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Abstract 

Background Stepped-wedge cluster trials (SW-CTs) describe a cluster trial design where treatment rollout is stag-
gered over the course of the trial. Clusters are commonly randomized to receive treatment beginning at different time 
points in this study design (commonly referred to as a Stepped-wedge cluster randomized trial; SW-CRT), but they 
can also be non-randomized. Trials with this design regularly have a low number of clusters and can be vulnerable 
to covariate imbalance. To address such covariate imbalance, previous work has examined covariate-constrained 
randomization and analysis adjustment for imbalanced covariates in mixed-effects models. These methods require 
the imbalanced covariate to always be known and measured. In contrast, the fixed-effects model automatically 
adjusts for all imbalanced time-invariant covariates, both measured and unmeasured, and has been implicated 
to have proper type I error control in SW-CTs with a small number of clusters and binary outcomes.

Methods We present a simulation study comparing the performance of the fixed-effects model against the mixed-
effects model in randomized and non-randomized SW-CTs with small numbers of clusters and continuous outcomes. 
Additionally, we compare these models in scenarios with cluster-level covariate imbalances or confounding.

Results We found that the mixed-effects model can have low coverage probabilities and inflated type I error rates 
in SW-CTs with continuous outcomes, especially with a small number of clusters or when the ICC is low. Further-
more, mixed-effects models with a Satterthwaite or Kenward-Roger small sample correction can still result in inflated 
or overly conservative type I error rates, respectively. In contrast, the fixed-effects model consistently produced 
the target level of coverage probability and type I error rates without dramatically compromising power. Furthermore, 
the fixed-effects model was able to automatically account for all time-invariant cluster-level covariate imbalances 
and confounding to robustly yield unbiased estimates.

Conclusions We recommend the fixed-effects model for robust analysis of SW-CTs with a small number of clusters 
and continuous outcomes, due to its proper type I error control and ability to automatically adjust for all potential 
imbalanced time-invariant cluster-level covariates and confounders.
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Background
The cluster randomized trial (CRT) is a useful alterna-
tive to the individually randomized controlled trial where 
clusters of individuals, rather than the individuals them-
selves, are randomized to receive the intervention [1, 2]. 
CRTs are often used when the intervention needs to be 
administered at the cluster-level or when there is a risk of 
contamination between intervention groups.

CRTs with a low number of randomized clusters can be 
vulnerable to covariate imbalance. Such covariate imbal-
ance can lead to biased intervention effect estimates, 
inflated standard errors, and reduced power for the inter-
vention effect in both parallel cluster randomized trials 
(P-CRTs) [3] and stepped-wedge cluster randomized tri-
als (SW-CRTs) [4]. In this article, we will focus on meth-
ods to address cluster-level, between-sequence, baseline 
covariate imbalance in stepped-wedge designs [5].

Both P-CRTs and SW-CRTs are often analyzed with a 
mixed-effects model, which specifies cluster intercepts 
as random effects [6]. The mixed-effects model relies on 
randomization to control for known and unknown con-
founders. However, the benefits of randomization may be 
lost when the number of clusters is small [7, 8]. Due to 
real-world constraints, it is not uncommon for SW-CRTs 
to have low numbers of clusters [5, 9]; in 2016, Barker 
et al. reported around 20% of SW-CRT studies had 5 or 
fewer clusters [9]. Previous papers have examined covar-
iate-constrained randomization and or adjustment for 
imbalanced covariates in mixed-effects models of P-CRTs 
[3, 10–12] and SW-CRTs [4, 5, 13] to alleviate the nega-
tive influences of covariate imbalance. However, these 
methods require the imbalanced covariate to always be 
known and measured, which may not always be practi-
cal. For example, in SW-CRTs where clusters are hospital 
wards, patient attribute data is often collected. However, 
data on the attributes (such as attitude, abilities, and gen-
eral practice habits) of clinicians administering the inter-
vention may not always be collected and can lead to an 
imbalance in patient outcomes between clusters [14].

Furthermore, beyond cluster-level covariate imbal-
ance, there may also be scenarios in stepped-wedge 
designs where cluster-level confounding exists. In 
practice, non-randomized stepped-wedge trials have 
been implemented to evaluate the effects of a multi-
component knowledge translation intervention [15], a 
mammography intervention [16], evidence-based qual-
ity improvement interventions [17], and a prospective 
frontline surveillance system [18]. To clarify, in such 
scenarios, it may be a misnomer to refer to such trials as 
“stepped-wedge cluster randomized trials” as randomiza-
tion is not implemented. From here on, we will broadly 
refer to these designs (both randomized and non-rand-
omized) as “stepped-wedge cluster trials” (SW-CTs), with 

SW-CRTs specifically referring to SW-CTs with cluster 
randomization.

As an alternative to the mixed-effects model, we can 
instead specify cluster intercepts as fixed dummy vari-
ables using a fixed-effects model to analyze data collected 
from a SW-CT [19, 20]. Previous SW-CT studies have 
used the fixed-effects model, citing difficulties that arise 
from a small number of clusters [21, 22], practical and 
logistical issues that prevented randomization [15], and 
concerns over confounding between clusters and out-
comes [23]. Fixed-effects models are commonly under-
stood to “make within-unit comparisons” and adjust for 
all unit-level covariates and confounding [24, 25]. In this 
context with clustered trial designs, these “units” specifi-
cally refer to the clusters. Accordingly, in the analysis of 
SW-CTs, the fixed-effects model is expected to automati-
cally adjust for all imbalanced time-invariant cluster-level 
covariates, both measured and unmeasured. However, 
previous work on covariate imbalance in SW-CRTs has 
neglected to evaluate the fixed-effects model as a poten-
tial alternative method [4, 5, 13]. Furthermore, the extent 
to which the fixed-effects model can control for cluster-
level confounding in SW-CTs, as compared to mixed-
effects models, has not been explicitly demonstrated.

Furthermore, the mixed-effects model can have inflated 
type I error rates and overly narrow confidence intervals 
in P-CRTs with a small number of clusters [26, 27]. Nota-
bly, these issues can be largely resolved in mixed-effects 
model analyses of P-CRTs by including a Satterthwaite 
or Kenward–Roger small sample correction [27]. We will 
explore how these small sample corrections perform in 
the mixed-effects model analyses of SW-CTs.

