present a reinterpreta-
tion of previous data, offering new insights. Our analysis demonstrates that stem-loops 
that restrict translation have the potential to reduce noise.

Conclusions:  In conclusion, we investigate a structured/generalised version of a sto-
chastic gene-expression model, wherein mRNA molecules can be found in one of their 
finite number of different states and transition between them. By characterising 
and deriving non-trivial analytical expressions for the steady-state protein distribution, 
we provide two specific examples which can be readily obtained from the structured/
generalised model, showcasing the model’s practical applicability.

Keywords:  Stochastic gene expression, Master equation, Stochastic simulation

Background
Biochemical processes such as stochastic gene expression are inherently subject to 
random fluctuations that lead to noise in the number of constituents [1]. Quantifying 
the dynamics and the noise in such stochastic processes is an intense study of various 
research areas. Under simplest assumptions, gene expression is described as a two-step 
stochastic process comprised of transcription and translation that play a significant role 
in determining the levels of gene products. While RNA polymerase enzymes produce 
mRNA molecules in the former, protein synthesis takes place by ribosomes in the 
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latter. Because of the similarity, it is often referred to as the (classical) two-stage gene-
expression model. How gene-expression regulation affects the level of gene products 
such as mRNA and protein is a question of interest.

The contributions to gene expression noise give rise to cell-to-cell variability in the 
mRNA and protein levels [2–9]. The noise emerges from different sources, namely 
intrinsic and extrinsic noise [10, 11]; yet, structural elements such as stem-loops can 
also contribute to noise by binding to an untranslated region of mRNA [12, 13]. The 
untranslated regions of mRNAs often contain these stem-loops that can reversibly 
change configurations making individual mRNAs translationally active/inactive [14].

From a mathematical perspective, the dynamics of gene-expression mechanisms can 
be described in deterministic and stochastic settings by means of ordinary differential 
equations (ODEs) and Master equation formulation, respectively. On the other hand, 
hybrid models have also been proposed as a combination of the preceding two [15–
17]. Only a few of those provide an explicit solution to the (classical) two-stage gene-
expression model [18, 19]; most of the studies are based on Monte Carlo simulations, 
which are usually computationally expensive.

In recent decades, the (classical) two-stage model of gene expression has been 
extensively utilised to elucidate the underlying mechanisms of stochastic processes in 
living cells [19–22]. In particular, it has been extended by the regulation of transcription 
factors, which affect gene expression by modulating the binding rate of RNA polymerase 
[23]. Specifically, the stochastic dynamics of the classical two-stage model of gene 
expression is described by the reaction scheme [18, 24]

where �m is the mRNA production rate, �p is the protein translation rate, and γm 
and γ p are the decay rate constants of mRNA and protein species, respectively. Here 
and henceforth, m and p in the superscript indicate the mRNA and protein species, 
respectively.

As a generalisation of the (classical) two-stage model, some studies in the literature 
consider a set of multiple gene states and investigate the dynamics of stochastic 
transitions among these states [25–28]. Here, we study a structuration/generalisation 
of the classical two-stage gene-expression model (1), which takes into account 
multiple mRNA states. More specifically, after being transcribed, mRNA molecules 
are considered to be transitioning among their different states at constant reaction 
rates. Subsequently, the nascent mRNA molecule is translated, and protein is degraded. 
The schematic of the reactions describing this system is given by the following set of 
chemical reactions:

(1)φ
�
m

−→ mRNA, mRNA
γm
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−→ mRNA+ protein, protein
γ p
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where �mi  and γm
i

 are the production and decay rates for an mRNA molecule in i-th state, 
respectively. The term qij , i  = j , denotes the mRNA transition rate from state i to state 
j, �pi  and γ p are the protein translation and decay rates, respectively. The subscript is 
reserved for multiple mRNA states. All model parameters and their biological meaning 
are listed in Table 1.

The chemical reactions in (2) correspond to mRNA transcription and decay, transitions 
among multiple mRNA states, protein translation, and protein decay, respectively. 
Throughout this paper, we refer to model (2) as the generalised two-stage model, by 
which we mean that the model is treated as an extension of the classical two-stage model 
concerning the structuration of mRNA. We note that the (classical) two-stage model has 
been extended in this manner by the inclusion of an mRNA activation/inactivation loop 
recently [29]; however, here we generalise the results of [29] for a more comprehensive 
model. Additionally, we reanalyse published data on the influence of RNA stem loops on 
gene expression noise and explore the influence of kinetic rate parameters on predicted 
noise reduction ratios. From a biologically relevant standpoint, a similar model involving 
multiple mRNA states has recently been studied to quantify protein variability arising 
from mRNA-microRNA interactions [30].

