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Predicting Antigen-Specificities of Orphan T Cell Receptors
from Cancer Patients with TCRpcDist

Marta A. S. Perez, Johanna Chiffelle, Sara Bobisse, Francesca Mayol-Rullan,
Marine Bugnon, Maiia E. Bragina, Marion Arnaud, Christophe Sauvage, David Barras,
Denarda Dangaj Laniti, Florian Huber, Michal Bassani-Sternberg, George Coukos,
Alexandre Harari, and Vincent Zoete*

Approaches to analyze and cluster T-cell receptor (TCR) repertoires
to reflect antigen specificity are critical for the diagnosis and prognosis
of immune-related diseases and the development of personalized therapies.
Sequence-based approaches showed success but remain restrictive, especially
when the amount of experimental data used for the training is scarce.
Structure-based approaches which represent powerful alternatives, notably to
optimize TCRs affinity toward specific epitopes, show limitations for large-scale
predictions. To handle these challenges, TCRpcDist is presented, a 3D-based
approach that calculates similarities between TCRs using a metric related
to the physico-chemical properties of the loop residues predicted to interact
with the epitope. By exploiting private and public datasets and comparing
TCRpcDist with competing approaches, it is demonstrated that TCRpcDist can
accurately identify groups of TCRs that are likely to bind the same epitopes.
Importantly, the ability of TCRpcDist is experimentally validated to determine
antigen specificities (neoantigens and tumor-associated antigens) of
orphan tumor-infiltrating lymphocytes (TILs) in cancer patients. TCRpcDist is
thus a promising approach to support TCR repertoire analysis and TCR deor-
phanization for individualized treatments including cancer immunotherapies.

1. Introduction

T cell receptors (TCRs) orchestrate cellular immunity
by recognizing peptide antigens presented by the major
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histocompatibility complex (pMHC).[1] Al-
though the principle of the TCR engage-
ment with its cognate pMHC is well-
established,[2] the prediction of which TCRs
are accountable for triggering an immune
response remains extremely difficult. This
challenge is explained, in part, by the
vast diversity of TCRs, with ≈1020 dis-
tinct TCRs generated through the V(D)J re-
combination process.[3] Furthermore, the
binding between TCRs and tumor epi-
topes is of relatively low-affinity[4] and is
degenerate, meaning that several differ-
ent TCRs can recognize the same anti-
gen while at the same time one given
TCR can recognize distinct antigens. De-
spite recent sequence- and structure-based
computational advances,[5,6] the unambigu-
ous prediction of TCR-pMHC pairing, from
pools of thousands of candidates, remains a
daunting task.[7]

Recent computational studies demon-
strated that common patterns can
be identified among TCR sequences

interacting with the same epitope,[8–11] opening the road to an
in silico characterization of the specificity, diversity and complex-
ity of TCR repertoires.[3,12] Such approaches are already widely
employed.[13–15]
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Analysis of TCR sequences and TCR-pMHC 3D structures led
Glanville et al. in 2017[8] to the observation that determining pos-
sible pMHC contact sites in complementary determining regions
3, CDR3s, notably in CDR3𝛽, would offer an opportunity to clus-
ter TCRs with a high probability of sharing the same specificity.
Based on this assumption, the authors developed the GLIPH pro-
gram (grouping of lymphocyte interactions by paratope hotspots)
to cluster TCRs based on global and local TCR sequence similar-
ity. When benchmarking GLIPH on a training set of 2068 unique
sequences spanning eight pMHC specificities, the authors found
that by combining local and global similarity 14% of the TCRs
were clustered, of which 94% were correctly grouped with other
TCRs of common specificity. Such an approach could be used to
cluster TCRs that recognize the same epitope and to predict their
HLA restriction. However, GLIPH loses efficiency and accuracy
when more than 10′000 TCRs are analyzed. To circumvent this
problem, Huang et al. developed GLIPH2 in 2020, which can pro-
cess millions of TCR sequences.[16]

Dash et al. in 2017[9] defined a distance measure on the space
of TCRs, TCRdist, allowing clustering and visualization of reper-
toire diversity. This quantitative measure of similarity between
paired 𝛼𝛽 TCRs was obtained by listing the residues belonging to
the CDR1, 2, and 3 loops, as well as an additional variable loop be-
tween CDR2 and CDR3, and by computing a similarity-weighted
mismatch distance defined based on the BLOSUM62 substitu-
tion matrix, with a gap penalty to capture variations in the length
of the CDRs. Of note, a higher weight was given to the CDR3 se-
quence in view of its prominent role in epitope binding. This dis-
tance can then be calculated for each possible TCR pairs belong-
ing to a given repertoire, generating a so-called distance matrix.
The latter can be used for TCRs clustering, or the construction
of hierarchical distance trees to analyze the diversity and com-
plexity of the TCR repertoire. In 2021, Mayer-Blackwell et al.[14]

used a new version of TCRdist, TCRdist3,[17] to guide the forma-
tion of meta-clonotypes (i.e., groups of TCRs with biochemically
similar CDRs that likely share antigen recognition) optimized
for biomarker development. TCRdist3 brings new flexibility to
distance-based repertoire analysis, allowing customization of the
distance metric, analysis of 𝛿𝛾 TCRs, and at-scale computation
with sparse data representations and parallelized calculations.

In 2019, Ostmeyer and colleagues[10] introduced an approach
consisting in feeding machine learning techniques, based on
logistic regressions, with biophysicochemical descriptors of the
TCR interface for analyzing immune repertoires of several pa-
tients, with the objective to identify differences between TCRs in
normal and tumor tissues. In this approach, the biophysicochem-
ical characteristics of sliding windows of 4 consecutive residues
of CDR3𝛽 (i.e., the so called 4-mers), excluding the first 4 and
last 3 residues, were described using five Atchley factors[18] that
encode for codon diversity, secondary structure, molecular size,
polarity, and electrostatic charge of the residues. The method
identified a short list of preferred values for these descriptors
at key positions in TCRs present in the tumor, which permitted
the identification of disease-associated TCRs. Although this ap-
proach must be retrained for each set of TCRs studied and is re-
stricted to CDR3𝛽 only (which limits its predictive ability), this
type of sequence-based “property”-based approach could circum-
vent some of the drawbacks of purely sequence-based analysis,
such as the need to have very large numbers of disease-associated

TCR sequences available for training, and the possibility of de-
tecting potential antigen-binding TCRs even if their sequences
differ from those that have been previously encountered.

Also in 2019, Lanzarotti et al. developed a model for predic-
tion of TCR targets based on similarity to a database of TCRs
with known pMHC.[19] They showed increased predictive abil-
ity by focusing on CDRs rather than the full length TCR pro-
tein sequences, by incorporating information from paired 𝛼 and
𝛽 chains, and by integrating information for all 6 CDR loops
rather than just CDR3. Additionally, they demonstrated that the
inclusion of structural information in the model improved, con-
sistently yet modestly, the accuracy of the epitope prediction, in
particular in situations where no sequence with high similar-
ity was available in the TCR database. They foresaw a promis-
ing advancement as TCR structural modeling tools improved in
accuracy[20–22] and the repository of available TCR 3D structures
for modeling templates expanded.[23]

In 2021, Ehrlich introduced SwarmTCR, a method that com-
bines sequence-based approach with structural information.[24]

SwarmTCR uses CDR sequences to predict TCR specificity us-
ing a nearest-neighbor approach. The approach works by opti-
mizing the weights of the individual CDR regions to maximize
classification performance, a knowledge taken from TCR-pMHC
structures.[25] CDRs receive varying weightings based on the pre-
sented peptide and the MHC type to accurately represent the
TCR’s contribution to pMHC binding. SwarmTCR showed com-
parable performance to TCRdist when using TCR sequence in-
formation from single cell and bulk data recognizing 5 different
pMHCs.[24] The performance, robustness and generalizability of
this approach was highly dependent on the training data and it
has therefore proved difficult to extend its use to pMHCs lacking
a large number of known specific TCRs.

Approaches predicting TCR-pMHC binding based on their 3D
structure and on force-field-based modeling have already been
investigated.[26,27] Although physics-based Molecular Modelling
approaches at the atom scale have been proven powerful to op-
timize the affinity of a TCR toward a specific epitope, they are
limited by calculation speeds and therefore can only be applied
to a limited number of TCRs. Recently Lin et al. introduced
RACER (Rapid Coarse-Grained Epitope TCR), a pairwise energy
model capable of rapidly assessing TCR-peptide affinity for large-
scale HLA-matched repertoires.[27] RACER applies supervised
machine learning to distinguish strong from weak TCR-pMHC
pairs, with fixed MHC. The trained parameters further enable a
physical interpretation of the interaction patterns encoded in the
TCR. When structural data for a specific TCR-pMHC pair is un-
available, TCR-pMHC models based on TCR-pMHC experimen-
tal structures are built. Even though this approach depends on
the training data and that pairwise interactions are only one of
several factors influencing epitope recognition, this tool can be
used to understand general questions regarding TCR and rele-
vant antigen landscape. However, it is challenging to use this ap-
proach for TCR and pMHC pairing from a pool of thousands of
candidates, since i) this would require making a model for all pos-
sible TCR-pMHC combinations including structural relaxation,
and because ii) the scope would be limited by the fact that the ap-
proach requires treating the different alleles separately and the
TCR-pMHC structure of the allele of interest has to exist on Pro-
tein Data Bank (PDB).[25,28]
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Figure 1. Representative scheme for the clustering pipeline used in TCRpcDist-3D. The clustering pipeline consists of four main steps. First, all possible
sliding windows of 4 residues that constitute the so-called 4-mer subunits are identified. The CDR residues that cannot directly contact the peptide,
as determined by their solvent accessibility in the structural models, can be excluded from the process. Next, each 4-mer subunit is converted into a
biophysicochemical representation using 5 Atchley factors. For each CDR of a pair of TCRs, all the n 4-mer motifs that are possible to construct from the
first TCR with all the m possible 4-mer motifs of the second TCR are compared. This results in n × m matrix comparisons for each CDR for each pair of
TCRs. The matrix comparisons are performed via a Manhattan distance score normalized over the maximum possible distance. This score ranges from
0, for 4-mers sharing the same biophysicochemical properties, to 1, for 4-mers that have the highest difference in biophysicochemical properties. The
method was developed using TCR-pMHC PDB structures before being tested for use with TCR homology models for broader applications. The clustering
accuracy is found maximal when a weighting of ≈30% is applied to the subset of amino acids in CDR3𝛼 or CDR3𝛽 and a weighting of 10% are given to
the subset of amino acids in CDR1𝛼, CDR2𝛼, CDR1𝛽, or CDR2𝛽, respectively. The clustering accuracy is better when, together with the weighting factors,
only residues sufficiently exposed to the solvent, thus potentially able to contribute to the pMHC binding interface, are part of the 4-mers.