Similar inflated type I errors have been previously 
observed when using the mixed-effects model in the 
analysis of SW-CTs with a small number of clusters and 
binary outcomes [28]. This inflated type I error rate was 
not observed in the fixed-effects model analysis of SW-
CTs with binary outcomes, making it an attractive alter-
native [28]. However, these results have not yet been 
extended to SW-CTs with continuous outcomes, nor has 
the fixed-effects model been compared to the mixed-
effects model with small sample corrections in the con-
text of SW-CTs. Fixed-effects models using unit-level (in 
this case cluster-level) dummy variables have been previ-
ously demonstrated to differ in properties between analy-
ses with binary or continuous outcomes [24]. Famously, 
Robinson and Jewell demonstrated that the precision gain 
resulting from covariate adjustment differed between 
analyses with continuous outcomes (using a linear link 
function) and with binary outcomes (using a logistic link 
function) [29]. Accordingly, we aim to fill gaps in the 
literature regarding the application of the fixed-effects 
model to SW-CTs with continuous outcomes.
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Overall, the use of the fixed-effects model is a depar-
ture from the status quo in the analysis of SW-CTs and 
additional considerations must be made when using it. 
Broadly, the standard mixed-effects model induces an 
exchangeable correlation structure by including a cluster 
random intercept in the analysis [6]. Unlike correspond-
ing analyses but excluding the cluster random intercept 
(sometimes referred to as an independence estimating 
Eq. [30, 31]), this cluster random intercept in a mixed-
effects model adjusts for the between-cluster variance 
which is equivalent to the covariance between obser-
vations within the same cluster [6, 24]. Unlike an inde-
pendence estimating equation, the fixed-effects model 
adjusts for the covariance between observations within 
the same cluster by capturing it in the cluster fixed effect 
terms [24]. Subsequently, observations within clusters are 
considered conditionally independent in a fixed-effects 
model after conditioning on a given cluster fixed inter-
cept, as is also the case in a mixed-effects model after 
conditioning on a given cluster random intercept (Addi-
tional File 1.i). Indeed, Mundlak [32] made the argument 
that the fixed-effects model can be interpreted as the 
more generalized form of the mixed-effects model with 
fewer model assumptions [24, 32, 33].

Since the between-cluster variance is explicitly con-
trolled for by the cluster fixed intercepts, the fixed-effects 
model does not automatically provide an estimate of the 
between-cluster variance (like the mixed-effects model) 
which can complicate the estimation of the intracluster 
correlation (ICC) [34]. Notably, the CONSORT exten-
sion to SW-CRTs suggests including estimates of the ICC 
when reporting results to help inform future studies [35]. 
Accordingly, we will describe alternative ways to estimate 
the ICC, even while using a fixed-effects model, by esti-
mating the ICC in a separate step from the analysis of the 
treatment effect.

In this article, we present a simulation study to com-
pare the performance of the fixed-effects model against 
the mixed-effects model in the analyses of cross-sec-
tional SW-CTs with small numbers of clusters, continu-
ous outcomes, cluster-level covariate imbalances, and 
cluster-level confounding. In doing so, we aim to address 
notable gaps in the SW-CT literature (i.) concerning 
the performance of the fixed-effects model in control-
ling for inflated type I error rates in trials with continu-
ous outcomes and (ii.) by explicitly demonstrating the 
fixed-effects model’s ability to automatically adjust for 
all time-invariant cluster-level covariate imbalance and 
confounding. Additionally, we address misconceptions 
regarding the inferential target for the mixed-effects and 
fixed-effects models. In Section "Methods", we describe 
the simulation data-generating process (DGP), ana-
lytic models of interest, and the simulation scenarios. In 

Section "Results", we present and discuss the simulation 
results. In Sections "Discussion" and "Conclusion", we 
end with some concluding remarks.

Methods
Data simulation
We will simulate cross-sectional SW-CT data with contin-
uous outcomes, an exchangeable correlation structure, and 
an additional time-invariant binary covariate [3, 4, 36]:

Equation 1

where Yijk is the continuous outcome for individual k
(k = 1, ..., nij)  in cluster i (i = 1, . . . , I) at period j

(j = 1, . . . , J ) . φj is the J  fixed effects for each period. Xij is 
the indicator for the intervention effect δ in each cluster-
period cell. We also include an additional time-invariant 
cluster-level binary covariate Ci with covariate effect ξ. αi 
is the normally distributed random intercept for 
the  ith  cluster, representing the culminative effect of all 
unmeasured cluster-level covariates. eijk is the residual 
independent of αi . The cluster random intercept αi 
accordingly induces an intracluster correlation coefficient 
ICC =

τ 2α
τ 2α+σ 2

w
 between individual outcomes within the 

same cluster.

Simulation scenarios
In 2016, Barker et  al. reported around 20% of SW-CT 
studies had five or fewer clusters [9]. A 2023 review of 
published SW-CT studies by Nevins et al. reported that 
the median number of cross-over sequences was 5 with 
the majority of studies randomizing 1 cluster to each 
sequence [5]. Accordingly, we simulated small SW-CT 
designs with 3, 4, 5, 6 and 10 sequences, with 1 cluster in 
each sequence (Fig. 1).

In each of these scenarios, we used a range of different 
average cluster-period sample sizes ni across the J  peri-
ods in the ith cluster, where ni ∼ Gamma(k , θ) with k =

30 , 100 , and θ = 1 , producing an average cluster-period 
sample size of 30 or 100 . Realized sample sizes nij for the 
ith cluster during the jth period were subsequently gener-
ated with nij ∼ Poisson(ni) , so the sample size could vary 
between periods within a cluster. The trial’s total sample 
size was N =

∑
i

∑
jnij.

Yijk = φj + Xijδ + Ciξ + αi + eijk

αi
iid
∼ N

(
0, τ 2α

)

eijk
iid
∼ N (0, σ 2

w)
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We generated residual error eijk by setting 
eijk ∼ Normal

(
0, σ 2

w = 1
)
 . To simulate cluster effects, we 

set the between-cluster variance τ 2α to 1/99 , 1/19 , 1/9, and 
1/4 , to generate corresponding intracluster correlation 
coefficient (ICC) values of 0.01 , 0.05 , 0.1, and 0.2 , where 
ICC = τ 2α

τ 2α+σ 2
w

 [6].
We generated the true intervention effect δ equal to 0 

for the null effect and 0.5 for a medium effect size. We 
also generated a linear period effect equal to an increase 
of 0.2 per period for a small effect size. We included a 
cluster-level covariate effect of ξ equal to 0 and 0.3.

The first scenario (i.) involves SW-CTs with no clus-
ter-level covariate imbalance or confounding. To clarify, 
such SW-CT scenarios are examples of SW-CRTs, due 
to the randomization being preserved. Similarly, sce-
narios where SW-CTs are (ii.) simulated with chance 
cluster-level covariate imbalance can also be accurately 
referred to as SW-CRTs. Additionally, we describe two 
more SW-CT simulation scenarios with (iii.) cluster-level 
covariate confounding or (iv.) complete cluster-level con-
founding, where randomization may not occur.