In what follows, we present two specific examples which can be obtained from the 
structured/generalised model (2): the mRNA inactivation loop model and the multipha-
sic mRNA model. These models are given by the reactions

where the abbreviation imRNA stands for an inactive mRNA molecule, and by

respectively. Here, the reaction system (3) accounts for the activation/inactivation of 
an mRNA molecule modelled by involving a pair of reversible chemical reactions. In 
(4), an mRNA molecule is considered to move through its finite lifetime stages, which 

(3)

phi
�
m

−−⇀↽−−
γm
1

mRNA,mRNA
q12
−−⇀↽−−
q21

imRNA, imRNA
γm
2

−→ φ, mRNA
�
p

−→ mRNA+ protein, protein
γ p

−→ φ,

(4)
phi
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m

−→ mRNA1

Kγm
eff

−−−→ mRNA2

Kγm
eff

−−−→ · · ·
Kγm

eff
−−−→ mRNAK

Kγm
eff

−−−→ φ,

mRNAi
�
p

−→ mRNAi + protein, i = 1, . . . ,K , protein
γ p

−→ φ,

Table 1  Model parameters and their biological meaning used in all model variations

Parameter Meaning

�
m mRNA production rate

γm mRNA decay rate

�
p Protein translation rate

γ p Protein decay rate

�
m
i mRNA production rate in i-th state

γm
i mRNA decay rate in i-th state

qij mRNA transition rate from state i to j

�
p
i

Protein translation rate in i-th state

γm
eff

Effective mRNA decay rate

K The number of mRNA states
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corresponds to the ageing of an mRNA. For a detailed discussion of these models, we 
refer the reader to Sections The mRNA inactivation loop model and Multiphasic mRNA 
lifetime and also the reference [29].

This paper is structured as follows. The core part of this study is given in Section 
Methods, where the generalised model is introduced in an in-depth analysis of a model-
ling framework. Specifically, in Section Model formulation, a brief review of the classical 
two-stage gene-expression model is given in stochastic settings; the underlying chemical 
master equation (CME) is transformed into a partial differential equation (PDE) for the 
generating function. Then, the main focus of this paper, which is the introduction of a 
generalization of the two-stage model, along with its corresponding CME and PDE, is 
presented. In Section Solution, a power series solution to the PDE is obtained. In Sec-
tion Marginal distributions and moments, not only are the marginal mRNA and protein 
distributions obtained using the non-trivial analytical formula for the generating func-
tion, but the moments of the protein distributions are also determined by utilising facto-
rial cumulants. The protein distribution is thereby recovered. Section Results pertains 
to data analysis, its interpretation, and summarises some of the key results of our math-
ematical analysis. The paper is concluded in Section Conclusions..

Results
The motivation for our mathematical analysis stems from a recent experimental study 
[12] on the influence of RNA stem loops on gene expression noise. Stem loops appear 
when two palindromic sequences on the chain of nucleic acids align and form hydrogen 
bonds. The aligned palindromic sequences then form the “stem” and the nucleic acids 
in between form the “loop” of a stem loop. Another term is “hairpin loop” because of 
resemblance.

The authors of [12] constructed several variants of a gene encoding for a fluorescent 
reporter protein. Although the constructs encode for the same reporter protein, they 
differ in palindromic sequences in the untranslated region at the 5’ end of the gene 
(5’UTR). The formation of a stem loop interferes with translation; the higher the stability 
of a stem loop, the greater the interference; the lower the mean. The authors also show 
that this is associated with an increase in the coefficient of variation (CV).

Previous theoretical studies indicate that different noise metrics can lead to different 
interpretations of the effects of a particular mechanism on gene expression noise. The 
most common are the squared coefficient of variation and the Fano factor defined by

where P stands for the reporter protein and 〈.〉 are the averaging brackets. In Fig. 1, in 
addition to showing the dependence of the CV2 on mean (thus reproducing Fig.  1 of 
[12]), we also show the dependence of F = �P�CV2 on the mean. Notably, decreasing the 
mean (which is associated with greater stem loop stability) decreases the Fano factor.

In order to explain the apparently contradictory interpretations, we fit the classical 
two-stage (transcription-translation) model (1) of gene expression [15, 24]. The model 
is described in full mathematical detail in Section Model formulation. For the purposes 

CV2 =
�P2� − �P�2

�P�2
, F =

�P2� − �P�2

�P�
,
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Fig. 1  Dependence of protein noise on protein mean for different 5’UTR constructs. The yEGFP reporter 
(bottom) and the ymNeonGreen reporter (top) constructs are treated separately. The use of a log-log scale 
is adopted from [12]. The dots give the experimental values taken from [12] (see Table 2). Each dot is a result 
of multiple experiments, and the error bars indicate the standard deviation (SD). These were obtained from 
the standard deviation of the (nonsquared) coefficient of variation by Taylor formula: SDCV2 = 2CVSDCV , 
SDF = �P�SDCV2 . The dashed lines give the linear and hyperbolic dependence of the F and CV2 , respectively, 
which are predicted by the two-stage gene expression model (cf. (5)). The protein translation rate �p and 
the mRNA decay rate γm are being varied to change the mean levels. Note that the use of the log-log scale 
results in a slight curvature of the line (with a nonzero intercept)

Table 2  Protein mean and noise (CV) values for the yEGFP and the ymNeonGreen reporters 
obtained from [12]. The first column denotes distinct constructs that are of different stabilities. For 
instance, the L0 (PTEF1 ) construct is driven by a strong promoter P TEF1 , generating a large abundance 
of protein molecules per cell, whereas P PAB1 is a mid-range promoter. The hyphen symbol denotes 
undetermined values

yEGFP ymNeonGreen

Construct µ CV (%) µ CV (%)