Building on the previously described methods and overcom-
ing their constraints, we developed TCRpcDist (TCRs Physico-
Chemical Distances), an innovative and fast approach that al-
lows TCR clustering by analyzing the biophysicochemical prop-
erties of the relevant 4-mer residue motifs of CDR1𝛼, CDR2𝛼,
CDR3𝛼, CDR1𝛽, CDR2𝛽, and CDR3𝛽. TCRpcDist was compared
with other existing approaches and further validated using pub-
lic and private CD8+ TCR datasets (class I MHC interactions).
We report that TCRpcDist identifies: 1) TCRs clusters that are
likely to bind the same known epitopes and 2) the most proba-
ble epitope targeted by an orphan TCR from a pool of pMHCs
for which TCR binders are known, ultimately resulting in the
successful deophanization of multiple viral and tumor-specific
TCRs.

2. Results

TCRpcDist is a novel and fast approach that calculates distances
between TCRs using a metric related to the physico-chemical

properties of the most important residues of these receptors. The
clustering pipeline consists of four main steps, (Figure 1). First,
all possible sliding windows of 4 residues that constitute the so-
called 4-mer subunits are identified on the CDRs of the TCR. The
CDR residues that cannot directly contact the peptide, as deter-
mined by their solvent accessibility in the structural models, can
be excluded from the process. Next, each 4-mer subunit is con-
verted into a biophysicochemical representation using 5 Atchley
factors. For each CDR of a pair of TCRs, all the n 4-mer motifs
that are possible to construct from the first TCR with all the m
possible 4-mer motifs of the second TCR are compared. This re-
sults in n × m matrix comparisons for each CDR for each pair of
TCRs. The matrix comparisons are performed via a Manhattan
distance score normalized over the maximum possible distance.
This score ranges from 0, for 4-mers sharing the same biophysic-
ochemical properties, to 1, for 4-mers that have the highest dif-
ference in biophysicochemical properties. The method was de-
veloped using TCR-pMHC PDB structures before being tested
for use with TCR homology models for broader applications. The
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Figure 2. TCRpcDist clustering TCRs and correlating with their specificity. A) shows hierarchical clustering of a set of 54 TCRs recognizing 16 different
pMHC using the Atchley-based distance considering only sliding windows of 4 consecutive residues of the CDR3𝛽. After clustering, each TCR is colored
according to the pMHC it binds. The sequence of the bound peptide is also given; B) quality of the cluster as measured by the number of color changes
and the pMHC-distance, for diverse weightings of the contributions of the various CDRs. The maximal clustering efficiency is highlighted in yellow and
obtained when each CDR3s contribute by 30% and each of the remaining CDRs by 10% to the distance calculation; C) shows the hierarchical clustering
of a set of 54 TCRs recognizing 16 different pMHC using the Atchley-based distance considering all 6 TCR CDRs (i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽,
CDR2𝛽, and CDR3𝛽). After clustering, each TCR is colored according to the pMHC it binds. The sequence of the bound peptide is also given; D) exploring
the best nSESA threshold. The clustering efficiency as measured by the number of color changes and the pMHC-distance is maximal when residues with
nSESA < 5% in CDRs 1 and 2 and residues with nSESA < 20% in CDRs 3 are excluded from the distance calculation; E) shows hierarchical clustering
of a set of 54 TCRs recognizing 16 different pMHC using the Atchley-based distance considering all 6 TCR CDRs (i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽,
CDR2𝛽, and CDR3𝛽), as well as residues buriedness calculated on the PDB structures. After clustering, each TCR is colored according to the pMHC it
binds. The sequence of the bound peptide is also given; F) illustrates how solvent exposed residues are included in the distance calculation while buried
residues are excluded (The TCR structure corresponds to PDB ID 4JRX); G) shows hierarchical clustering of a set of 54 TCRs recognizing 16 different
pMHC using the Atchley-based distance considering all 6 TCR CDRs (i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽, CDR2𝛽, and CDR3𝛽), as well as residues
buriedness calculated on 3D models created by our pipeline that models TCRs from sequences. After clustering, each TCR is colored according to the
pMHC it binds. The sequence of the bound peptide is also given; H) table shows how often a TCR with the same specificity is found in the top 1, 2, 5 and
10 TCRs with the closest distances using 4 versions of TCRpcDist (using just CDR3𝛽, using all CDRs, using all CDRs + nSESA (residues buriedness)
taken from PDB structures and using all CDRs + nSESA (residues buriedness) taken from 3D models constructed by our pipeline to model sequences).
Area Under ROC curve (AUC) as a measure of accuracy and respective standard deviation is also presented.
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clustering accuracy is found maximal when a weighting of ≈30%
is applied to the subset of amino acids in CDR3𝛼 or CDR3𝛽 and
a weighting of 10% are given to the subset of amino acids in
CDR1𝛼, CDR2𝛼, CDR1𝛽, or CDR2𝛽, respectively. The clustering
accuracy is better when, together with the weighting factors, only
residues sufficiently exposed to the solvent, thus potentially able
to contribute to the pMHC binding interface, are part of the 4-
mers. (Figure 1). We propose 3 different versions of the approach:
i) using only the TCR CDR3𝛽 loop sequence, TCRpcDistCDR3𝛽 ; ii)
using all the 6 CDR loops sequences, TCRpcDist6CDRs, and iii)
using all the 6 CDR loops together with their solvent accessibil-
ity information in their experimental or modeled 3D structures,
TCRpcDist-3D. The ability of the three different versions of the
approach to cluster TCR repertoire is extensively assessed and
compared with state-of-the-art competitors. Finally, TCRpcDist-
3D is applied to the TCR repertoires of cancer patients result-
ing in the identification and experimental validation of cognate
pMHC for 11 orphan TCRs.

2.1. The Maximal Clustering Efficiency of TCRpcDist is Obtained
When Taking the Solvent Accessibility of the CDRs Residues into
Account

TCRpcDist approach was developed using 54 TCRs recogniz-
ing 16 distinct known pMHC taken from experimentally de-
termined structures of class I TCR-pMHC complexes stored
in the PDB (Table S1, Supporting Information). Given that
the 3D version of our approach considers aspects of TCR-
pMHC 3D interactions, we developed TCRpcDist using a
dataset of TCRs for which the TCR-pMHC 3D structures are
known. Consequently, a set of 54 non-redundant TCRs was the
largest available set for developing our approach as of June
2020.

Our analysis was first carried out with TCRpcDistCDR3𝛽 as-
suming that the CDR3𝛽 loop of a TCR makes most of the in-
teractions with the peptide presented by the pMHC. The clus-
tering results, illustrated in Figure 2A, were determined solely
based on TCRpcDistCDR3𝛽 , without consideration of the corre-
sponding cognate pMHCs. The coloring according to the TCR
specificity was applied afterward, to display if similar TCRs in-
deed bind identical pMHC. We observed that, even though only
CDR3𝛽 residues were used to calculate distances, clusters of re-
ceptors binding the same pMHC tend to spontaneously form. We
measured the number of times the color changed between two
successive nodes in the hierarchical clustering tree (Figure 2A)
as a qualitative measure of the clustering efficacy, starting from
the upper node and turning clockwise. Thirty-nine color changes
were observed, which was an encouraging result since a random
clustering provided an average of 51 color changes (p < 0.0001).
The quality of the clustering was also determined by a more quan-
titative metric, pMHC-distance, defined as the average branch
length distance between all possible pairs of TCR nodes that
recognize the same pMHC. The lower this average, the closer
the TCRs binding the same pMHC are grouping in this hierar-
chical clustering. The average pMHC-distance was 0.52 for the
hierarchical clustering generated by TCRpcDistCDR3𝛽 (Table 1)
while a random clustering provided a pMHC-distance of 0.94
(p < 0.0001).

Our analysis was afterward carried out by considering the con-
tributions of all six CDR loops, i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼,
CDR1𝛽, CDR2𝛽, and CDR3𝛽 in our TCR distance definition,
TCRpcDist6CDRs. The quality of the resulting clustering as mea-
sured by the color change and the pMHC-distance in the hierar-
chical clustering tree was optimized by weighting the contribu-
tion of the different CDRs (Figure 2B). The clustering relevance
was maximal when weighting values of 30% were applied to the
subset of amino acids in CDR3𝛼 or CDR3𝛽 and of 10% to the
subset of amino acids in CDR1𝛼, CDR2𝛼, CDR1𝛽, or CDR2𝛽
(Figure 2B). To avoid overfitting the model on the developmen-
tal set, we did not perform a full sampling of the effects of the
weights to optimize their values. The hierarchical clustering us-
ing all CDRs (Figure 2C) was much better at grouping together
TCRs that bind the same pMHC, with only 31 color changes
(p < 0.0001 compared to random), compared to 39 when con-
sidering only CDR3𝛽 (p-value < 0.0001, Figure 2A). Concomi-
tantly, the pMHC-distance decreased to 0.44, compared to 0.52
when considering only CDR3𝛽 (p-value < 0.0001, Table 1). For
example, the 3 TCRs recognizing the peptide LPEPLPQGQL-
TAY, with PDB codes 4JRY, 4JRX, and 2AK4 were not clustered
when based exclusively on CDR3𝛽 (pink slices were separated in
Figure 2A). The clustering efficiency improved when consider-
ing all the CDRs, with 2 TCRs (2AK4 and 4JRX) out of 3, now
grouped together (Figure 2B). 2AK4 and 4JRX clustered together
using all CDRs as they share the same TRAV, CDR3𝛼, and TRBV
genes, i.e., same CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽, and CDR2𝛽
(Table S1, Supporting Information). Of note, when working with
bulk sequencing data, 𝛼𝛽 pairing information is not available
and, despite the lower accuracy of the approach using uniquely
CDR3𝛽 information, this method can still be effectively used for
clustering purposes, with much better results than at random
(p-value < 0.0001). The relevance of the clustering approach us-
ing exclusively CDR3𝛽 residues was already shown in a previous
study.[5]