Simulating time‑invariant cluster‑level chance covariate 
imbalance
In both scenarios (i.) and (ii.), we simulated scenarios 
with time-invariant cluster-level chance covariate imbal-
ance where Ci ∼ Bernoulli(0.5) . With such cluster-level 
covariate imbalance, the binary covariate Ci is independ-
ent of the sequence allocation and the assigned treatment 
status during a given period. We set ξ = 0 and ξ = 0.3 in 
scenarios (i.) and (ii.), respectively (Eq. 1), such that the 
data generating process in scenario (i.) has no cluster-
level covariate imbalance or confounding and scenario 
(ii.) has chance cluster-level covariate imbalance.

In scenario (ii.), we additionally examined the bias pro-
duced by different model estimators given different levels 
of chance covariate imbalance severity, similar to a previ-
ously published simulation study of covariate imbalance 
in P-CRTs [3]. We illustrate the different biases across 
these different imbalance levels in an additional batch 
of simulations with ICC values of 0.01 , 0.05 , 0.1 , 0.2 , and 
average cluster-period sample sizes of 100 individuals in 
scenarios with 3 clusters randomized to 3 sequences.

We use this simple three-cluster, four-period SW-CT 
design to simply define three different quantiles of covariate 
imbalance severity. Where the covariate imbalance indica-
tors are (C1,C2,C3) with Ci = 0 or 1 for clusters i = 1,2, 3 , 
respectively, we can define the high negative imbalanced 
quantile Q1: [(0,0, 1), (0,1, 1)] , balanced quantile Q2: 
[(0,1, 0), (1,0, 1)] , and high positive imbalanced quantile Q3: 
[(1,0, 0), (1,1, 0)] , excluding conditions where all clusters do 
not have the imbalanced covariate (Ci = 0∀i) or have the 
imbalanced covariate (Ci = 1∀i) . In the high negative (Q1) 
or positive (Q3) imbalanced quantiles, the clusters with the 
imbalanced covariate are randomized to receive the treat-
ment either later or earlier in the trial, respectively, which 
we hypothesize will lead to biased treatment effect estimates 
within these quantiles based on previous work in P-CRTs [3].

Simulating time‑invariant cluster‑level covariate 
confounding
In scenario (iii.), we additionally simulated scenarios 
with time-invariant cluster-level covariate confounding 
by simply generating the cluster-level covariates, setting 
ξ = 0.3 , and ordering the clusters such that the clusters 
receiving the treatment in later periods have the imbal-
anced covariate. This resembles simulating clusters 
from exclusively a high negative imbalanced quantile as 
described in Section "Simulating time-invariant cluster-
level chance covariate imbalance". With such covariate 
confounding, the binary covariate Ci is correlated with 
the sequence allocation and subsequently the assigned 
treatment status during a given period.

Simulating complete cluster‑level confounding
We also simulated scenarios with (iv.) complete cluster-
level time-invariant confounding by ordering clusters i by 
their corresponding αi values and assigning clusters that 
have lower αi values to sequences that crossover to the 
intervention condition at earlier periods. Such extreme 
confounding may occur in practice following data col-
lection in the baseline period of a SW-CT, where clusters 
with lower baselines are selected to begin receiving the 
intervention at earlier time points.

Following the sorting of clusters by their corresponding 
αi values, we additionally generate a confounding cluster-
level covariate that is ordered such that clusters receiving 

Fig. 1 SW-CT designs with three, four, five, and six sequences with one cluster in each sequence
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the treatment in later periods have the covariate. However, 
we set the covariate to have a null effect ξ = 0 , allowing 
it to instead serve as an imperfect proxy indicator for the 
complete cluster-level confounding.

Analytic models of interest
Mixed‑effects model
We can analyze the intervention effects in a SW-CT using 
the “Hussey & Hughes” mixed-effects model [6] with a 
cluster random effect as specified in Eq.  1 with ξ = 0 , 
shown below as Eq. 2.1:

Equation 2.1

Throughout this article, we will generally refer to this 
model (Eq. 2.1) simply as the mixed-effects model.

The intervention effect δ can then be estimated using 
weighted least squares (WLS). Equation 2.1 can be rewrit-
ten as:

with Yijk being the (∑I
i=1

∑J
j=1

nij) by 1 vector individual level 
outcomes [6]. ˙Zijk is the conventional (

∑I
i=1

∑J
j=1nij) 

by (J + 1) design matrix and θ̇ is the (J + 1) by 1 vec-
tor of parameters, (φ1, . . . ,φJ , δ)′ . Vijk denotes the vari-
ance–covariance matrix of Yijk and is an (

∑I
i=1

∑J
j=1nij) 

by (
∑I

i=1

∑J
j=1nij) block diagonal matrix. Vijk= II ⊗ Ri 

(where II is an I by I dimension identity matrix):

and each block Ri is a 
∑J

j=1nij by 
∑J

j=1nij symmetric 
matrix:

Yijk = φj + Xijδ + ai + eijk

ai
iid
∼ N (0, τ 2a )

eijk
iid
∼ N (0, σ 2

w).

Yijk = Żijk θ̇ + ǫijk

ǫijk ∼ N (0,Vijk)

Vijk =




R1 0 · · · 0

0 Ri · · · 0
...

...
. . .

...

0 0 · · · RI




Ri = I�J
j=1nij

σ 2
w + J�J

j=1nij
τ 2α =




σ 2
w + τ 2α τ 2α · · · τ 2α

τ 2α σ 2
w + τ 2α · · · τ 2α

.

.

.

.

.

.
. . .

.

.

.

τ 2α τ 2α · · · σ 2
w + τ 2α



.

where I∑J
j=1nij

 is a ∑J
j=1

nij by ∑J
j=1

nij dimension identity 

matrix and J∑J
j=1nij

 is a 
∑J

j=1nij by 
∑J

j=1nij dimension 

matrix of ones.
The resulting parameter point and variance estimators are 

then 
(
Ż′
ijkV

−1

ijk Żijk

)−1

Ż′
ijkV

−1

ijk Yijk and 
(
Ż′
ijkV

−1

ijk Żijk

)−1

 , 
respectively.