L0 (PTEF1) 1560 11.8 ± 0.5 3050 12.2 ± 0.3

U 526 12.4 ± 0.6 – –

M1Ug 408 13.1 ± 0.6 – –

M3g 226 16.0 ± 0.4 – –

G10 448 12.9 ± 0.5 – –

G14 – – 317 15.4 ± 1.5

M3Wn – – 1143 13.1 ± 0.8

M3n – – 579 13.3 ± 0.5

M3Un – – 377 13.9 ± 0.6

L0 (PPAB1) 288 13.8 ± 0.2 495 13.7 ± 0.4
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of the current section, we mention that it predicts that the stationary protein mean and 
Fano factor of the form

where �m is the mRNA production rate, �p is the protein translation rate, γm and γ p are 
the decay rate constants of mRNA and protein species, respectively. We note that here 
in the expressions for the classical two-stage model, we omit the subscript i on mRNA 
in the generalised model (2) because there is only one mRNA state. Provided that the 
protein is more stable than the mRNA ( γ p ≪ γm ), we can simplify to

Stem loops do not affect the transcription rate �m or the protein stability γ p , but they 
can affect the protein mean through translation rate �p and mRNA decay rate γm . Thus, 
the two-stage model predicts an increasing linear dependence of the Fano factor, and a 
decreasing hyperbolic dependence of the CV2 , on the mean. In Fig. 1, the Fano factor 
data are fit by a straight line using simple linear regression. The slope of the regression 
line corresponds to the fraction �p/γm in (5), which is calculated as 0.0141 and 0.0124 
for the ymNeonGreen and yEGFP reporters, respectively. The regression coefficients are 
reused for the hyperbolic dependence of the CV2 . The fits seem to be satisfactory, lead-
ing us to attribute the changes in the noise to the decrease of mean rather than an active 
control of noise by the stem–loop mechanism. In the same Fig.  1, a reporter of gene 
expression, yeast-enhanced green fluorescent protein (yEGFP), and a monomeric pro-
tein, yellow mNeonGreen (ymNeonGreen), are used to obtain the experimental results.

Let us address the question of noise control by stem–loop formation theoretically. For 
reasons of mathematical elegance, we will introduce a general model that extends the 
classical two-stage model (1) by multiple transcript states in Section Model formulation 
and provide a thorough analysis of the mRNA inactivation model (3) in Sections 
Solution-Marginal distributions and moments. Here we discuss the special case with two 
states, one of them translationally active (without a stem–loop), the other translationally 
inactive (with a stem–loop) (cf. Eq. (3)). This special case is analysed in Section The 
mRNA inactivation loop model. Importantly, we note that our results pertain to this 
special case; therefore, we drop the subscript i on mRNA species (cf. Eqs. (45) and (46)). 
Using standard methods, we derive that the mean is given by

where

gives an effective mRNA decay rate constant. The Fano factor satisfies

�P� =
�
m
�
p

γmγ p
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�
p
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=
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The above equations give the steady-state protein mean and Fano factor as function of 
the model parameters (degradation rate constants γm

1 , γm
2 , γ p of active/inactive mRNA 

and protein; inactivation/activation rate constants q12, q21 ; translation rate constant �p ). 
The formula for the mean implies, in particular, that making the stem–loop more stable 
(i.e. decreasing q21 ) decreases the mean. The noise requires a more subtle analysis, which 
is given below.

In order to compare the protein noise in the current model to that exhibited by the 
classical two-stage model (without the inactivation–activation loop) we define the 
baseline Fano factor as

which can be obtained from (7) by first setting q12 = 0 (no inactivation) and then replac-
ing the mRNA decay rate γm

1  by its effective value (6). Adjusting the mRNA decay rate 
maintains the same species means in the baseline model like in the full model extended 
by the inactivation loop.

The protein variability formulae (7) and (8) can equivalently be expressed in terms of 
the squared coefficient of variation [31, 32] CV2 = F/�P� and CV2

0 = F0/�P� . We find that

(7)F = 1+
�
p

γ p + γm
1 +

q12(γ p+γm
2 )

γ p+γm
2 +q21

.

(8)F0 = 1+
�
p

γ p + γm
eff

= 1+
�
p

γ p + γm
1 +

q12γ
m
2

γm
2 +q21

,

(9)CV2 =
1

�P�
+

1

�M�

γ p

γ p + γm
1 +

q12(γ p+γm
2 )

γ p+γm
2 +q21

,

Fig. 2  Fractional protein noise reduction by the mRNA inactivation loop as function of protein decay and 
mRNA activation rate constants. The colour of the heat map gives the protein noise (the squared coefficient 
of variation) in the two-stage model extended by the mRNA inactivation loop relative to the protein noise in 
a baseline two-stage model without the mRNA inactivation loop (adjusting the mRNA decay rate to obtain 
the same species means). The mRNA mean is set to �M� = 10 , and protein mean is �P� = 500 . The mRNA 
decay rate is set to γm

1
= 1 without loss of generality; the inactive mRNA decay rate is either the same as 

that of active mRNA ( γm
2

= 1 ; left panel) or set to zero ( γm
2

= 0 ; right panel). The inactivation rate constant is 
q12 = 3
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where �M� = �
m/γm

eff is the mean value of the activated mRNA.
Comparing (9) to (10), we see that CV2 < CV2

0 , allowing us to conclude that the 
inclusion of the mRNA inactivation loop decreases protein noise. The key ingredient 
that distinguishes (9) from (10) is the Michaelis-Menten-type term in the denominator 
that involves the protein decay rate γ p , the mRNA activation rate q21 and the inactive 
mRNA decay rate γm

2  . Figure 2 explores the dependence of the fractional protein noise 
reduction CV2/CV2