Finally, our analysis was performed considering the solvent ac-
cessibility of the 6 CDRs loops’ residues in the TCR 3D struc-
ture, TCRpcDist-3D. CDRs residues buried into the TCR struc-
ture were not considered in the TCR distance calculation as they
were not available for the pMHC interaction. Normalized Solvent
Excluded Surface Area (nSESA) for all residues in the 6 CDRs
were calculated on the experimental 3D structures of the TCRs
(SESA values per TCR per CDR residue can be seen in Data S1
(Supporting Information) and the clustering efficiency was tested
on different SESA thresholds (Figure 2D). Then, the residues of
CDRs 1 and 2 (𝛼 and 𝛽), with a nSESA > 5% were considered for
TCR distance calculation, while a threshold of 20% was applied
for the two CDR3s (𝛼 and 𝛽), this combination of parameters
giving the maximum clustering efficiency. Accordingly, the dis-
tances between CDRs were calculated using sliding windows of
4 consecutive solvent-exposed residues, and not necessarily con-
secutive residues. Indeed, Ostmeyer et al. already showed that
the residues interacting pMHC are not necessarily consecutive
in the TCR structure.[10] Taking the buriedness of the residues
into account enhanced the quality of the clustering (Figure 2E).
The number of color changes in the hierarchical clustering tree
reached 29 and the pMHC-distance decreased to 0.39 (p < 0.0001
compared to random and compared with previous versions of the
approach) (see Table 1). Noticeably, we observed in Figure 2F that
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Table 1. Average branch length distance and number of clusters (#n) per peptide in the hierarchical clustering tree for the PDB set considering different
versions of TCRpcDist to calculate the distance: considering only CDR3𝛽 TCRpcDistCDR3𝛽 , or all CDRs, TCRpcDist6CDRs, and all CDRs+ nSESA based
on experimental 3D structure (PDB) and all CDRs+ nSESA based on 3D structural models, TCRpcDist-3D. Each peptide contributes with the same
weight (1/16) to the final pMHC-distance, to prevent this measure to be biased by the most frequent pMHCs. The number of TCRs per peptide is also
presented, in column1.

n. TCRS peptide TCRpcDist-CDR3𝛽 TCRpcDIist-6CDRs TCRpcDist-3D (PDB
structures)

TCRpcDist-3D (3D models)

pMHC-distance n. clusters pMHC-distance n. clusters pMHC-distance n. clusters pMHC-distance n. clusters

2 APRGPHGGAASGL 0.90 #2 0.52 #2 0.49 #2 0.66 #2

2 ASNENMETM 0.68 #2 0.11 #1 0.14 #1 0.16 #1

8 ELAGIGILTV 0.67 #5 0.60 #3 0.42 #2 0.47 #3

3 FLRGRAYGL 0.83 #3 0.74 #3 0.71 #2 0.73 #3

7 GILGFVFTL 0.66 #5 0.64 #3 0.48 #3 0.55 #3

3 HPVGEADYFEY 0.00 #1 0.00 #1 0.00 #1 0.00 #1

2 ILAKFLHWL 0.00 #1 0.16 #1 0.06 #2 0.12 #2

2 IPLTEEAEL 0.12 #1 0.69 #2 0.85 #2 0.92 #2

2 KLVALGINAV 0.76 #2 0.17 #1 0.18 #1 0.19 #1

3 LLFGXPVYV 0.45 #3 0.57 #2 0.33 #2 0.26 #2

3 LPEPLPQGQLTAY 0.72 #3 0.47 #2 0.58 #2 0.55 #2

3 NLVPMVATV 0.77 #3 0.54 #2 0.64 #2 0.64 #3

4 QLSPFPFDL 0.00 #1 0.22 #1 0.20 #1 0.12 #1

4 RXPLTFGWCF 0.85 #4 0.64 #4 0.65 #4 0.76 #4

4 SLLMWITQX 0.00 #1 0.10 #1 0.03 #1 0.09 #1

2 VMAPRTLIL 0.96 #2 0.91 #2 0.53 #2 0.70 #2

– Average 0.52 – 0.44 – 0.39 – 0.43 –

– STDEV 0.37 – 0.28 – 0.27 – 0.29 –

the 4th residue of the CDR3𝛽 i.e., Pro in this example, excluded
from the distance calculation in TCRpcDist6CDRs, is sufficiently
solvent exposed and should be considered for the analysis of the
TCR distance. Indeed, the 3D structure of the complex TCR-
pMHC PDB ID 4JRX confirmed that the Pro residue contacts
the peptide (Figure S1, Supporting Information). This illustrated
that approaches that systematically get rid of the first 4 and the
last 3 residues from the CDR loops,[10,15] since they are supposed
to be likely buried, might in fact accidentally remove residues rel-
evant for binding. TCRpcDist-3D avoided this approximation by
computing the nSESA for all CDR residues to determine their
solvent accessibility and excluded the buried residues (nSESA <

20%) from the distance calculation.
Since CDR loops of TCR are extremely flexible and since we

will be using TCR 3D models instead of X-ray structures in real
case applications, we clustered these TCRs using structural mod-
els instead of experimental structures (Figure 2G). TCR mod-
els were constructed without using templates that share the
same genes as the query TCR to make the exercise less obvi-
ous. We observed a much better clustering efficiency for sev-
eral pMHC-related TCRs when using nSESA from structural
models compared to the version of the approach without any
structural information (Table 1). The hierarchical clustering tree
showed that, for example, the TCRs recognizing the peptide
ELAGIGILTV clustered much better when solvent accessibility
was considered whether we were using structural models or ex-
perimental structures (purple slices more spread in Figure 2A,C
and closer in Figure 2E,G). The average of the branch length

distance between the nodes of ELAGIGILTV-specific TCRs de-
creased from 0.67, to 0.60, to 0.47 and ultimately to 0.42 us-
ing respectively, TCRpcDistCDR3𝛽 , TCRpcDist6CDRs, TCRpcDist-
3D with 3D models and TCRpcDist-3D with 3D structures
(Table 1).

To further compare the different versions of the approach, we
calculated how often a TCR with the same specificity was found
in the top 1, 2, 5, and 10 closest TCRs (nearest neighbours) us-
ing different versions of TCRpcDist (Figure 2H). An increase of
that frequency was observed at rank 10, progressing from 66.7%
(TCRpcDistCDR3ß) to 79.6% (TCRpcDist6CDRs), p-value < 0.001,
and ultimately to 81.5% (TCRpcDist-3D, using either 3D exper-
imental or modeled structures), p-value = 0.3. The increase is
significant between TCRpcDistCDR3ß and TCRpcDist6CDRs and
continues between TCRpcDist6CDRs to TCRpcDist-3D, although
less significantly. Thus, the inclusion of 3D structures provides
added value for several specificities, although it is less efficient for
others. This was in line with the improvement of the scores re-
lated to the hierarchical clustering trees, i.e., the number of color
changes and the pMHC-distance, as hierarchizations consider
all the distances between all the possible pairs (here 54*54 dis-
tances). Interestingly, using TCRpcDist-3D with models at rank
1, 2, 5, and 10, we found the right selectivity within the clos-
est TCRs in 61.1%, 64.8%, 74.1%, and 81.5% of the cases, re-
spectively, which was better than what was obtained when using
experimental structures or even better than the TCRpcDist6CDRs

(Figure 2H). We observed that some TCRs with identical speci-
ficity and with high sequence identity were structurally closer
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in structural models than in experimental structures, explaining
these improvements in the ranks.

In July 2024, in response to the increased number of TCRs de-
posited in the PDB, we reassessed our approach using a set of 96
TCRs that recognize 48 distinct known pMHCs. We observed that
the weighting parameters and the solvent accessibility thresholds
developed using 54 TCRs and 16 pMHC and employed in the cur-
rent version of TCRpcDist remain valid. See Data S2 (Supporting
Information).

2.2. Clustering Efficiency of TCRpcDist Using a Private Data Set
of TCRs

The approach was then applied to a private set of 45 TCRs
with 12 different known cognate pMHCs from 4 melanoma
patients (Mel#1-#4) (most described in Arnaud et al.,[29] Table
S2, Supporting Information). Since the experimental 3D struc-
ture of these TCRs is unknown, the buriedness of all the
CDR residues was calculated based on TCR models. The hier-
archical clustering trees for this assessment set were depicted
in Figure 3 and as for the previous set, we measured the
quality of the clustering by color change and pMHC-distance.
The number of color changes was 33 using TCRpcDistCDR3𝛽

(Figure 3A), 33 using TCRpcDist6CDRs (Figure 3B), and 27 with
TCRpcDist-3D (Figure 3C), which was much better than random
(p-value<0.0001 in all cases). The pMHC-distance was 0.33, 0.31,
and 0.30 for these three TCRpcDist variants, respectively. Once
again, we observed an increase of the clustering efficiency us-
ing TCRpcDist-3D, confirming the robustness of the approach,
even though we were using TCR structural models instead of
TCR experimental structures. Calculation of TCR loop conforma-
tions being stochastic, TCRpcDist-3D is itself stochastic, contrar-
ily to TCRpcDist which is deterministic. However, the variabil-
ity on calculated TCRpcDist-3D distances between several runs,
starting from the same input, remains very limited (See Data S3,
Supporting Information) and does not change the conclusions of
TCR distance analysis.

Hierarchical clustering trees (Figure 3A–C) showed that, for
example, the TCRs recognizing the peptide ELAGIGILTV (over-
represented in the set with 27% of all TCRs recognizing it,
Table S2, Supporting Information) clustered much better with
TCRpcDist-3D (purple slices closer in Figure 3C). Nevertheless,
even at this level of approximation (Figure 3C) they formed sub-
clusters instead of a single cluster. On the contrary, the TCRs
recognizing the same peptide – also overrepresented in the PDB
(17% of the TCRs, Table S1, Supporting Information) – formed
mainly a single cluster when applying TCRpcDist-3D either us-
ing PDB structures or models (Figure 2E,G). Sub-clusters of
ELAGIGILTV were formed in the present set due to a much
higher TCR sequence variability. TCRs recognizing ELAGIG-
ILTV in this set exhibited 10 different TRAV genes, 8 differ-
ent TRBV genes, 18 different AA in CDR3𝛼 and 16 in CDR3𝛽,
while TCRs recognizing ELAGIGILTV in the PDB set showed
only 2 different TRAV genes (87.5 % of the TCRs recogniz-
ing TRAV12-2), 5 different TRBV genes and 12 different AA in
CDR3𝛼 and 𝛽. The statistics regarding the different composi-
tion of the TCRs recognizing ELAGIGILTV are given in Table S3
(Supporting Information). Clustering this private set was chal-

lenging as it contained singleton TCRs and high sequence vari-
ability for TCRs recognizing the same peptide. Still the clus-
tering efficiency was remarkable, especially for TCRpcDist-3D.
TCR pairs with the closest distance (top 1) shared the same
specificity in 28.9%, 37.8%, and in 44.4% of the cases, respec-
tively for TCRpcDistCDR3𝛽 , TCRpcDist6CDRs, and TCRpcDist-3D
(p-values <0.0001) (Figure 3D). The predictive power of our ap-
proach was increased by considering the top 2, top 5 or the
top 10 closest TCRs to a given TCR. Indeed, the specificity of
a given TCR was shared by at least one of the 2, 5, and 10 top-
ranked TCRs in 42.2%, 60.0%, and 75% of the cases, respec-
tively, when using TCRpcDistCDR3𝛽 (p-value < 0.0001). When
using TCRpcDist6CDRs, the success increased to 46.7%, 62.2%,
and 75.6%, and even reached 64.4%, 75.6%, and 77.8% for
TCRpcDist-3D (Figure 3D). The gain was impressive when com-
paring the data with and without 3D information (maximum gain
of 22.2% points for rank 2 when comparing TCRpcDistCDR3𝛽 with
TCRpcDist-3D). We note that this set contained singleton pep-
tides for 6 TCRs, for which it was impossible to find a TCR pair
with the same specificity, hence the maximum probability of find-
ing a TCR pair was 86.7% and not 100%. We used structural mod-
els instead of experimental structures and once again the supe-
rior accuracy TCRpcDist-3D was confirmed.