Additionally, we analyze the data with a covariate-
adjusted mixed-effects model, shown below as Eq. 2.2:

Equation 2.2

where we include a dummy variable Ci to adjust for the 
time-invariant cluster-level binary covariate effect ξ . 
Equation 2.2 can then be rewritten as:

where Z̈ijk is the conventional (
∑I

i=1

∑J
j=1nij) by (J + 2) 

design matrix and θ̈ is the (J + 2) by 1 vector of param-
eters, (φ1, . . . ,φJ , δ, ξ)′.

Fixed‑effects model
As an alternative to the mixed-effects model, we can 
instead model cluster intercepts as fixed dummy vari-
ables using the fixed-effects model, shown below as Eq. 3:

Equation 3

where φj are the J − 1 fixed effects for each period and αi 
are the I fixed effects for each cluster. The cluster fixed 
intercepts αi automatically control for all measured and 
unmeasured cluster-level time-invariant confounders 
[24], including the cluster-level time-invariant imbal-
anced covariate Ci with effect ξ.

The intervention effect in the fixed-effects model can 
then be estimated using ordinary least squares (OLS). 
Equation 3 can be rewritten as:

Yijk = φj + Xijδ + Ciξ + αi + eijk

αi
iid
∼ N

(
0, τ 2α

)

eijk
iid
∼ N (0, σ 2

w)

Yijk = Z̈ijk θ̈ + ǫijk

ǫijk
iid
∼ N (0,Vijk)

Yijk = φj + Xijδ + αi + eijk

eijk
iid
∼ N (0, σ 2

w)

Yijk = Z̃ijk θ̃ + ǫ̃ijk
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with Yijk being the (∑I
i=1

∑J
j=1

nij) by 1 vector individual level 
outcomes. Z̃ijk is the conventional (

∑I
i=1

∑J
j=1nij) by 

(J + I) design matrix and θ̃  is the (J + I) by 1 vector of 
parameters, (φ2, . . . ,φJ , δ,α1, . . . ,αI )

′ . Ṽijk= I∑I
i=1

∑J
j=1

nij
σ 2
w
 

(where I∑I
i=1

∑J
j=1nij

 is an 
∑I

i=1

∑J
j=1nij by ∑I

i=1

∑J
j=1

nij 

dimension identity matrix) denotes the variance–covari-
ance matrix of Yijk.

The resulting parameter point and variance estimators 
are then 

(
Z̃′
ijk Z̃ijk

)−1

Z̃′
ijkYijk and σ 2

w

(
Z̃′
ijk Z̃ijk

)−1

 , 
respectively.

Alternative approaches to ICC estimation in a SW‑CT
Notably, the mixed-effects model automatically estimates 
the variance of the cluster random intercepts, which can 
be subsequently used to derive the intracluster correla-
tion coefficient (ICC). In contrast, the fixed-effects model 
does not automatically estimate the ICC in the analysis of 
a SW-CT. Accordingly, we propose estimating the ICC in a 
separate step from the analysis of the treatment effect. We 
discuss three different approaches below.

The ICC can be estimated by only using data from the 
unexposed first period j = 1 in the SW-CT design with the 
following random effects model:

where µ is specified here as the average of the cluster 
effects and αi is the normally distributed cluster random 
effect for the ith cluster.

Alternatively, the ICC can be estimated only using data 
from the unexposed first period and always-exposed final 
period in the SW-CT design with the following mixed-
effects model:

where φj are the 2 fixed effects for periods j = 1 and J  , 
and αi is the normally distributed cluster random effect 
for the ith cluster.

ǫ̃ijk
iid
∼ N (0, Ṽijk)

Yi1k = µ+ αi + ei1k

αi
iid
∼ N

(
0, τ 2α

)

ei1k
iid
∼ N

(
0, σ 2

w

)

Yijk = φj + αi + eijk

αi
iid
∼ N

(
0, τ 2α

)

eijk
iid
∼ N

(
0, σ 2

w

)

Finally, the ICC can also be estimated using the previ-
ously described mixed-effects model (Eq. 2.1).

We will validate the performance of these approaches 
in the simulation scenarios with (i.) no cluster-level 
covariate imbalance or confounding (Section "No clus-
ter-level covariate imbalance or confounding") and (iv.) 
complete cluster-level time-invariant confounding (Addi-
tional File 1.ii).

Inference target of mixed‑effects and fixed‑effects models
Historically, the mixed-effects and fixed-effects models 
have been mistakenly interpreted as each innately esti-
mating coefficients over the entire superpopulation of all 
possible clusters or only the finite population of sampled 
clusters, respectively [37]. In contrast, it has long been 
argued in the econometrics literature that the choice of 
whether cluster intercepts are modeled as random or 
fixed is distinct from the inference space [32]. We specu-
late that much of the confusion over the inference space 
of mixed-effects and fixed-effects models may arise from 
the fact that the mixed-effects model directly models the 
presumed underlying data-generating process (DGP) 
that assumes clusters are randomly sampled. Indeed, 
under such a scenario with a correctly specified correla-
tion structure, the mixed-effects model is the best linear 
unbiased estimator (BLUE) [32]. However, to clarify, it 
is the cluster random sampling itself that allows for the 
extrapolation of results from a given trial and its sampled 
clusters to the larger superpopulation of clusters [38], not 
the chosen analytic model.

The nomenclature referring to cluster intercepts as 
“random” or “fixed” further adds to the confusion, as 
previous publications have pointed out [32, 39]. Cluster 
effects can be assumed random and still analyzed using 
a fixed-effects model, with the important distinction 
between mixed-effects and fixed-effects models being 
whether the cluster effects are correlated with the other 
model covariates, and hence confounding [32, 34, 39]. 
Accordingly, both the mixed-effects model and fixed-
effects model can be applied under either a superpopula-
tion or finite sample framework [30, 31, 40].

This discussion is further complicated by the ambigu-
ous language often used when discussing conditional 
and marginal models, which are commonly referred to 
as “subject-specific” and “population-average” models, 
respectively [41]. This ambiguity has been clarified in 
previous publications [42, 43]. Crucially, Lee & Nelder 
[43] highlighted that a conditional linear model can gen-
erate both a conditional and marginal mean effect [43]. 
Similarly, they conclude that the subsequent extrapo-
lation from a marginal model average to a population 
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average occurs as a result of the random cluster sampling, 
not of the chosen analytic model [43].

Overall, regardless of whether SW-CTs are analyzed 
with a mixed-effects or fixed-effects model, the cor-
responding model-specific estimators can be generally 
interpreted as the solutions to different estimating equa-
tions and can be compared. Furthermore, the estimators 
for both mixed-effects and fixed-effects models do not 
have an innately pre-determined inference space and 
both can be extended to a superpopulation framework, 
which typically yields simpler derivations with estimating 
equations or M-estimators [38], or a finite sample frame-
work. To reiterate, it is the cluster random sampling itself 
that allows for the extrapolation of results from a given 
trial and its sampled clusters to the superpopulation of 
clusters [38], not the chosen analytic model.