0 on these parameters. Without loss of generality, the active mRNA 
decay rate is set to one, and two plausible alternatives are considered for the decay of 
the inactive mRNA molecule: one, imRNA is unstable, decaying with the same rate 
as mRNA (left panel of Fig. 2); two, imRNA is stable, i.e. protected from degradation, 
and does not decay (right panel of Fig.  2). We observe qualitatively different noise 
reduction patterns for the two alternatives. For an unstable imRNA, there is an optimal 
combination of mRNA activation and protein decay rate constants that minimise the 
protein noise (Fig. 2, left panel). We observe that the optimal values are both greater than 
the unit value of the mRNA decay rate. This requirement runs counter to the biological 
evidence that proteins are typically more stable than mRNAs. The maximal reduction 
of noise is moderate (around 15% for the chosen parameter set). For a stable imRNA, 
the optimum is approached by making the mRNA activation as slow as possible (Fig. 2, 
right panel). The optimal value of protein decay rate constant is then less than that of the 
active mRNA, and the maximal reduction of noise is more pronounced (around 60% for 
the chosen parameter set).

Our analysis goes beyond the first and second moments (means and variances). In par-
ticular, for the mRNA inactivation loop model (3), we show that its steady state distribu-
tion is generated by Taylor-expanding the explicit function

The conjugate variables x1 , x2 , and z correspond to mRNA, imRNA, and protein species, 
respectively. Parameters r1 , r2 , and τ are parameter groupings defined by (53) and (55), 
respectively. The symbol 2F2 stands for

(10)CV2
0 =

1

�P�
+

1

�M�

γ p

γ p + γm
1 +

q12γ
m
2

γm
2 +q21

,
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



�
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�
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�
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which is the generalised hypergeometric function [33].
Our mathematical analysis thus provides a complete characterisation of the steady 

state distribution in the mRNA inactivation model in particular (as well as the 
generalised model in general), and extends the generating function result previously 
given for the two stage model in [18].

Conclusions
In this paper, we formulated and analysed a structuration/generalisation of the two-stage 
gene expression model in terms of having multiple mRNA states. Unlike the classical 
two-stage model, the generalised model considers multiple mRNA states, among which 
mRNA molecules are assumed to be transitioning at constant rates. Additionally, we 
demonstrated that the generalised model can be used to capture the dynamics of simpler 
models such as the inactivation loop model and the multiphasic mRNA model, which 
were analysed in detail as a particular interest of this paper.

We first introduced the corresponding chemical reaction system describing the 
generalised model and its mathematical description given by the CME. Then, we focused 
on seeking a solution to the corresponding PDE, which is obtained by transforming 
the CME using the generating function approach. A suitable ansatz was employed for 
converting the PDE to a system of ODEs. Subsequently, using the power series method, 
we sought a solution to the ODE system, which is then expressed in matrix form as a 
system of recurrence equations. We recovered the generating function of the stationary 
distribution of mRNA and protein amounts by means of the coefficients of power series, 
which are obtained by solving the recurrence relations under the initial conditions.

Furthermore, the sought-after solution was then used to characterise the marginal 
protein and mRNA distributions. To determine the protein distribution, we used the 
factorial moments, which are calculated from the factorial cumulants. Additionally, 
we demonstrated that the mRNA distributions are Poissonian. Obtaining a Poisson 
distribution is evident for any monomolecular chemical reaction system [34]; therefore, 
we derived the protein mean and Fano factor and thus expressed it in terms of the 
first two factorial moments. We then provided two different examples to which the 
generalised model and its results can be applied.

The first example concerns the inactivation loop model. We demonstrated that 
integrating the mRNA inactivation loop into the classical two-stage framework for 
gene expression results in reduced values of protein noise. Nevertheless, we note that 
certain conditions on the parameter rates must be met to obtain a significant protein 
noise reduction. These constraints take different forms depending on the interaction 
between the mRNA form and the mRNA degradation pathway. The first option is that 
the formation of the inactivation loop does not interfere with degradation, meaning 
that the inactive form degrades with the same rate constant as the active form. The 
second option is that the formation of the loop interferes with degradation so that its 
instantaneous degradation rate becomes zero. In both cases, protein stability must be 

pFq

(

a1, . . . , ap
b1, . . . , bq

; z̃

)

=

∞
∑

n=0

(a1)n . . .
(
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)

n

(b1)n . . .
(

bq
)

n
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optimally chosen to maximise noise reduction; the protein can be neither too stable nor 
too unstable. However, if inactive mRNAs are subject to degradation, noise reduction is 
optimised for relatively low protein stabilities, whereas if inactive mRNAs are protected 
from degradation, noise reduction is optimised for more realistic, larger values of 
protein stabilities. For inactive mRNAs that do not degrade, optimal noise reduction 
requires low mRNA activation rates, whereas relatively fast rates of activation optimise 
noise reduction if inactive mRNAs degrade. Generally, the stability of the inactive 
mRNA form sustains greater reductions of protein noise for wider and more realistic 
parameter values. Overall, the noise analysis suggests that the mRNA inactivation 
loop may play a role in controlling gene expression noise, while also highlighting the 
limitations of its effect. It is worth noting that one can also compare the protein variance 
between the extended and canonical two-stage models using the mRNA autocovariance 
function [35]. The approach taken in this work has an additional advantage that we 
present a notably non-trivial distribution for protein, which is expressed in terms of the 
generalised hypergeometric series and is employed to obtain a recursive expression for 
the protein probability mass function.