2.3. TCRpcDist-3D Compares Favorably to State-Of-The-Art
Approaches

We applied one of the most renown and freely available method,
TCRdist3,[17] to analyze the diversity and complexity of the above
mentioned private set, Figure 3E, and compared with TCRpcDist-
3D, Figure 3C. The private set of TCRs was not used to train either
of these two approaches, thus ensuring an unbiased comparison.
For TCRdist3 we observed a hierarchical clustering with 31 color
changes and a pMHC-distance of 0.38, while for TCRpcDist-3D
we obtained 27 color changes and a pMHC-distance of 0.30. This
significant difference in the number of color changes and pMHC-
distance values (p < 0.0001), indicated a slightly higher cluster-
ing efficiency for TCRpcDist-3D on this set. To evaluate if we
can use both TCRpcDist-3D and TCRdist3 in a consensus way,
and possibly generate a synergy between the two approaches,
we combined TCRpcDist-3D and TCRdist3 normalized distances
(between 0 and 1), each approach contributing to 50% of the
final new TCR distances. The corresponding hierarchical clus-
tering (Figure S2, Supporting Information) presented 30 color
changes and a pMHC-distance of 0.36, which was better than
TCRdist3 but worse than TCRpcDist-3D, illustrating that there
was no added value using the two approaches in this manner and
in this case.

We also quantified the outcome of the similarity principle us-
ing TCRpcDist-3D, TCRdist3 and TCRbase (web server: https:
//services.healthtech.dtu.dk/services/TCRbase-1.0/), and ana-
lyzed the frequency with which the TCR with the smallest dis-
tance from a given one recognizes the same pMHC. Our findings
indicated that all three approaches are valuable, albeit with slight
differences in performance. TCRdist3 exhibited the highest suc-
cess rate in pairing TCRs with the same specificity when con-
sidering the TCR with the closest distance (rank 1), achieving a
success rate of 46.7%, compared to 44.4% for TCRpcDist-3D and
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Figure 3. TCRpcDist clustering TCRs and correlating with their specificity using a private set of TCRs with known specificity. A) shows the hierarchical
clustering of a test set of 45 TCRs recognizing 12 different pMHC using the Atchley-based distance considering only sliding windows of 4 consecutive
residues of the CDR3𝛽. These TCRs were not used to choose the TCRpcDist parameters. After clustering, each TCR is colored according to the pMHC
it binds. The sequence of the bound peptide is also given; B) shows the hierarchical clustering of a set of 45 TCRs recognizing 12 different pMHC
using the Atchley-based distance and considering all 6 TCR CDRs (i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽, CDR2𝛽, and CDR3𝛽). After clustering, each
TCR is colored according to the pMHC it binds. The sequence of the bound peptide is also given; C) shows the hierarchical clustering of a set of 45
TCRs recognizing 12 different pMHC using the Atchley-based distance, considering all 6 TCR CDRs (i.e., CDR1𝛼, CDR2𝛼, CDR3𝛼, CDR1𝛽, CDR2𝛽, and
CDR3𝛽) as well as residues buriedness. After clustering, each TCR is colored according to the pMHC it binds. The sequence of the bound peptide
is also given; D) table shows how often a TCR with the same specificity is found in the top 1, 2, 5 and 10 TCRs with the closest distances using the 3
versions of TCRpcDist, TCRbase (webserver: https://services.healthtech.dtu.dk/services/TCRbase-1.0/) and TCRdist3[14] approaches. AUC as a measure
of accuracy and respective standard deviation is also presented; E) shows hierarchical clustering of a set of 45 TCRs recognizing 12 different pMHC
using TCRdist3.[14]

TCRbase 1.0 (Figure 3D). However, TCRpcDist-3D performed
better than the others when the two closest TCRs were consid-
ered (rank 2), with a success rate of 64.4%, compared to 62.2%
for TCRdist3 and 46.7% for TCRbase 1.0. TCRpcDist-3D outper-
formed TCRdist3 at rank 5, while all approaches exhibited simi-
lar success rate at rank 10 (Figure 3D). These results reflects with
the better scores in terms of color changes and pMHC-distance
shown by TCRpcDist-3D, as the hierarchical clustering trees rep-
resented the distances between all TCR pairs, and not just the
closest TCR or a given rank.

Among the 12 different peptides present in our private set,
only two (ELAGIGILTV and RAKFKQLL) are covered by pre-
trained models of the NetTCR-2.2 webserver (https://services.
healthtech.dtu.dk/services/NetTCR-2.2/). Therefore, we investi-
gated if NetTCR-2.2 could accurately predict the specificity of
each TCR in the private set, known to bind ELAGIGILTV and
RAKFKQLL, by ranking these peptides highest among the 26
possibilities. For these two TCRs, we analyzed the frequency
with which the peptides scored highest (rank 1 and rank 2) cor-
responded to the known binders and compared these results
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Figure 4. ROC curves computed using the TCRpcDist-3D and
TCRdist3[9,17] approaches for 4 independent sets: the private set of
45 TCRs, the set of 84 PDB structures, the 10X Genomics set comprising
1′956 TCRs and the VDJdb2022 comprising 8′128 TCRs covering 337
pMHC bound by a single TCR and 334 pMHC bound by at least two TCRs.

with the specificities inferred by the nearest neighbors (rank 1
and rank 2) using TCRpcDist-3D, TCRbase, and TCRdist3 as
described in the previous paragraph. Although the comparison
conducted here with NetTCR-2.2 was different, the objective re-
mained the same: inferring the specificities of a given TCR. At
rank 1, for the TCRs recognizing ELAGIGILTV, the success in
predicting the correct specificity was lower for NetTCR-2.2, with
a correct prediction in 41.7% of cases, while the success rate
was 50% for TCRpcDist-3D, TCRdist3, and TCRbase. At rank 2,
NetTCR-2.2 maintained the same number of correct predictions,
while all other approaches increased in accuracy, achieving 58.3%
for TCRbase, 78.0% for TCRpcDist-3D, and 83.3% for TCRdist3.
The success rates were lower for all four approaches when analyz-
ing the TCRs recognizing RAKFKQLL, with the following results
at ranks 1 and 2, respectively: 20% and 40% for TCRpcDist-3D,
20% and 20% for NetTCR-2.2, 0% and 0% for TCRbase, and 40%
and 60% for TCRdist3. TCRdist3 performed better for this subset
and these two particular specificities at ranks 1 and 2, but not for
the entire private set (Figure 3D) where TCRpcDist-3D showed
the same accuracy at rank 1 and outperformed TCRdist3 at rank
2. These results are discussed in Data S4 (Supporting Informa-
tion).

We further compared TCRpcDist-3D and TCRdist3 using a
standard metric of the classification success, the receiver operat-
ing characteristic curve (ROC), to assess the performance of the
nearest-neighbors distance. ROC curves were computed for 4 in-
dependent sets: a set of 84 experimental structures, the private
set of 45 TCRs (Table S2, Supporting Information), the 10X Ge-
nomics set comprising 1′956 TCRs (see methods and Table S4,
Supporting Information) and the VDJdb2022 comprising 8′128
TCRs and covering 337 pMHC bound by a single TCR and 334
pMHC bound by at least two TCRs (Table S5, Supporting In-
formation). The area under these ROC curves (AUC) ranged
between 62% and 67% for both TCRpcDist-3D and TCRdist3
(Figure 4). The overall accuracy of both predictors was satisfac-
tory but not very high, notably due to the presence of TCRs with
a single specificity that were impossible to pair and the pres-

ence of pMHCs recognized by only a few different TCRs. Glob-
ally TCRpcDist-3D and TCRdist3 provided significantly similar
results.

To test the predictive power for a given peptide, we did 6
cross-validations by randomly allocating 30% of all TCRs spe-
cific for a pMHC as a reference. We tested how often the TCRs
with the lowest distances recognize the same peptide when com-
pared with the reference, and calculated sensitivity and speci-
ficity. For this analysis we took the 40 most represented peptides
in VDJdb2022 (each peptide having at least 20 specific TCRs)
and the average of the AUC was calculated together with its stan-
dard deviation for each given pMHC (Table 2). Results showed
that the efficacies of TCRpcDist-3D and TCRdist3 are peptide-
dependent. TCRpcDist-3D was better at predicting TCR specifici-
ties for certain peptides such as AVFDRKSDAK, NLVPMVATV,
IVTDFSVIK, SPRWYFYYL, CINGVCWTV, RLRAEAQVK, and
NQKLIANQF with AUC showing higher AUC (p-value< 0.0001),
while TCRdist3 was better at predicting specificities for cer-
tain peptides such as RLPGVLPRA, RAKFKQLL, PTDNYITTY,
NYNYLYRLF, RAQAPPPSW, YLQPRTFLL, and LLWNGPMAV
showing higher AUC (p-value < 0.0001). The approaches yielded
comparable results for the remaining 26 peptides evaluated.

A comparison with the predictive model SwarmTCR, is pre-
sented in Data S4 (Supporting Information) further illustrating
the competitiveness of TCRpcDist.

2.4. Applying Distance Thresholds on TCRpcDist-3D Yields
>90% Accurate Pairing TCRs of the Same Specificity

Encouraged by these results we further analyzed TCRpcDist-3D
distance behavior. We computed the probability of a TCR pair
to share the same pMHC as a function of the TCRpcDist-3D
value (Figure S3, Supporting Information) using 10X Genomics
data set. We observed that for this data set at a distance 0.15, the
probability of a peptide pair to share the same pMHC was 50%.
This probability increased when the distance between two TCRs
decreased, reaching a maximum probability of 85% when the dis-
tance was 0. We recomputed the same probability as a function of
the TCRpcDist-3D value for the 10X subset without the overrep-
resented KLGGALQAK (Figure S3, Supporting Information) and
the behavior was nearly the same. At a distance 0.17 the probabil-
ity of a peptide pair to share the same pMHC was 50%. Again, the
lower the distance between two TCRs the higher the probability
they shared the same pMHC, reaching a maximum probability of
≈90% when the distance was 0. We studied how frequently, start-
ing from a given TCR, it is possible to find another TCR with the
same specificity in the 1, 2, 5, and 10 top-ranked TCRs (Figure 5).
We performed this analysis without any distance threshold and
afterward with thresholds of 0.15 and lower (Figure 5) consider-
ing that the probability of sharing the same specificity is higher
at these values (inflexion point in the sigmoid curve, Figure S3,
Supporting Information). TCR pairs with the closest TCRpcDist-
3D (rank 1) shared the same specificity in 53.9% of the cases,
which is much better than what can be obtained by random
assignments (19% success; p-value < 0.0001). The predictive
power of TCRpcDist-3D was increased considering the top 5
and the top 10 closest TCRs. Indeed, the specificity of a given
TCR was shared by at least one of the 5 and 10 top-ranked TCRs
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Table 2. TCRpcDist-3D versus TCRdist3: comparison of their predictive power for the 40 most represented peptides on VDJdb2022. Average of the area
under receiver operating characteristic curves (AUC) and standard deviations are presented per approach and per peptide. The differences between the
approaches are calculated and the peptide is highlighted in bold when the differences between the approaches are significant, with p-values < 0.0001.