Simulation summary
Overall, we simulated 320 scenarios (5 SW-CT designs × 
2 intervention effect sizes × 4 values of τ 2α × 2 cluster sizes 
× (1 no covariate imbalance or confounding condition + 1 
covariate imbalance condition + 1 covariate confounding 
condition + 1 complete confounding condition)).

In each simulation scenario, we generated s = 10,000 
simulated data sets and estimated the intervention effect δ̂s 
using each model described above. We present the proper-
ties of the intervention effect estimator in terms of bias, 
precision, power, coverage probability (CP), and root mean 
squared error (RMSE). We present the relative bias 
(Rel Bias = [Absolute bias/δ] × 100) when δ  = 0 . Preci-
sion is the reciprocal of the average estimated variance 
(Precision = 1/

[∑10,000
s=1 Var(δ̂s)/10,000

]
) . Power is the 

empirical power (if δ  = 0 ) or empirical type I error rate (if 
δ = 0 ) for rejecting the null hypothesis of δ = 0 at the two-
sided significance level of 0.05, calculated as the probability 
that the asymptotic normal approximation derived 95% 
confidence interval excludes 0. Similarly, CP is the proba-
bility that the 95% confidence interval contains the true 
effect. RMSE is the square root of the average squared dif-
ference between the estimated effect δ̂s and the true effect δ 
over the 10,000 simulated data sets for each scenario (
RMSE =

√∑10,000
s=1 [δ̂s − δ]

2
/10,000

)
 . The Monte Carlo 

standard errors (standard deviation of the 10,000 estimated 
intervention effects δ̂s for each scenario) are included in the 
supplementary material (Additional File 1.iii).

The above method for calculating the power can be 
described as an “uncorrected” approach to determining 
the power, where inferences are made with the normal 
distribution and no degrees of freedom computation is 
considered [27]. However, small sample corrections have 
been previously demonstrated to effectively reduce type 

I error in mixed-effects model analyses of P-CRTs [27]. 
Accordingly, we additionally consider the power of the 
“Satterthwaite” [44] degree of freedom approximation 
with inference using the t-distribution and the “Ken-
ward–Roger” [45] correction that additionally adjusts 
the covariance matrix [27], in the simulation scenarios 
with no cluster-level covariate imbalance or confounding 
(Section "No cluster-level covariate imbalance or con-
founding"). We compare the uncorrected mixed-effects 
model (unadjusted and covariate-adjusted), mixed-
effects model (unadjusted and covariate-adjusted) with 
the Satterthwaite correction, mixed-effects model (unad-
justed and covariate-adjusted) with the Kenward–Roger 
correction, and fixed-effects model in SW-CT designs 
with 3, 4, or 5 clusters across 2000 simulated datasets for 
each scenario.

Additionally, we further generated 30,000 simulated 
datasets for the 3 cluster, 4 period SW-CT conditions 
(described in Section "Simulating time-invariant clus-
ter-level chance covariate imbalance") in scenarios with 
no cluster-level covariate imbalance or confounding. 
We do so to evaluate the bias produced by the mixed-
effects model, covariate-adjusted mixed-effects model, 
and fixed-effects model estimators, given three different 
quantiles of chance covariate imbalance severity (Section 
"Cluster-level chance covariate imbalance"). In expecta-
tion, this produces around 10,000 simulated datasets for 
each of the 3 quantiles.

Results
In this section, we present the simulation results for sce-
narios with no cluster-level covariate imbalance or con-
founding (Section "No cluster-level covariate imbalance 
or confounding"), chance cluster-level covariate imbal-
ance (Section "Cluster-level chance covariate imbal-
ance"), severe cluster-level covariate imbalance (Section 
"Cluster-level covariate confounding"), and complete 
cluster-level confounding (Section "Complete cluster-
level confounding"). In addition to the included figures, 
the results are presented as tables in the supplementary 
material (Additional File 2).

No cluster‑level covariate imbalance or confounding
In scenarios with (i.) no cluster-level covariate imbal-
ance or confounding, we observe that the fixed-effects 
and unadjusted and covariate-adjusted mixed-effects 
models were relatively unbiased (Fig.  2). Overall, the 
fixed-effects model had similar power and RMSE to 
the unadjusted and covariate-adjusted mixed-effects 
models (Fig. 2). The unadjusted and covariate-adjusted 
mixed-effects models often had higher precision and 
power than the fixed-effects model, especially when 
ICC was low (Fig. 2).
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However, the unadjusted and covariate-adjusted 
mixed-effects models also had lower coverage probabili-
ties and inflated type I errors with a small number of clus-
ters or when the ICC was low (Fig. 2). This is especially 
true for the unadjusted mixed-effects model (Fig. 2). The 
coverage probabilities and type I error rates converge 
to the target level with the unadjusted and covariate-
adjusted mixed-effects models when there were around 
six or more clusters (Fig. 2).

In Fig.  3, the unadjusted and covariate-adjusted 
mixed-effects models with the Satterthwaite correction 
only slightly reduced the type I error rates compared to 
the uncorrected mixed-effects model, but still yielded 
inflated type I errors with a small number of clusters 
or when ICC was low. In contrast, the unadjusted and 
covariate-adjusted mixed-effects models with the Ken-
ward–Roger correction could be overly conservative in 
analyses with small numbers of clusters and yield type 

Fig. 2 Comparison of the fixed-effects model (FE), mixed-effects model (ME), and covariate-adjusted mixed-effects model (ME adj) in terms 
of relative bias (%), precision, coverage probability, type I error, power, and root mean square error in scenarios with no cluster-level covariate 
imbalance or confounding. Results are presented across the number of clusters, ICC, and average cluster-period sample size
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I error rates that were too small (Fig. 3). In comparison, 
the fixed-effects model maintained the target level of 
coverage probability and type I error across all scenarios 
shown here (Figs. 2 and 3).

Overall, the three proposed approaches for estimating 
the ICC in a separate step from the fixed-effects model 
analyses (Section "Alternative approaches to ICC estima-
tion in a SW-CT"), all mostly yield accurate estimates of 
the ICC with similar Monte Carlo standard errors for the 
ICC estimates across the simulation replicates (Fig.  4). 
Unsurprisingly, using more data to estimate the ICC, as 
seen with the full mixed-effects model (Eq. 2.1), yielded 
ICC estimates with lower Monte Carlo standard errors, 
and using the least data by analyzing only the first period 
from the SW-CT design with a random effects model 
yielded ICC estimates with the highest Monte Carlo 
standard errors (Fig.  4). With low ICC (equal to 0.01) 
and high ICC (equal to 0.2), the methods described could 
slightly overestimate or underestimate the true ICC, 
respectively (Fig. 4). This bias in ICC estimation has been 
previously described for mixed-effects models [46].