As a second example, by making suitable parameter choices in the generalised model, 
we presented the multiphasic model in which an mRNA molecule is assumed to be 
transitioning through its lifetime stages. The solution obtained for the generalised model 
and the associated matrices (e.g., the transition matrix) were used to determine the first 
two moments of mRNA distributions, which allowed us to calculate the Fano factor for 
the multiphasic model.

We provided a biological example of the formation of RNA stem loops and performed 
data analysis to explain the influence of stem-loop structure on gene expression noise. 
Specifically, we based our extensive mathematical analysis on the two standard noise 
metrics: the CV2 and the Fano factor. By doing so, our calculations allowed us to conclude 
that noise in gene expression can be reduced if stem loops restrict translation.

In summary, the paper provides a systematic mathematical analysis for protein–mRNA 
interactions in a structured gene expression model. We believe that the model and its 
results can be used in understanding the dynamics of underlying biochemical processes.

Methods
Model formulation

For the two-stage gene expression model (1), the probability pm,n(t) of observing m mRNA 
and n protein molecules at time t satisfies the CME

subject to initial condition

where δi,j represents the Kronecker delta symbol, which is one if i = j and zero otherwise; 
m0 and n0 are the initial mRNA and protein amounts, respectively.

(11)
d

dt
pm,n =�

m(pm−1,n − pm,n)+ γm((m+ 1)pm+1,n −mpm,n)

+ �
pm(pm,n−1 − pm,n)+ γ p((n+ 1)pm,n+1 − npm,n),

pm,n(0) = δm,m0δn,n0 ,
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Our aim is to obtain a PDE rather than working with the CME (11). To this end, we intro-
duce the probability generating function defined by

Multiplying the CME (11) by the factor xmyn and summing over all m and n, and using 
(12), we arrive at the generating function which satisfies the linear first-order PDE

Equation (13) has been used in [24] to derive mRNA and protein moments; it has been 
solved at steady state in [18]. Here we shall derive and study a generalisation of (13).

Without loss of generality, for the generalised model (2), the probability P(m, n, t) of 
observing m1 mRNA copies in state 1, m2 mRNA copies in state 2, and so on, at given time t 
satisfies the following CME,

where m =
[

m1 m2 m3 . . . mK

]

 is a vector of species copy numbers. Note that the 
step operator [36] Ei in (14) is in the variable mi , whereas EK+1 is in the variable n; 
EiE

−1
j − 1 = 0 for i = j.

The multivariate probability generating function is given by

where x =
[

x1 x2 x3 . . . xK
]

 . Multiplying (14) by xm1
1 x

m2
2 . . . x

mK
K yn and summing over 

all m1,m2, . . . ,mK , n , and employing (15), we arrive at the PDE

Note that the step operators E±1
i  in (14) coincide with the variables x∓1

i  while the copy 
number of species mi correspond to the terms xi∂xi in (16) for the generating function. In 
the next section, we will seek a solution to the PDE (16).

Solution

In this section, we shall provide a step-by-step breakdown of our solution method for 
solving the PDE (16). We are interested in the steady state; therefore, we set the time 
derivative in (16) to zero and rearrange the resulting equation to obtain

(12)G(x, y, t) =
∑

m

∑

n

xmynpm,n(t).

(13)
∂G

∂t
= (γm(1− x)+ �

px(y− 1))
∂G

∂x
+ γ p(1− y)

∂G

∂y
+ �

m(x − 1)G.

(14)

dP(m, n, t)

dt
=

K
�

i=1



�
m
i (E

−1
i − 1)P + γm

i (Ei − 1)miP +

K
�

j=1

qij(EiE
−1
j − 1)

×miP + �
p
i (E

−1
K+1 − 1)miP

�

+ γ p(EK+1 − 1)nP,

(15)G(x, y, t) =
∑

m1

· · ·
∑

mK

∑

n

P(m, n, t)x
m1
1 x

m2
2 · · · x

mK
K yn,

(16)

∂G(x, y, t)

∂t
=

K
�

i=1



�
m
i (xi − 1)G + γm

i (1− xi)
∂G

∂xi
+

K
�

j=1

qij(xj − xi)
∂G

∂xi

+ �
p
i (y− 1)xi

∂G

∂xi

�

+ γ p(1− y)
∂G

∂y
.
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for the time-independent generating function G(x, y) of the stationary distribution. The 
probability normalisation condition translates to G(1, . . . , 1) = 1 . Changing the variables 
according to

allows us to transform (17) into

which is subject to the normalisation condition

Below, we focus on seeking a solution to (19)–(20) using a suitable ansatz.
Let us first consider that the solution is of the form

With this in mind, we obtain from (21) that

Inserting the partial derivatives (22) into (19), we get

Equation (23) can be rewritten as

In order that (24) hold, we must necessarily have

(17)

K
�

i=1



�
m
i (xi − 1)G +



γm
i (1− xi)+

K
�

j=1

qij(xj − xi)+ �
p
i (y− 1)xi





∂G

∂xi



+ γ p(1− y)
∂G

∂y
= 0

(18)xi = 1+ ui, y = 1+ v, G = exp(ϕ)

(19)
K
�

i=1



�
m
i ui +



�
p
i v(1+ ui)− γm

i ui +

K
�

j=1

qij(uj − ui)





∂ϕ

∂ui



 = γ pv
∂ϕ

∂v
,

(20)ϕ(0) = 0.