Peptide TCRpcDist-3D TCRdist3 [AUC(TCRpcDist-3D)]- [AUC(TCRdist3)]

AUC SD AUC SD

AVFDRKSDAK 56.78% 0.08% 54.63% 0.08% 2.2%

NLVPMVATV 67.30% 0.12% 65.42% 0.12% 1.9%

IVTDFSVIK 65.86% 0.13% 64.06% 0.29% 1.8%

SPRWYFYYL 70.72% 0.25% 69.04% 0.19% 1.7%

CINGVCWTV 72.91% 0.20% 71.34% 0.35% 1.6%

RLRAEAQVK 68.26% 0.15% 67.24% 0.27% 1.0%

GPRLGVRAT 75.88% 0.23% 75.02% 0.24% 0.9%

HPVTKYIM 76.12% 0.19% 75.47% 0.17% 0.6%

RVAGDSGFAAY 77.79% 0.20% 77.15% 0.20% 0.6%

FTSDYYQLY 77.27% 0.22% 76.70% 0.27% 0.6%

NQKLIANQF 74.95% 0.16% 74.38% 0.12% 0.6%

RPHERNGFTVL 77.29% 0.27% 76.79% 0.10% 0.5%

QYIKWPWYI 76.55% 0.19% 76.06% 0.23% 0.5%

ATDALMTGF 72.47% 0.30% 72.02% 0.22% 0.4%

LTDEMIAQY 71.79% 0.16% 71.37% 0.15% 0.4%

ALWEIQQVV 77.26% 0.13% 76.88% 0.20% 0.4%

VYFLQSINF 76.74% 0.10% 76.43% 0.13% 0.3%

DATYQRTRALVR 73.47% 0.31% 73.24% 0.18% 0.2%

LLFGYPVYV 76.75% 0.13% 76.52% 0.13% 0.2%

RTLNAWVKV 76.68% 0.12% 76.51% 0.12% 0.2%

AYAQKIFKI 77.06% 0.11% 76.99% 0.08% 0.1%

FLYALALLL 80.27% 0.05% 80.26% 0.07% 0.0%

TPRVTGGGAM 98.46% 0.01% 98.47% 0.01% 0.0%

KSKRTPMGF 98.25% 0.01% 98.26% 0.01% 0.0%

LLYDANYFL 78.17% 0.13% 78.19% 0.14% 0.0%

RPPIFIRRL 77.68% 0.16% 77.92% 0.14% -0.2%

ALSKGVHFV 77.09% 0.12% 77.34% 0.13% -0.3%

YSEHPTFTSQY 77.26% 0.21% 77.51% 0.09% -0.3%

TTDPSFLGRY 68.52% 0.20% 69.11% 0.25% -0.6%

ELAGIGILTV 76.71% 0.12% 77.31% 0.23% -0.6%

RLPGVLPRA 75.94% 0.13% 76.61% 0.19% -0.7%

GLCTLVAML 70.41% 0.31% 71.31% 0.42% -0.9%

PTDNYITTY 77.42% 0.20% 78.39% 0.17% -1.0%

RAKFKQLL 65.34% 0.17% 66.32% 0.11% -1.0%

KLVALGINAV 77.56% 0.36% 78.54% 0.20% -1.0%

NYNYLYRLF 79.03% 0.15% 80.05% 0.13% -1.0%

RAQAPPPSW 77.22% 0.16% 78.28% 0.32% -1.1%

YLQPRTFLL 70.31% 0.30% 71.40% 0.17% -1.1%

GILGFVFTL 74.07% 0.59% 75.71% 0.55% -1.6%

LLWNGPMAV 72.44% 0.32% 76.52% 0.21% -4.1%

according to TCRpcDist-3D in 78.3% and 85.0% of the cases,
respectively (p-value < 0.0001). By applying distance thresholds,
the predictive ability of TCRpcDist-3D was significantly in-
creased at the cost of decreasing the number of TCRs analyzed.
For example, in 91.0% of the cases, a given TCR of the dataset
shared its specificity with at least one of the other 10 top-ranked

TCRs, if only TCR pairs at a distance lower than 0.15 were con-
sidered (Figure 5). 55.5% of the TCRs from the repertoire were
analyzed with this threshold. We concluded that TCRpcDist-3D
values lower than 0.15 provided a good compromise between
accuracy in the specificity prediction and number of TCRs under
study.
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Figure 5. Percentage of success in pairing TCRs with the same specificity at different TCRpcDist-3D distance thresholds using the 10X Genomics dataset,
after removing the overrepresented KLGGALQAK peptide.

We further observed that TCRs less frequently found in the ref-
erence set (<0.7%, Table 3) are rarely paired with the TCR of the
same specificity, while TCRs with higher representations are eas-
ier to pair (Table 3). To tackle the problem of different abundance
in the repertoire (which we decided to keep mimicking clinical
data) we introduced the enrichment factor (EF), a metric which
determines if the abundance of the TCRs with a given pMHC
specificity has increased in the top 10 closest TCRs relative to the
average abundance in the entire reference database. For a given
specificity, EF is calculated as the ratio between the frequency of
the TCRs with that specificity in the 10 TCRs closest to the query,
and the frequency of the TCRs with that specificity in the en-
tire reference repertoire. The analysis of the EF of the TCRs with
same specificities allows to check if their presence in the top 10
is only an accidental result of their abundance in the repertoire,
or an effect of their similarity to the input TCR, increasing the
confidence in the prediction. We found that we can confidently
predict that two TCRs share the same specificity when their dis-
tances are very low (≪0.15) and their EF is high within the study
set.

2.5. Successful TCRs Deorphanization of Tumor-Infiltrating
Lymphocytes (TILs) from Cancer Patients Using TCRpcDist-3D

TCRpcDist-3D and the clustering described herein were used for
the prediction of TCR specificity, i.e., predicting which pMHC a
TCR could bind. This was done by applying the similarity princi-

ple which states that similar molecules are likely to share similar
bioactivities. Following a strategy well-known in computer-aided
drug design to predict the targets of bioactive compounds,[30]

consisting in i) reverse-screening a library of TCRs for which
we know the specificity (a.k.a. the reference set) to identify
those that are the most similar to the orphan TCR according to
TCRpcDist-3D, and ii) infer the orphan TCR’s probable speci-
ficity from the top 1, 2, 5 to 10 most similar TCRs in the ref-
erence set and their distance from the orphan TCR. Of course,
using this approach, it is only possible to predict a potential
specificity for an orphan TCR if it belongs to the specificities
of the reference TCRs with which it will be compared. Conse-
quently, due to the limited number of TCRs for which the cog-
nate pMHC is already known, it may be that none of the or-
phan TCR binds any of the candidate epitopes. Nevertheless, un-
like machine learning approaches that require multiple TCRs
with a given specificity to make predictions, TCRpcDist can
make predictions with just a single TCR of known specificity
as a reference. If an orphan TCR is found to have a small dis-
tance (≪0.15) from this single TCR with known specificity, we
can be highly confident that the orphan TCR shares the same
specificity.

We applied TCRpcDist-3D to private data with known and un-
known specificities from the previously mentioned 4 melanoma
patients (private set Mel#1-Mel#4), 2 additional melanoma, 1 gas-
trointestinal and 1 lung cancer patients. We carried out four tests
to validate the capacity of TCRpcDist-3D to deorphanize TCRs
based on the similarity principle. In all cases, we were able to
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Table 3. Frequency of the TCRs with the same specificity correctly paired
in the rank1 and in the rank10 when no threshold is applied. Results ob-
tained when applying TCRpcDist-3D to the 10X Genomics data without
the overrepresented peptide KLGGALQAK.

Frequency Peptide Relative frequency rank1 Relative frequency rank10

25.20 AVFDRKSDAK 34.08 93.10

0.72 AYAQKIFKI 0.00 0.00

0.10 CLLWSFQTSA 0.00 0.00

0.31 CYTWNQMNL 0.00 0.00

6.44 ELAGIGILTV 62.70 91.27

0.46 FLASKIGRLV 0.00 0.00

0.87 FLYALALLL 70.59 100.00

26.33 GILGFVFTL 84.66 96.12

2.25 GLCTLVAML 43.18 88.64

0.20 IMDQVPFSV 0.00 0.00

0.15 IPSINVHHY 0.00 0.00

6.85 IVTDFSVIK 32.84 64.93

0.46 KTWGQYWQV 0.00 0.00

0.15 KVLEYVIKV 0.00 0.00

0.31 LLDFVRFMGV 0.00 0.00

0.82 LLFGYPVYV 0.00 6.25

0.20 MLDLQPETT 0.00 0.00

0.15 QPRAPIRPI 0.00 0.00

21.17 RAKFKQLL 69.08 97.34

5.32 RLRAEAQVK 9.62 44.23

0.72 RTLNAWVKV 0.00 7.14

0.15 SLFNTVATL 0.00 0.00

0.36 SLFNTVATLY 0.00 0.00

0.15 YLLEMLWRL 0.00 0.00

0.15 YLNDHLEPWI 0.00 0.00

successfully predict their specificities and thus to deorphanize
TCRs.