Cluster‑level chance covariate imbalance
In scenarios with (ii.) chance cluster-level covariate imbal-
ance, all models were generally unbiased (Fig. 5). Notably, 
Fig.  5 indicates that the unadjusted mixed-effects model 
is unbiased in expectation over the different quantiles of 
chance covariate imbalance severity. However, within 
the different potential quantiles of covariate imbalance, 
the unadjusted mixed-effects model can still be biased 

(Fig.  6). In Fig.  6, we graph the simulation results in a 
three-sequence, four-period SW-CT across scenarios as 
described in Section "Simulating time-invariant cluster-
level chance covariate imbalance". Notably, the magnitude 
of bias within high negative (Q1) and positive (Q3) imbal-
anced quantiles are roughly equivalent in opposite direc-
tions (Fig.  6), hence yielding the unbiased mixed-effects 
model point estimates in expectation over the quantiles 
(Fig. 5). In contrast, the covariate-adjusted mixed-effects 
model and fixed-effects model both yield unbiased results 
in expectation over and within the different quantiles of 
covariate imbalance severity (Figs. 5 and 6).

Still, the mixed-effects model had largely similar per-
formance in this scenario as compared to the previously 
discussed scenarios with no cluster-level covariate imbal-
ance or confounding. However, we note a slight reduc-
tion in power in scenarios with covariate imbalance, low 
ICC, low number of clusters, and small cluster-period 
sample sizes (Figs. 2 and 5).

In addition to unbiased estimates within different quan-
tiles of covariate imbalance, the covariate-adjusted mixed-
effects model also has more precision and power than 
the unadjusted mixed-effects model and the fixed-effects 
model (Fig. 5). However, like the previous scenarios with 
no cluster-level covariate imbalance or confounding, the 
mixed-effects model with and without adjustment often 
had low coverage probabilities and inflated type I errors 
especially with a small number of clusters or when the 
ICC was low (Fig. 5). In contrast, the fixed-effects model 
continued to maintain good coverage probability and 

Fig. 3 Type I error rates for the fixed-effects model, unadjusted and covariate-adjusted mixed-effects model (uncorrected), and unadjusted 
and covariate-adjusted mixed-effects model with a Satterthwaite or Kenward–Roger small sample size correction in scenarios with no cluster-level 
covariate imbalance or confounding. Results are presented from three to five clusters, ICC, and average cluster-period sample size. The expected 
type I error rate of 0.05 is shown with the dashed lines
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correct type I error control (Fig.  5). Overall, the fixed-
effects model had similar power and RMSE to the mixed-
effects model with and without adjustment (Fig. 5).

Cluster‑level covariate confounding
In scenarios with (iii.) cluster-level covariate confound-
ing, the mixed-effects model without adjustment pro-
duced biased estimates especially when the ICC was 

small (Fig. 7). Given the cluster-level covariate confound-
ing, both the validity and power of the unadjusted mixed-
effects model is impacted. As a result of this bias, the 
mixed-effects model can yield results with very poor cov-
erage probability, type I error rates, and power (Fig.  7). 
Meanwhile, both the covariate-adjusted mixed-effects 
model and the fixed-effects model produced unbiased 
estimates (Fig. 7).

Fig. 4 Alternative approaches for ICC estimation using a random effects model on the unexposed first period j = 1 (RE (P1)), a mixed-effects model 
on the unexposed first period j = 1 and always-exposed final period j = J (ME (P1,PJ)), or a mixed-effects model on the full SW-CT data (ME (Full)). 
The average ICC estimates are presented with the true ICC values are shown with the dashed lines. The Monte Carlo standard errors of the ICC 
estimates over the simulation replicates are also presented. Results are presented across the number of clusters, ICC, and average cluster-period 
sample size
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Notably, the covariate-adjusted mixed-effects model 
can still have low coverage probabilities and inflated 
type I errors, especially with a small number of clusters 
or when the ICC was low (Fig. 7). In contrast, the fixed-
effects model maintained relatively unbiased estimates 
with good coverage probability and correct type I error 
control (Fig. 7). Overall, the fixed-effects model also had 
similar power and RMSE to the mixed-effects model with 
adjustment (Fig. 7).

Complete cluster‑level confounding
In scenarios with (iv.) complete cluster-level confound-
ing, the unadjusted mixed-effects model produced very 
biased estimates, especially when the number of clus-
ters or ICC was small (Fig. 8). The covariate-adjusted 
mixed-effects model, adjusting for the confounding 
covariate as an imperfect proxy indicator for the com-
plete cluster-level confounding (Section "Simulating 
complete cluster-level confounding"), abated some of 

Fig. 5 Comparison of the fixed-effects model (FE), mixed-effects model (ME), and covariate-adjusted mixed-effects model (ME adj) in terms 
of relative bias (%), precision, coverage probability, type I error, power, and root mean square error in scenarios with cluster-level chance covariate 
imbalance. Results are presented across the number of clusters, ICC, and average cluster-period sample size

Fig. 6 Relative bias from the fixed-effects model (FE), mixed-effects model (ME), and covariate-adjusted mixed-effects model (ME adj) within three 
quantiles of covariate imbalance severity (Q1: high negative imbalanced quantile, Q2: balanced quantile, Q3: high positive imbalanced quantile) 
in scenarios with three clusters and cluster-level chance covariate imbalance. Results are presented across different values of ICC with an average 
cluster-period sample size of 100
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this bias but notably still yielded very biased results. 
This large bias in the mixed-effects model estimates 
led to poor coverage probabilities and very inflated 
type I error rates (Fig. 8). In contrast, the fixed-effects 
model produced unbiased estimates with good cover-
age probabilities and correct type I error rates (Fig. 8). 
Overall, the fixed-effects model also had similar power 
and lower RMSE compared to the mixed-effects mod-
els (Fig. 8).

In these scenarios with complete cluster-level con-
founding, the three proposed approaches for estimating 
the ICC in a separate step from the analyses all mostly 
yielded accurate estimates of the ICC (Additional File 
1.ii), with results corresponding to those observed in 
Fig. 4. Despite the treatment effect estimates being biased 
by the improper use of a mixed-effects model in such a 
scenario, we observe that the mixed-effects model can 
still yield nearly unbiased estimates of the ICC.