(21)ϕ(u1,u2,u3, . . . ,uK , v) = ϕ0(v)+ u1ϕ1(v)+ . . .+ uKϕK (v).

(22)
∂ϕ

∂ui
= ϕi(v),

∂ϕ

∂v
= ϕ′

0(v)+ u1ϕ
′
1(v)+ . . .+ uKϕ

′
K (v).

(23)

K
�

i=1



�
m
i ui +



�
p
i v(1+ ui)− γm

i ui +

K
�

j=1

qij(uj − ui)



ϕi − γ pvuiϕ
′
i





= γ pvϕ′
0.

(24)

�

γ pϕ′
0 −

K
�

i=1

�
p
i ϕi

�

ν +

K
�

i=1



γ pvϕ′
i +



γm
i − �

p
i ν +

K
�

j=1

qij



ϕi −

K
�

j=1

qjiϕj − �
m
i



ui = 0.

(25)
K
∑

i=1

�
p
i ϕi − γ pϕ′

0 = 0,

(26)γ pvϕ′
i +



γm
i − �

p
i v +

K
�

j=1

qij



ϕi −

K
�

j=1

qjiϕj = �
m
i .
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Thus far, we have converted the system of PDEs (17) into the system of ODEs (25)–(26). 
Next, we provide a detailed explanation of solving this system using the power series 
method.

Let us assume that the functions ϕ0 and ϕi are of the power series form, i.e.,

for i ∈ {1, . . . ,K } . Differentiating (27) term by term we get

Inserting (27) and (28) into (26), and collecting same powers of v, we obtain the following 
system of recurrence relations

for the coefficients b(i)n  , where i = 1, . . . ,K  . For the sake of simplicity, equations (29) can 
be rewritten in matrix form as

where I is the identity matrix and the vector Xn is defined as

In (30), A is a K × K  matrix defined by

Q is a K × K  matrix defined by

and B is a K × K  matrix defined by

In order to solve the recurrence relations (30) initial conditions are needed. These can 
be obtained from (26) by setting v = 0 for each i ∈ {1, 2, . . . ,K } . The resulting system of 
linear equations is given in matrix form as

(27)ϕ0(v) =

∞
∑

n=0

anv
n, ϕi(v) =

∞
∑

n=0

b(i)n vn

(28)ϕ′
0(v) =

∞
∑

n=1

nanv
n−1, ϕ′

i(v) =

∞
∑

n=1

nb(i)n vn−1.

(29)



γm
i +

K
�

j=1

qij + nγ p



b(i)n −

K
�

j=1

qjib
(j)
n = �

p
i b

(i)
n−1

(30)(A −Q⊤ + nγ pI)Xn = BXn−1, n ≥ 1,

Xn =
[

b
(1)
n , b

(2)
n , b

(3)
n , . . . , b

(K )
n

]⊤
.

(31)Aij :=

{

γm
i for i = j,

0 for i �= j,

(32)Qij :=

{

−
∑

k �=i

qik for i = j,

qij for i �= j,

(33)Bij :=

{

�
p
i for i = j,

0 for i �= j.

(34)(A −Q⊤)X0 = C ,
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where C is a column vector defined as C =
[

�
m
1 �

m
2 . . . �mK

]⊤.
Solving the system of algebraic equations (30) under the initial conditions (34) yields 

the terms of b(i)n  ; the sequence an can be obtained by substituting (27) and (28) into (25) 
and collecting same powers of v. By doing so, we get

Note that the normalisation condition (20) implies that a0 = ϕ0(0) = ϕ(0) = 0 . Having 
found the sequences an and b(i)n  , we combine (21) and (27) to obtain

We return to the original variables in (36) via (18) to obtain the generating function of 
the stationary distribution of mRNA and protein amounts, which is given by

Equation (37) provides the sought-after steady-state solution to the PDE (16) and will be 
used in the following section.

Marginal distributions and moments

In this section, we use the analytical formula for the generating function (37) to obtain 
marginal mRNA distributions. We determine the moments of the protein distribution 
by way of the factorial cumulants, which allow us to recover the protein distribution. 
Additionally, we derive the protein Fano factor (variance-to-mean ratio) and express it in 
terms of the first two factorial moments.

Marginal mRNA distributions In the generating function (37), if we take y = 1 , then we 
obtain the marginal mRNA distributions as

from which we conclude that the steady state mRNA distributions are independent 
Poissons with means

Marginal protein distribution Likewise, by inserting xi = 1 ( i = 1, . . . ,K  ) into (37), we 
can recover the generating function of the marginal protein distribution

where 1 is a K-dimensional row vector of ones.

(35)an =
1

nγ p

K
∑

i=1

�
p
i b

(i)
n−1, n ≥ 1.

(36)ϕ(u, v) =

∞
∑

n=1

anu
n +

K
∑

i=1

vi

∞
∑

n=0

b(i)n un.

(37)G(x, y) = exp

(

∞
∑

n=1

an(y− 1)n +

K
∑

i=1

(xi − 1)

∞
∑

n=0

b(i)n (y− 1)n

)

.

(38)Gm(x) = G(x, 1) = exp

(

K
∑

i=1

b
(i)
0 (xi − 1)

)

=

K
∏

i=1

exp
(

b
(i)
0 (xi − 1)

)

,

�mi� = b
(i)
0 .