First, we have studied 8′224 intratumoral orphan TCRs from
four melanoma patients, 1856 from Mel#1, 2792 from Mel#2,
2011 from Mel#3, and 1564 from Mel#4 (Table S2, Supporting
Information) and screened them against the TCRs with known
specificity within the same patient for the first three patients
and within all patients for the fourth (Mel#4) (Table S2, Sup-
porting Information). For patient Mel#4 we knew in advance that
some orphan TCRs (annotated in Table S2, Supporting Informa-
tion were reactive against a pool of 32 viral epitopes from Cy-
tomegalovirus, Epstein-Barr virus, and Influenza viruses (Table
S6, Supporting Information). Consequently, we screened them
against TCR specific to these peptides, even though they be-
longed to a different patient. Among the 8′224 orphans TCRs
studied, only 11 had a TCRpcDist-3D lower than 0.15 to a given
TCR with known specificity, and none of them lower than 0.09
(Figure 6A,B and Table 4). We experimentally tested these 11
TCRs together with 5 additional orphan TCRs that presented
TCRpcDist-3D distances between 0.15 and 0.25 to a reference
TCR, with consequently even lower probability of a correct speci-
ficity prediction (≪50%, Figure S3, Supporting Information).
The predicted cognate pMHC of 2 TCRs out of these 16 orphan
ones were experimentally validated (Figure 6C,D). They corre-

sponded to those exhibiting the lowest distances together with
the highest enrichment factor, i.e., a TCRpcDist-3D of 0.11 and
0.14 to the closest TCRs with known specificity and an enrich-
ment factor of 4.5 in both cases (Figure 6A). These two TCRs
were specific to TPRVTGGGAM:HLA-B*07 and, in the set of 45
reference TCRs, spontaneously grouped with the single TCR rec-
ognizing TPRVTGGGAM:HLA-B*07 (Figure 6B). The sequence
details of the orphan TCRs experimentally validated and their
closest TCR with known specificity can be seen in Table 4.

Second, we selected 44 orphan TCRs, annotated as non-tumor
reactive from 2 additional patients (1 melanoma patient, Mel
#5, and 1 patient with oesophagus gastrointestinal cancer GI
#1) (Table S7, Supporting Information) and used TCRpcDist-3D
to deorphanize them against viral peptides present on 10X Ge-
nomics database. Two TCRs from patient Mel #5 and 1 TCR from
patient GI #1 were predicted to bind the EBV BMLF1 GLCTL-
VAML peptide presented by HLA-A*02:01, based on the clos-
est distance to EBV BMLF1-specific TCRs and were supported
by high enrichment factors (Table 4). Of interest, these predic-
tions were all successfully validated experimentally (Figure S4,
Supporting Information).

Third, 1′054 orphan TCRs found in a lung cancer patient
(Lung #1, Table S8, Supporting Information) were screened
against 7 TCRs with known specificity to DSNDYHILR/HLA-
A*68:01 (Table S8, Supporting Information). Three orphan TCRs
showed the closest distance to TCRs with known specificity. For
all of them the TCRpcDist-3D distances between the orphan and
the closest pair were lower than 0.06 (Table 4), corresponding to
a probability of a correct prediction higher than 80% (Figure S3,
Supporting Information). These specificity predictions were ex-
perimentally and successfully validated for those TCRs (Figure
S5A, Supporting Information). Again, our approach proved to be
able to identify, among orphan TCRs, candidates that are likely to
be deorphanized and predict their specificities even though a very
restricted number of TCRs with known specificities was used as
reference.

Finally, 2′111 orphan TCRs of a melanoma patient (Mel #6)
were screened against TCRs from the same patient binding the
neoantigen (neoAg) SLKLHYQL and the tumor associated anti-
gen (TAA) ELAGIGILTV (Table S9, Supporting Information).
These orphans were also screened against 10X Genomics TCRs
that bind the TAAs ELAGIGILTV. One TCR was predicted to
bind the neoAg SLKLHYQL/HLA-B*08:01, which was experi-
mentally validated (Table 4; and Figure S5B, Supporting Informa-
tion). The orphan TCR and the closest TCR binding this neoAg
SLKLHYQL/HLA-B*08:01 that allowed this prediction, showed a
TCRpcDist-3D value of 0.02 (Table 4). This small distance is con-
sistent with the fact that these TCRs share the same TRAV and
TRBV and exhibit the same 4-mer in CDR3𝛼, YGQN, and nearly
the same 4-mer in CDR3𝛽 SLSA versus SLSG. These residues
are solvent exposed and able to interact with the peptide, as evi-
dent from the structural models of these TCRs (Figure 7). Due to
the dissimilarities in terms of length and sequence of the CDR3s,
especially CDR3𝛽, this prediction could not have been done us-
ing full sequence based approaches like TCRdist3. As an illus-
tration, in this case, TCRdist3 gives a normalized distance of
0.19 between the orphan TCR and the TCR with known speci-
ficity, which would not have led to selecting this TCR for deor-
phanization against this epitope. On the contrary, our approach
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Figure 6. Using TCRpcDist-3D to deorphanize TCRs found in cancer cells of patients Mel#1, Mel#2, Mel#3, Mel#4. A) TCRs orphans tested experimen-
tally. Each dot corresponds to the TCRpcDist-3D value between the orphan TCR and the closest reference TCR, and the corresponding EF value; B) the hier-
archical clustering tree of the TCR orphans tested experimentally and the TCRs with known specificity used as reference; C) validation of peptide-specificity
predicted through TCRpcDist-3D (round 1 of experiments). Validation of antigen-specificity for two positive TCRs found by TCRpcDist-3D screening.
TCRalpha- and TCRbeta-coding RNA was transfected into recipient Jurkat cells engineered for human CD8 expression and CRISPR TCRalphabeta-KO.
After over-night incubation cells were stained with the CMV pp65-multimer (TPRVTGGGAM, HLA-B*07). A previously identified pp65-specific TCR and
an irrelevant TCR were used respectively as technical positive (CTRL+) and negative control. An irrelevant EBV B2LF-1-multimer (RAKFKQLL, HLA-B*08)
was used to further confirm the specificity of the two predicted TCRs; D) functional characterization of two TCRs predicted through TCRpcDist-3D in
the first round of experiments. The functional avidity of both CMV pp65-specific TCRs was measured using activated primary T cells. Shown are the
normalized relative frequencies of IFN𝛾-producing T cells and the EC50 (effect concentration 50%, peptide concentration required for half-maximal T
cell activation) is given for each TCR. Color-coded corresponding TCR sequences are reported on the right.
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Figure 7. 3D models superimposition of Mel#6 TCR specific for the neoAg SLKLHYQL/HLA-B*08:01, in light brown with the orphan Mel#6 TCR with
closest TCRpcDist-3D distance, in light purple. Orphans and closest TCR are described in detail in Table 4. These TCRs exhibit a very small TCRpcDist-3D
distance, 0.02, since they share the same TRAV and TRBV and exhibit the same 4-mer in CDR3𝛼, YGQN, and nearly the same 4-mer in CDR3𝛽 SLSA
versus SLSG. The CDR3s 4-mer features, highlighted in bold in the table and in sticks in the 3D models, are solvent exposed and able to interact with
the peptide.

gives a much smaller distance of 0.02, which triggered the above-
mentioned experimental validation. Further details can be seen
in Table S11 (Supporting Information). Evidence of the response
to the neo-peptide SLKLHYQL by CD8+ TILs was recently pub-
lished by Müller, M. et al.[31] Four orphan TCRs were predicted to
bind the TAA ELAGIGILTV/HLA-A*02:01 peptide based on their
closest distance to TCRs with the same specificity (Table 4). Two
out of 4 predicted TCRs were shown to mediate T cell activation
in vitro, thus experimentally validated for the predicted specificity
(Table 4; and Figure S5C, Supporting Information).

3. Discussion

TCRpcDist-3D is a state-of-the-art approach that competes with
existing approaches as shown by comparison with TCRdist3,
TCRbase-1.0, NetTCR-2.2 and SwarmTCR. Our tool presents im-
portant methodologic refinements that result in performance
improvements for some pMHC. Similar to the method of Ost-
meyer et al., TCRpcDist uses the Atchley factors rather than the
sequences to calculate distances between TCRs. However, un-
like that approach, but similarly to TCRdist, it takes CDR loops

1, 2, and 3 into account, and not just CDR3𝛽. TCRpcDist dif-
fers however from TCRdist by the fact that the latter considers
also CDR loop 2.5 and performs a global sequence alignment
prior to scoring the latter using BLOSUM62 derived parameters,
while TCRpcDist-3D tries to identify and uses the most relevant
4-mers (i.e., four consecutive residues) to account for the fact
that not all residues are likely to bind directly to pMHC. To ac-
centuate the focus on the residues most likely to interact with
the pMHC, TCRpcDist-3D limits the search for 4-mers contain-
ing only sufficiently solvent exposed residues according to TCR
structural models. TCRpcDist-3D is therefore a structural and
biophysical approach that allows calculating distances between
TCRs based on the physicochemical properties of the solvent ex-
posed 4-mers that are possible to construct from CDR1𝛼, CDR2𝛼,
CDR3𝛼, CDR1𝛽, CDR2𝛽, and CDR3𝛽 sequences. Such distances
can subsequently be used to cluster TCRs or apply the similarity
principle to try to predict TCR specificities. Moreover, TCRpcDist
is broadly applicable and can be generalized without the need for
supervised training.

Our approach is universal and can be applied to any speci-
ficity. Although we used a set of 54 TCRs with only 9 alleles
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and 16 specificities to develop the approach, it can predict bind-
ing for any epitope outside the training data. This capability
was demonstrated by the successful application of our method
to much larger and diverse validation sets. Moreover, we com-
pared the predictive power of TCRpcDist-3D with the gold stan-
dard approach TCRdist3 and observed that our model is better
predicting specificities for some peptides including AVFDRKS-
DAK, NLVPMVATV, IVTDFSVIK, SPRWYFYYL, CINGVCWTV,
RLRAEAQVK, and NQKLIANQF.