Fig. 7 Comparison of the fixed-effects model (FE), mixed-effects model (ME), and covariate-adjusted mixed-effects model (ME adj) in terms 
of relative bias (%), precision, coverage probability, type I error, power, and root mean square error in scenarios with cluster-level covariate 
confounding. Results are presented across number of clusters, ICC, and average cluster-period sample size
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Discussion
This article has two primary goals, first to establish that 
the fixed-effects model can yield results with proper type 
I error rates, in contrast to mixed-effects models, when 
the number of clusters is low in SW-CTs with continu-
ous outcomes. Second, we explicitly demonstrate that the 
fixed-effects method automatically adjusts for cluster-
level covariate imbalance and confounding. Additionally, 
we address some misconceptions regarding the inferen-
tial target for the mixed-effects and fixed-effects models.

We show that the mixed-effects model can be vulnerable 
to low coverage probabilities and inflated type I error rates 
in cross-sectional SW-CTs with continuous outcomes, 
especially when there are fewer than six clusters or when 
the ICC is low. Such overly narrow confidence intervals 
have previously been demonstrated in P-CRTs with a small 
number of clusters [26, 27] and have now been similarly 
demonstrated in SW-CTs. Furthermore, the mixed-effects 
models with Satterthwaite or Kenward–Roger small sam-
ple corrections can lead to inflated or overly conservative 

Fig. 8 Comparison of the fixed-effects model (FE), mixed-effects model (ME), and covariate-adjusted mixed-effects model (ME adj) in terms 
of relative bias (%), precision, coverage probability, type I error, power, and root mean square error in scenarios with complete cluster-level 
confounding. Results are presented across number of clusters, ICC, and average cluster-period sample size
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type I errors, respectively. In contrast, the fixed-effects 
model consistently produced good coverage probability 
and type I error rates without any meaningful compro-
mises to power across all SW-CT scenarios explored in this 
article. These small sample correction results were primar-
ily demonstrated in simulation scenarios with (i.) no clus-
ter-level covariate imbalance or confounding. Since these 
corrections primarily include a degree of freedom adjust-
ment and maybe a mixed-effects model variance estimator 
adjustment (with Kenward–Roger), these observed results 
are expected to extend to other simulation scenarios where 
the unadjusted or covariate-adjusted mixed-effects models 
are expected to yield unbiased results.

Previous ambiguity over the application of covariate 
adjustment methods has been attributed to a “misunder-
standing on the part of trialists that clusters serve as their 
own controls and that imbalances are therefore a lesser 
concern” [5]. However, this is primarily a misunderstand-
ing in the context of mixed-effects model analyses, which 
conceptually make within-period comparisons between-
clusters while adjusting for the intracluster correlation 
[47]. In contrast, the fixed-effects model does actually 
make within-cluster comparisons, with each cluster serv-
ing as their own control [24].

When there is cluster-level chance covariate imbalance, 
the mixed-effects model without adjustment is unbi-
ased in expectation over the different potential levels of 
imbalance. However, we clarify that the mixed-effects 
model can still be conditionally biased within different 
quantiles of covariate imbalance severity. In contrast, the 
covariate-adjusted mixed-effects model and fixed-effects 
model both yield unbiased results in expectation over 
and within the different quantiles of covariate imbalance. 
An analogous result was previously reported in P-CRTs 
with cluster-level chance covariate imbalance [3]. In this 
article, we demonstrate this result with a three-cluster, 
four-period SW-CT example which allows us to simply 
define the three different quantiles of covariate imbalance 
severity. It is notably more complicated to define the dif-
ferent quantiles of covariate imbalance severity in larger 
SW-CT designs; however, the results are expected to 
extend to larger designs.

When there is cluster-level covariate imbalance or con-
founding, the covariate-adjusted mixed-effects model 
produces minimally biased estimates. However, this 
requires that the imbalanced covariate be known and 
measured, which may not always be practical. Further-
more, in scenarios with complete cluster-level confound-
ing, the mixed-effects model yields very biased estimates. 
Even a covariate-adjusted mixed-effects model, where the 
adjusted covariate serves as an imperfect proxy indica-
tor for the covariate imbalance, yielded very biased esti-
mates. In contrast, the fixed-effects model automatically 

accounts for all measured and unmeasured time-invari-
ant cluster-level imbalanced covariates and confounding 
to robustly yield unbiased estimates.

Additionally, we also observed that the basic Hausman 
test has incredibly low power in SW-CTs, despite the pres-
ence of complete cluster-level confounding (Additional File 
1.iv). We do not advise the use of the Hausman test to judge 
whether there is cluster-level confounding in SW-CTs. 
Future work should explore alternative tests that may be 
more powerful in detecting such cluster-level confounding.

Such cluster-level confounding in SW-CTs, although 
rare given randomization, may still occur. For exam-
ple, Groshaus et al. [15] reported on a trial where prac-
tical and scheduling issues prevented randomization 
[15]. DiDiodato et  al. (2015) reported on a trial where 
randomization did not occur due to ethical and logisti-
cal reasons [48]. In practice, non-randomized SW-CTs 
have also been implemented to evaluate the effects of a 
mammography intervention [16], evidence-based quality 
improvement interventions [17], and a prospective front-
line surveillance system [18]. Furthermore, unmeasured 
cluster-level confounding can still occur in SW-CRTs in 
the form of post-randomization selection biases, espe-
cially as subjects are often recruited after cluster rand-
omization has already occurred [49, 50]. However, there 
are further potential issues that may arise from post-
randomization selection bias in CRTs [49, 50], with such 
topics being beyond the scope of this current work.

Limitations
Previous work in P-CRTs [51] and SW-CTs [4] has also 
explored individual-level imbalanced covariates along-
side cluster-level imbalanced covariates. SW-CTs with 
small numbers of clusters are also at risk of individual-
level covariate imbalance [5]. However, we do not explore 
methods for dealing with individual-level covariate 
imbalance. In this article, we only simulated cluster-level 
covariate imbalance to focus on how specifying cluster 
intercepts as fixed in a fixed-effects model can automati-
cally adjust for these imbalances in a SW-CT.