(39)G(y) = G(1, y) = exp

(

∞
∑

n=1

an(y− 1)n

)

,
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Next, we determine the moments of the protein distributions. The factorial (combinato-
rial) moments hn are obtained by expanding the generating function into a power series 
around y = 1:

We aim to calculate the factorial moments hn by way of the factorial cumulants an . To 
that end, we first differentiate (39) to obtain

where D denotes the differential operator d/dy . Then, taking the (n− 1) th derivative of 
(40), we get

which can be recast as

Evaluating (41) at y = 1 gives the factorial moments of the protein distribution

where h0 = 1 . The terms of hn can be recursively obtained by inserting (35) into (42). 
Subsequently, by employing the recurrence method proposed in [37], we recover the 
protein distribution

where (x)n , n being a nonnegative integer, denotes the rising factorial or namely 
Pochhammer symbol.

Moments Clearly, the mRNA distributions in (38) are Poissonian. Therefore, mRNA Fano 
factor is equal to 1. The protein mean and Fano factor can be derived from the factorial 
moments (42). The first two factorial moments are given by

respectively. The Fano factor,

is thus expressed in terms of the first two factorial cumulants a1 and a2.

G(y) =

∞
∑

n=0

hn(y− 1)n.

(40)DG(y) = G(y)D lnG(y),

DnG(y) =

n−1
∑

i=0

(

n− 1
i

)

DiG(y)Dn−i ln G(y),

(41)
DnG(y)

n!
=

n−1
∑

i=0

(

1−
i

n

)

DiG(y)

i!

Dn−i(ln G(y))

(n− i)!
.

(42)hn =

n−1
∑

i=0

(

1−
i

n

)

an−ihi, for n ≥ 1,

p(n) =

∞
∑

j=1

(j + 1)n

n!
hn+j(−1)j ,

(43)�n� = h1 = a1 and �n(n− 1)� = 2h2 = 2a2 + a21,

(44)F =
�n2�

�n�
− �n� =

�n(n − 1)�

�n�
+ 1− �n� =

2a2

a1
+ 1,
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The mRNA inactivation loop model

In this section, we present a particular example of the generalised model (2), which 
we refer to as the inactivation loop model, whose reaction scheme is given by (3). 
Specifically, we provide an explicit representation of the stationary solution using the 
cumulants. Furthermore, we calculate the steady-state protein Fano factor and express 
it as a function of the model parameters. Let us note that a possible biological scenario 
that can implement this model is by a regulatory RNA that temporarily blocks mRNA 
function [38].

The inactivation loop model (3) can be readily obtained from the generalised model (2) 
by taking K = 2 , which accounts for only two mRNA states denoting the active mRNA 
state m1 and the inactive mRNA state m2 . In what follows, we assume that a newly 
produced mRNA is active, i.e. that the transcription rate satisfies

Additionally, we assume that proteins are translated only from an active mRNA, so that 
we have

for the translation rate. Here, δi,j denotes the Kronecker delta symbol. Cumulants We 
aim to recover expressions for the inactivation loop model from the generalised model. 
The system of algebraic equations for this model follows from (34), taking the form of

from which we recover

Combining (47) with (39) we find

where

is the effective rate of mRNA decay. The recurrence relations (30) read

(45)�
m
i = �

mδi,1, for i = 1, 2.

(46)�
p
i = �

pδi,1, for i = 1, 2,

(γm
1 + q12)b

(1)
0 − q21b

(2)
0 = �

m,

(γm
2 + q21)b

(2)
0 − q12b

(1)
0 = 0,

(47)b
(1)
0 =

�
m(γm

2 + q21)

(γm
1 + q12)(γ

m
2 + q21)− q12q21

.

�m1� =
�
m

γm
eff

,

(48)γm
eff = γm

1 +
q12γ

m
2

γm
2 + q21

(49)(γm
1 + q12 + nγ p)b(1)n − �

pb
(1)
n−1 − q21b

(2)
n = 0,
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for n ≥ 1 . Solving the algebraic system (49)–(50) in b(1)n  yields

which is a recursive expression whose first term (i.e. zeroth) is given by (47).
Explicit representation The recursive formula (51) can further be simplified by 

factorising its denominator as

where

are the opposite numbers to the roots of the quadratic in the denominator of (51). The 
sequence (52) can be rewritten as

where

and (x)n represents the rising factorial. Thus, an can be obtained from (35) as

Inserting (54) into (56) gives

and, similarly, inserting (54) into (50) gives

(50)(γm
2 + q21 + nγ p)b(2)n − q12b

(1)
n = 0,

(51)b(1)n =
�
p(γm

2 + q21 + nγ p)

γ p2n2 + γ p(γm
2 + γm

1 + q21 + q12)n+ γm
2 γm

1 + γm
1 q21 + γm

2 q12
b
(1)
n−1,

(52)b(1)n = �
p γm

2 + q21 + nγ p

γ p2(n+ r1)(n+ r2)
b
(1)
n−1 for n ≥ 1,

(53)r1,2 =
γm
1 + q12 + γm

2 + q21 ±
√

(γm
2 + q21 − γm

1 − q12)2 + 4q21q12

2γ p

(54)b(1)n =
�
m(1+ τ )n

γm
eff (1+ r1)n(1+ r2)n

(

�
p

γ p

)n

, n ≥ 1,

(55)τ =
γm
2 + q21

γ p
,

(56)an =
�
p

nγ p
b
(1)
n−1, n ≥ 1.