We applied TCRpcDist-3D to private data with known and un-
known specificities from 8 patients with different cancer types.
We carried out experimental tests to validate the capacity of
TCRpcDist-3D of TCR deorphanization and we were able to se-
lect deorphanizable orphans and successfully predict their speci-
ficities, including viral, TAA and neoAg epitopes. Deorphaniza-
tion was done based on the similarity principle, which posits
that similar TCRs (distances ≪0.15) are likely to bind the same
pMHC. The strategy involved: i) screening a library of TCRs
with known specificities to identify the closest orphan TCRs ac-
cording to TCRpcDist-3D, and ii) inferring the orphan TCR’s
probable specificity based on the distances between them and
the TCRs with known specificities in the reference library. First,
we have challenged our approach and predicted specificities for
two orphans TCRs from a pool of 8′224 TCRs found within 4
melanoma patients (Mel #1 to Mel #4). Among the 11 predic-
tions for which the similarity principle could be applied with
some confidence (distance < 0.15) we validated the specificity
for two orphans for the same viral peptide, the ones with higher
EF. Second, two TCRs from patient Mel #5 and 1 TCR from
patient GI #1 were predicted to bind the EBV BMLF1 GLCTL-
VAML peptide presented by HLA-A*02:01, based on the clos-
est distance to EBV BMLF1-specific TCRs of the private and
10X Genomics databases. Their TCRpcDist-3D distances were
very low, <0.06 with a high EF and these predictions were val-
idated experimentally. Third, in patient Lung #1, three addi-
tional orphan TCRs showing the closest distance to TCRs spe-
cific for the neoAg DSNDYHILR/HLA-A*68:01 (TCRpcDist-3D
distance < 0.06) were predicted to bind the same neoAg, which
was experimentally validated. Finally, in patient Mel #6, 1 TCR
was tested and found specific for the neoAg SLKLHYQL/HLA-
B*08:01 (TCRpcDist-3D distance between orphan and TCR with
known specificity <0.02). Four TCRs derived from patient Mel #6
were predicted and screened toward the TAA ELAGIGILTV/HLA-
A*02:01 peptide based on their closest distance to TCRs previ-
ously validated for the same specificity. Two out of 4 TCRs con-
firmed the predicted specificity to TAA. TCRpcDist-3D can thus
decipher immune recognition, which is critical for understand-
ing a wide range of diseases and for the development of effec-
tive vaccines and immunotherapies. We were very successful
screening orphans TCRs against TCRs with known specificity
within the same patient, with more than 80% of the in silico
predictions being validated. Screening orphan TCRs within the
same patient ensured that the considered possible epitopes are
displayed by the tumor of a given patient. As far as we know,
TCRpcDist-3D is the only in silico tool for TCR-similarities esti-
mation that demonstrated its ability to deorphanize TCRs. Apply-
ing TCRpcDist-3D to additional private data with known and un-
know specificities, from more patients and other cancer types, is
ongoing.

TCRpcDist-3D and the clustering described herein can be used
to analyze the diversity of TCR repertoires, by grouping together
those likely to bind the same pMHC. In addition, it can also be
used for the prediction of TCR specificity, i.e., predicting which
pMHC a TCR could bind. One possible approach is to cluster
TCRs for which the cognate pMHC is known, together with or-
phans TCRs for which the target is unknown. The positioning of
these orphan TCRs indeed provides an indication about possible
cognate pMHC, i.e., those belonging to a group of TCRs that rec-
ognize one given peptide or those that have the closest distance to
a TCR with a given specificity. TCRpcDist is able to provide new
insights into T cell responses captured in the TCR repertoire and
will facilitate the development of new clinical strategies to treat
and monitor not only cancer but other infectious diseases.

TCRpcDist-3D, as described here, has already been integrated
with a Tumor Reactivity Predictor, showcasing the potential of
this combination of algorithms to identify clinically relevant
TCRs for personalized T cell therapy.[32]

3.1. Limitations of the Study

Our approach demonstrates high clustering efficiency when
compared with the competitors but there is still room for further
improvements. The weighting parameters and the solvent acces-
sibility thresholds will be reassessed as soon as a significantly
larger number of TCRs with known pMHC and 3D structures are
available. The fact that the TCRpcDist calculates TCR distances
based on 4-mer features is a limitation, particularly when work-
ing with TCRs with long CDR loops, where more than 4 residues
can be involved in the binding of the antigen. Using sequence
features longer than 4-mer in the approach may improve the clus-
tering efficiency for longer CDR loops but will not be applicable
for short ones. We are exploring the feasibility of including fea-
tures of variable lengths. Another limitation of TCRpcDist is the
normalization of the TCR pair distances by the largest calculated
distance within a dataset. This means that normalization is per-
formed within the dataset, requiring caution when comparing
distances across different datasets. Our observations indicated
that using a dataset-dependent normalization factor better differ-
entiated TCRs within that set by amplifying their distances and
more effectively highlighting their differences, especially when
TCRs with similar sequences were present within a dataset (data
not shown). We may consider implementing a universal normal-
ization in the next version of our approach. One more constraint
of TCRpcDist is the fact that it uses one single conformation
per TCR model, i.e., the lowest energy one among 10 conforma-
tions, to calculate the residues that may interact with the pMHC.
The dynamic behavior of the CDR loops and the stochastic na-
ture of the modelling approach may result in different residues
available to recognize the pMHC within the same TCR sequence
if we model it in different times. To circumvent this issue, we
could sample more conformations to find the low-energy one
and/or make use of a conformational ensemble in order to de-
termine the residues able to interact with a pMHC. Of note, al-
though more sampling and an approach that makes use of a con-
formational ensemble would be feasible, it would also be sub-
stantially more time consuming which could be a limitation for
large scale applications, for example on thousands of orphans’
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TCRs from clinical sets. Last, but not least, our 3D modelling
approach is based on the TCRmodel available in Rosetta since
2019, which among several other approaches evaluated at that
time, offered an optimal balance between computational time
and accuracy. In recent years new tools for TCR and TCRpMHC
modelling have emerged, leveraging cutting-edge machine learn-
ing and structural biology techniques. Noteworthy examples in-
clude AlphaFold,[22] TCRmodel2,[33] and ImmuneBuilder[34] and
we may consider including one of these in a near future.

Regarding the specificity predictions, TCRpcDist-3D proved to
be able to fish and deorphanize TCRs in cancer patients under
clinical investigation. Additional specificity predictions in these
and other patients will further be essential to describe the impact
of our approach in cancer immunotherapy. Further studies are
ongoing thanks to a larger private data set with more patients
and more TCRs with known specificities.

To further improve our clustering efficiency and deorphaniza-
tion capability we are also working on i) combining TCRpcDist
with other methods following a consensus approach, so that we
can combine their individual strengths and mitigate their limita-
tions, and on ii) applying to additional databases.

4. Experimental Section
TCRs Datasets – Developmental Set: The development set consisted

in of 54 CD8+ TCR structures with known pMHC (Table S1, Supporting
Information) taken from a set of 151 TCR-pMHC complexes whose exper-
imental structures were retrieved from the Protein Data Bank (PDB) in
June 2020.[25] TCR duplicates (having the same CDR 1, 2, 3; 𝛼 and 𝛽 se-
quence, independently of the pMHC they recognize) and singleton pMHC
(pMHC recognized by only one single TCR, thus preventing the possibil-
ity of cognate TCR comparison) were removed from this set. Human and
mouse structures were considered to increase the sampling size, with a
total of 48 and 6 human and mouse TCRs, respectively. Singleton TCRs
and redundant TCRs were removed, even though they could increase the
sample size, as they did not contribute to the development of the model.
Indeed: i) TCR singletons, cannot be paired, by definition, and this inde-
pendently of the parameters used in TCRpcDist and ii) Pairs of redundant
TCRs would always have zero or near zero distances, independently of
the parameters. Since this approach considers aspects of TCR-pMHC 3D
interactions, The approach was developed using a developmental set of
TCRs for which the TCR-pMHC 3D structures were known. Due to this, a
set of 54 TCRs was the largest set available for developing this approach
as of June 2020. This set included structures with single point mutations
(SP). As the SP mutations are in CDRs1, 2, and CDR3, they were keptfor
the following reasons: 1) to increase the size of the set; 2) to check the
effect of SP on the predictive ability, as they were placed in regions that
contact the pMHC and 3) it was known that SP mutations may result in
different TCR specificity. By excluding TCRs with SP mutations from the
54-set it was ended up with a training set of 48 TCRs. The PDB identi-
fiers excluded from the 54 set in Table S1 (Supporting Information) were
2P5W, 2PYE, 2VLR, 3MV8, 3MV9, and 5NQK. Benchmarking the approach
using this developmental set of 48 structures the same conclusions were
reached regarding the best combination of parameters to use in this ap-
proach (Data S5, Supporting Information). In July 2024, This approach
was reevaluated using a collection of 96 TCRs that recognize 48 distinct
known pMHCs retrieved from PDB (Data S2, Supporting Information).

TCRs Datasets – Assessment Sets: The first assessment set consisted
in a private collection of 45 CD8+ TCR sequences with known pMHC
(Table S2, Supporting Information) found in 4 melanoma cancer patients
(Mel #1, Mel#2, Mel#3, and Mel#4). These TCRs did not overlap with
the TCRs used in the developmental set. They constitute a new test set
that could be used by the research community working in this field. Fur-

ther details about the patient data and TCR determination for these cancer
patients were given below across this Experimental Section.

For purposes of comparison with competing approaches a subset of 84
non-redundant and non-singleton Human CD8+ TCRs with known speci-
ficity taken from PDB in January 2023 was worked with. The initial de-
velopmental set of 54 TCRs could not be compared from PDB with the
TCRdist3 approach as it contains mouse and human TCRs together and
both species could not input in the tcrdist3 algorithm.

Further assessment of this approach was done on a much larger data
set that consists in CD8+ TCR sequences taken from 10X Genomics data
(Single Cell Immune Profiling Dataset by Cell Ranger, 10x Genomics, ver-
sion 3.0.2, 4 patients). Only true cells (with a “True” label in the “is_cell”
column of the all_contig_annotations.csv file) and cells expressing high
confidence were kept for further analyses. TCR pairs lacking some im-
portant information like one of the chains, one gene, the CDR3 informa-
tion, and the cognate pMHC were also removed. Moreover, TCRs that
express one single 𝛼 and one single 𝛽 chains were worked with and re-
moved redundant, singleton, and cross-reactive TCRs. This generated a
list of 8′528 CD8+ TCRs (Table S4, Supporting Information) that could
be modeled in 3D (see below) and of which 77.1% bind the CMV peptide
KLGGALQAK bound to the A*03:01. Detailed analysis was performed with-
out the KLGGALQAK viral peptide that represents 77.1% of the database
(Table S10, Supporting Information for the pMHC representation in the
10X) and therefore could bias the analysis performed. After removing the
TCRs binding the KLGGALQAK peptide, it was ended up with 1′956 TCRs.

A last assessment of this approach was done on VDJdb, which includes,
among others, 10X Genomics data, PDB data, and several COVID-19 re-
lated TCRs.[35] The data was retrieved on 22.08.2022 and filtered for “Ho-
moSapiens” TCRs. TCR pairs lacking some important information like one
of the chains, one gene, the CDR3 information, and the cognate pMHC
were also removed. Moreover, TCRs that express one single 𝛼 and one sin-
gle 𝛽 chains were worked with and removed redundant TCRs. TCRs single
point mutations were considered for better mimicking real case applica-
tions. This generated a list of 23′814 CD8+ TCRs of which 18′708 could
be modeled in 3D (see below). Among the TCRs modeled, 55.6% bind the
CMV peptide KLGGALQAK presented by HLA*03:01. After removing this
overrepresented peptide, it was ended up with 8′128 TCRs, recognizing
671 peptides of which 337 were singleton and 334 were bound by at least
2 TCRs. The 8′128 TCRs set (Table S5, Supporting Information) was used
for benchmarking. The set was labeled as VDJdb2022.