Furthermore, we only simulated SW-CT designs where 
all clusters receive both the control and intervention by 
the end of the trial. Some alternative SW-CT designs have 
been proposed, including the “optimized design” which 
includes unexposed and always-exposed clusters to opti-
mize the efficiency of the SW-CT under analysis with 
the mixed-effects model (Eq. 2.1) [52, 53]. Previous work 
has demonstrated that such designs can still be analyzed 
with a fixed-effects model (Eq. 3), where unexposed and 
always-exposed clusters will still help improve the effi-
ciency of the intervention effect estimator [20]. We do not 
include or explore the implications of covariate imbalance 
in SW-CTs with such “optimized designs” in this article.
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A natural mixed-effects model extension that has 
become increasingly popular in practice is the “Hooper-
Girling” mixed-effects model, which includes an addi-
tional cluster-period random interaction term to induce 
a nested-exchangeable correlation structure [52, 54]. We 
do not evaluate such nested data-generating processes 
or analysis models in this article. The fixed-effects model 
can be easily extended to have a similar nested correlation 
structure between periods within clusters by including 
a cluster-period random interaction term alongside the 
cluster fixed effect. The properties of such a nested fixed-
effects model have not yet been explicitly evaluated in the 
context of SW-CTs but have been proposed in the analysis 
of cluster randomized cross-over trials (CRXO) [55].

The CONSORT extension to SW-CRTs suggests 
including the ICC estimates when reporting results to 
help inform future studies [35]. Unlike the mixed-effects 
model, the fixed-effects model does not automatically 
estimate the between-cluster variance and ICC [34]. 
However, there are alternative ways to estimate the ICC 
while using a fixed-effects model. In this article, we 
proposed estimating the ICC in a separate step from 
the analysis of the treatment effect, by using a random-
effects or mixed-effects model on different subsets of 
the SW-CT data. Furthermore, we can easily extend this 
ICC estimation step to estimate the between-period and 
within-period ICC’s by including a cluster-period ran-
dom interaction term in the described mixed-effects 
models. Notably, the ICC estimation approaches using 
mixed-effects models implicitly assume a constant treat-
ment effect within the final period, which may not always 
be the case in SW-CTs [56, 57]. Still, even in scenarios 
with complete cluster-level confounding, the three pro-
posed approaches for estimating the ICC in a separate 
step from the analyses all mostly yielded accurate esti-
mates of the ICC (Additional File 1.ii), with results cor-
responding to those observed in Fig.  4. Despite the 
treatment effect estimates being biased by the improper 
use of a mixed-effects model in such a scenario, we 
observe that the mixed-effects model can still yield nearly 
unbiased estimates of the ICC. Future research may fur-
ther explore and validate alternative methods for calcu-
lating the ICC in fixed-effects models for SW-CTs.

Previous work has discussed the “design effect” (the 
variance inflation factor) that describes the amount by 
which the cluster randomized trial sample size needs 
to increase relative to a similarly designed individually 
randomized trial [58]. This design effect, as previously 
described [58], was derived from the Hussey & Hughes 
mixed-effects model (Eq. 2.1) and simply characterizes 
the amount of variance inflation resulting from speci-
fying an exchangeable correlation structure (in a clus-
ter randomized trial) as opposed to an independence 

correlation structure (in an individually randomized 
trial). Here, we discuss the strengths of the fixed-effects 
model as an alternative to the mixed-effects model for 
the analysis of SW-CTs. While we do not derive the 
design effect for the fixed-effects model in this arti-
cle, our results indicate that the fixed-effects model 
has a marginally higher variance (and lower precision) 
than the mixed-effects model, implying that the fixed-
effects model would have a similar but slightly higher 
design effect than that which was previously described 
for the mixed-effects model. Future work can look to 
derive a similar design effect in the fixed-effects model 
described here and in the fixed-effects model with an 
additional cluster-period random interaction term and 
induced nested correlation structure.

In this article, we have described how the fixed-
effects model controls for all cluster-level time-invari-
ant variables. We outline the benefits of this in terms 
of controlling for unmeasured imbalanced covariates 
and confounding variables. However, such cluster-level 
time-invariant covariates may sometimes be of inter-
est (e.g., distance of a village from the nearest health 
center) and cannot be explicitly modelled in such fixed-
effects models [24]. Additionally, some recent pub-
lications have illuminated potential shortcomings of 
the fixed-effects model with heterogeneous treatment 
effects [59–61]. Notably, these shortcomings are not 
unique to the fixed-effects model. Indeed, the standard 
mixed-effects model with an immediate and constant 
treatment effect can have similar issues when the treat-
ment effect structure is misspecified [47, 56].

A notable extension to the mixed-effects model 
replaces the constant intervention effect with time-on-
intervention effects, where separate discrete intervention 
effects are specified for each elapsed period of exposure 
time since the intervention was first introduced to a 
cluster [56, 57, 62, 63]. Ma et  al. recently reported that 
the benefits of pre-balancing with a measured imbal-
anced cluster-level covariate were particularly height-
ened when such time-on-intervention effects (which 
they referred to as a “learning effect”) were present in the 
SW-CT [13]. In this article, we simulate data assuming a 
constant and immediate intervention effect and do not 
consider such time-on-intervention effects. Future work 
can explore the properties of the fixed-effects model 
with specified time-on-intervention effects.

In this work, the mixed-effects and fixed-effects mod-
els are described for individual-level responses rather than 
cluster-level responses. However, the models described 
here can be easily extended to target a cluster-level response 
by implementing inverse cluster size or cluster-period 
size weighting [30, 31, 42]. Alternatively, analyses may 
also be applied on the cluster period means to target the 
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cluster-level response [6, 27]. Regardless, in the presence 
of non-informative cluster sizes, the individual and cluster-
average treatment effect estimands are expected to coincide, 
and unweighted and weighted mixed-effects and fixed-
effects models are anticipated to be unbiased and consist-
ent for these estimands [42]. Otherwise, in the presence of 
informative cluster sizes, the properties of fixed-effects and 
mixed-effects models have been observed to differ when 
targeting the individual and cluster-average treatment effect 
estimands in other multi-period cluster trial designs [31], 
adding another level of consideration when comparing these 
two models. The properties of these models in the presence 
of informative cluster sizes have not yet been clearly evalu-
ated in SW-CT designs and can be the target of future work.

Conclusion
In this article, we fill gaps in the SW-CT literature con-
cerning the performance of the fixed-effects model 
in maintaining correct type I error and automatically 
adjusting for all cluster-level covariate imbalance and 
confounding. We demonstrate that the mixed-effects 
model can be vulnerable to poor coverage probabili-
ties and inflated type I error rates in the analyses of 
cross-sectional SW-CTs with continuous outcomes and 
a small number of clusters. Furthermore, the mixed-
effects model requires imbalanced covariates to be 
measured. This may not always be practical. In con-
trast, the fixed-effects model is a more robust analytic 
model for SW-CTs with a small number of clusters and 
if cluster-level time-invariant covariate imbalance or 
confounding is suspected.
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