(57)an =
�
mr1r2

γm
eff τ

(τ )n

n(r1)n(r2)n

(

�
p

γ p

)n

, n ≥ 1,

(58)b(2)n =
q12�

m(τ )n

γm
eff (γ

m
2 + q21)(1+ r1)n(1+ r2)n

(

�
p

γ p

)n

, n ≥ 1.
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Substituting (54), (57), and (58) into (37), we obtain an explicit representation of the 
stationary solution

where

is the generalised hypergeometric function [33]. Furthermore, combining (47) and (56) 
yields an equivalent expression

for the protein mean given by (43) in terms of the model parameters. Likewise, 
substituting (56) and (51) into (44) and simplifying gives

for the steady-state protein Fano factor as function of the model parameters.

Multiphasic mRNA lifetime

In this section, we consider that mRNA molecules posses K > 2 stages of their lifetime, 
where the transition rates correspond to the ageing of an mRNA molecule. The chemical 
reaction system for this multiphasic model was given in (4). We note that kinetic proof 
reading cascades can be an interesting application of our multiphasic model [39].

By (4), there are K stages of an mRNA’s molecule lifetime, each of which lasts 
1/Kγm

eff  on average. The total mRNA lifetime is then 1/γm
eff  ; γm

eff  is thereby interpreted 
as the effective mRNA decay rate. The multiphasic mRNA decay in K steps leads to 
an Erlang-distributed lifetime with mean 1/γm

eff  and variance 1/(γm
eff )

2 , whereas the 
lifetime distribution is exponential in the standard model (1).

The multiphasic model (4) can be obtained by making the following choices in the 
general model statement (2):

and

G(x1, x2, z) = exp





�
m
�
p

γm
eff γ

p

z
�

1

2F2

�

1, 1+ τ

1+ r1, 1+ r2
;
�
p

γ p
(s − 1)

�

ds

+
�
m(x1 − 1)

γm
eff

2F2

�

1, 1+ τ

1+ r1, 1+ r2
;
�
p

γ p
(z − 1)

�

+
q12�

m(x2 − 1)

γm
eff

�

γm
2 + q21

� 2F2

�

1, τ
1+ r1, 1+ r2

;
�
p

γ p
(z − 1)

�

�

,

pFq

(

a1, . . . , ap
b1, . . . , bq , . . .

; z̃

)

=

∞
∑

n=0

(a1)n . . .
(

ap
)

n

(b1)n . . .
(

bq
)

n

z̃n

n!

�n� =
�
p
�
m(γm

2 + q21)

γ p((γm
1 + q12)(γ

m
2 + q21)− q12q21)

=
�
p
�
m

γ pγm
eff

(59)F = 1+
b
(1)
n

b
(0)
n

= 1+
�
p

γ p + γm
1 +

q12(γ p+γm
2 )

γ p+γm
2 +q21

�
m
i =

{

�
m for i = 1,

0 for i �= 1,
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The transition matrix Q (32) for the multiphasic model takes the form of

and the matrix A (31) is given by

Inserting (61) and (60) into (34), we obtain the system of recurrence equations

from which, upon taking the i-th row of (62) and solving the recursive equations

where b(1)0 = �
m/Kγm

eff , we recover

Formula (63) gives the mean of mRNA molecule in the i-th state of its lifetime. Note that 
the matrix B (33) takes the form of B = �

pI , where I is the identity matrix.
Having found the first moments (i.e. means) (63), we then determine the second 

moments. Taking n = 1 in (30), we have

γm
i =

{

Kγm
eff if i = K ,

0 otherwise.

(60)Q = Kγm
eff













−1 1
−1 1

. . .
. . .

−1 1
0













,

(61)A = Kγm
eff













0
0
. . .

0
1













.

(62)Kγm
eff

















1
−1 1

−1
. . .

. . . 1
−1 1







































b
(1)
0

b
(2)
0
...

b
(i)
0
...

b
(K )
0























=



















�
m

0
...
0
...
0



















,

−Kγm
effb

(i−1)
0 + Kγm

effb
(i)
0 = 0, for 2 ≤ i ≤ K ,

(63)b
(i)
0 =

�
m

Kγm
eff

.

(64)

















Kγm
eff + γ p

−Kγm
eff Kγm

eff + γ p

−Kγm
eff

. . .

. . . Kγm
eff + γ p

−Kγm
eff Kγm

eff + γ p







































b
(1)
1

b
(2)
1
...

b
(i)
1
...

b
(K )
1























=
�
p
�
m

Kγm
eff



















1
1
...
1
...
1



















,
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from which we obtain the first term of the sequence b(i)1  as

Equation (64) implies that

which can equivalently be rewritten as

where we set

for simplicity. Combining (66) and (65), we obtain

from which all the elements of b(i)1  (thereby the second moments) can be iteratively 
obtained. It is worth noting that one can derive higher moments using formula (30), but 
we limit our study to the first two moments.

Next, we focus on calculating the first two terms of the sequence an (35). Setting 
n = 1, 2 in (35) and inserting (63) and (68) into the resulting equations, respectively, we 
get

Having found the first two terms of an , we are now ready to calculate the Fano factor. 
Inserting (69) into (44), and substituting (65) and (67) into the resulting expression yields

where Fm stands for the multiphasic Fano factor.
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(
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.
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(
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