TCRs Datasets – Deorphanizations: Four datasets were used to validate
the capacity of TCRpcDist-3D for deorphanization and were able to fish
deorphanizable TCRs in all of them and successfully predict their speci-
ficities.

First, 8′224 orphan TCRs (Table S2, Supporting Information) deter-
mined by single-cell experiments and found in 4 cancer patients (Mel #1,
Mel#2, Mel#3, and Mel#4) were used with the objective of deorphanizing
some of them. They were screened against TCRs with known specificity
found within the same 4 melanoma patients (Table S2, Supporting Infor-
mation).

Second, 44 orphan TCRs were selected from 2 additional patients
(1 melanoma patient, Mel #5, and 1 patient with oesophagus gastroin-
testinal cancer GI #1) determined by single-cell experiments and identified
as non-tumor-reactive (Table S7, Supporting Information) and they were
deorphanized them against viral peptides present on 10X Genomics.

Third, 1′054 orphan TCRs determined by single-cell experiments and
found in a lung cancer patient (Lung #1) were screened against the 7
TCRs with known specificity to DSNDYHILR/HLA-A*68:01 found within
the same patient, see Table S8 (Supporting Information).

Fourth, 2′111 orphan TCRs found in a melanoma patient (Mel #6) were
screened against TCRs with specificities to neo and TAA found within the
same patient, see Table S9 (Supporting Information).

Further details about the patient data and TCR determination for these
cancer patients were given below.

Modeling TCR 3D-Structures from Sequence: The Rosetta “TCRmodel”
protocol[20] was applied to find the best TCR templates and model the
3D structures of the TCRs from the sequences (PDB, 10X Genomics, VD-
Jdb2022, and private sets). RosettaTCR was designed to use all known TCR
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structures as templates and were optimized to correctly model TCR archi-
tectures. If no template was identified among existing TCR structures, CDR
loops were obtained from antibody crystal structures, or were modeled de
novo. A total of 10 models were produced for each TCR, and the highest-
ranked one according to the Rosetta energy function[20] was selected as
the final model for the TCR 3D-structure. The modeling of the TCR was
the limiting step of this approach and takes ≈1 min on a 16-CPU and was
therefore feasible for large-scale applications. The final number of TCRs
sequences for each one of the described datasets correspond to TCRs for
which 3D models were obtained. Indeed, 19.6% of TCR sequences from
10X Genomics could not be modeled due to the lack of relevant templates
(which means that the regular expressions used by the software to identify
CDR1, 2, and 3 for one of the chains provided no satisfying result).

Solvent Accessibility Calculation: The solvent accessibility of each
CDR1𝛼, CDR2𝛼, CDR3𝛼 and CDR1𝛽, CDR2𝛽, and CDR3𝛽 residue was de-
termined as the relative solvent excluded surface area (SESA) computed
with the MSMS package of the UCSF Chimera software,[36] as described
elsewhere.[37] The normalized SESA, nSESA, was calculated by normaliz-
ing the surface area of the residue in the TCR of interest by its surface area
in a reference state. The latter was defined as the Gly-X-Gly tripeptides in
which X was the residue type of interest.[38] nSESA thus ranges from 0%
for totally buried residues to 100% for residues exposed to the solvent to
the same degree as in Gly-X-Gly.

TCRs Distance Calculation and Clustering: The clustering pipeline is
summarized in Figure 1 and consists in the following main steps:

First, all possible sliding windows of 4 residues that constitute the so-
called 4-mer subunits were identified. The first four and last 3 residues
from the CDR3 were excluded from the process. Alternatively, CDR
residues with low SESA in the structural models might be excluded from
this process since these residues were unlikely to contact the pMHC.
Indeed, after a benchmark of the TCR clustering of the PDB set (de-
tails in the results section), using only the residues of CDR1s and
CDR2s (𝛼 and 𝛽) with SESA > 5% and CDR3s (𝛼 and 𝛽) with SESA
> 20% was found to improve the quality of the clustering approach.
These weights were confirmed as the best in an external test set of 374
TCR unique models extracted from VDJ in 2019 (see Section S4, Sup-
porting Information). Solvent accessibility per residue per TCR for the
PDB set can be read in Supporting Information (Section S2, Supporting
Information).

Second, each 4-mer subunit was converted into a biophysicochemical
representation using 5 Atchley factors that describe i) hydrophobicity, ii)
secondary structure, iii) size/mass, iv) codon degeneracy, and v) electric
charge.[18] Given the encoding of residues using Atchley factors, the dis-
tance between two sets of 4 consecutive residues was calculated as the
Manhattan distance between the two corresponding matrices M1 and M2,
i.e., d(M1, M2) where:

d (M1, M2) =
∑

i=[1:4]

||H1,i − H2,i
|| + ||SS1,i − SS2,i

|| + ||SM1,i − SM2,i
||

+ ||CD1,i − CD2,i
|| + ||ES1,i − ES2,i

|| (1)

Here, H1,i is the Hydrophobicity Atchley factor of residue i in Matrix 1,
H2,i is the Hydrophobicity Atchley factor of residue i in Matrix 2, SS1,i is
the Secondary Structure Propensity Atchley factor of residue i in Matrix 1,
etc.

Third, to calculate the distance between two corresponding loops, such
as the CDR3𝛽 of two different TCRs, the matrices of Atchley factors for the
n possible 4-residues sliding windows of the first TCR and the m 4-residues
sliding windows of the second TCR were generated. Then, the distance be-
tween each possible corresponding pair of matrices was comprehensively
calculated. The smallest distance, dmin, between all possible pairs of ma-
trices was retained as the distance between the two CDR3𝛽 loops.

d (TCR1 CDR3𝛽, TCR2 CDR3𝛽) = min
(

d
(

Mi, Mj

)
i∈[1,n], j∈[1,m]

)
(2)

The above equation to calculate the distance between two CDR3𝛽 of two
different TCRs was also applied to all CDR1s and CDR2s. Finally, the dis-
tance between the two TCRs was defined as the (possibly weighted) sum
of the calculated distances between each pair of CDR1𝛼, CDR2𝛼, CDR3𝛼,
CDR1𝛽, CDR2𝛽, and CDR3𝛽 loops.

Of note, when analyzing a set of multiple TCRs, all distances between
each possible pair of TCRs were calculated as described above. These dis-
tances were then normalized by dividing each of them by the largest cal-
culated distance for all possible pairs. Consequently, the final distance be-
tween two TCRs ranges from 0 (for two TCRs bearing an identical set of 4
residues on each considered loop – only CDR3𝛽 or all CDRs) to 1 (for the
maximum dissimilarity between two CDRs within a data set).

Finally, the calculated distances between TCRs within a set could be
used to construct a hierarchical clustering tree (Figure 1). After an opti-
mization of the TCR clustering approach using the PDB set (details in the
results section), it was found that the best clustering was obtained when
giving a weight of 10% to the contributions of CDR1s and CDR2s (𝛼 and 𝛽)
and of 30% to those of CDR3s (𝛼 and 𝛽) in the calculation of the distance.
These weights were confirmed as the best in an external test set of 374
TCR unique models extracted from VDJ in 2019 (see Data S6, Supporting
Information). The generic hierarchical clustering algorithm UPGMA (un-
weighted pair group method with arithmetic mean) was used. The ETE3
python toolkit[39] was employed for the visualization of the hierarchical
clustering trees. Each TCR in the tree was colored according to its speci-
ficity (pMHC). As a qualitative measure of the efficacy of the clustering, the
number of times the color changed between two successive nodes was
determined, starting from the upper node of the hierarchical clustering
and turning clockwise. The quality of the clustering was also determined
by a more quantitative metric though non-standard, pMHC-distance, us-
ing the python library for phylogenetic computing, DendroPy,[40] version
4.5.2, and the class PhylogeneticDistanceMatrix. pMHC-distance was de-
fined as the average branch length distance between all possible pairs
of TCR nodes that recognize the same pMHC. The p-values were cal-
culated by randomization tests when discussing pMHC-distances and
color changes. For this, the actual TCR distances were randomly permuted
before performing again the hierarchization and recalculating the corre-
sponding pMHC-distances and color changes. The process was repeated
thousands of times to estimate the p-value in a test with the appropriate
precision. On top of these metrics, to test the predictive power of TCR-
pcDist, more “standard metrics” were used. A TCR classifier was defined
that assigns a given TCR to the TCRs within the repertoire with the lowest
distances (nearest neighbor or NN-distance). In other words, for a given
TCR, the nearest neighbor was the TCR with the smallest TCRpcDist dis-
tance among all the TCRs within the dataset, excluding itself. The sensi-
tivity and specificity of the classifier were measured. To test the predictive
power for a given pMHC, 6 cross-validations were done by randomly allo-
cating 30% of all TCRs specific for this pMHC as a reference. It was tested
how often the TCRs with the lowest distances recognize the same peptide
when compared with the reference, by measuring sensitivity and speci-
ficity. For each given pMHC, the average of the area under these receiver
operating characteristic curves (AUC), a standard metric of the classifi-
cation success, was calculated together with its standard deviation. Sta-
tistically significant differences between distributions were determined by
two-tailed paired students t-tests.

Patients and Regulatory Issues: Tumor samples used in this study
(scTCR-sequencing) were collected from six patients with metastatic
melanoma and lung cancers. TCRs from two additional patients with
melanoma and gastrointestinal cancers were also used. These eight pa-
tients were enrolled in phase I clinical trial approved by the institutional
regulatory committee at Lausanne University Hospital (Ethics Committee,
University Hospital of Lausanne-CHUV): Mel #1-#5 (trial NCT03475134,
https://www.biorxiv.org/content/10.1101/2022.12.23.519261v1) and Mel
#6, Lung #1 and GI #1 (trial NCT04643574). Patients’ recruitment, and
study procedures were approved by regulatory authorities and all patients
signed written informed consents. Data included in this study was com-
prised of both published and unpublished data.

Tissue Processing: Resected baseline tumors (prior TIL-ACT, tumors
used to generate TIL products) were chopped into 1–2 mm2 pieces and
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cryopreserved in 90% human serum + 10% dimethyl sulfoxide (DMSO).
For single-cell experiments, both frozen and fresh material were used as
starting material. The day of the assay, pathofrozen pieces were thawed
in RPMI + 10% FBS and chopped in small pieces using a scalpel. Tis-
sue was dissociated in RPMI + 2% Gelatin (#G7041, Sigma-Aldrich)
+ 200 IU mL−1 Collagenase I (#17100-017, ThermoFisher Scientific) +
400 IU mL−1 Collagenase IV (#17104-019, ThermoFisher Scientific) + 5
IU mL−1 Deoxyribonuclease I (#D4527, Sigma-Aldrich) + 0.1% RNasin
Plus RNase Inhibitor (#N2618, Promega) for 15–30 min (depending of
sample size and consistency) at 37 °C and shaken at 160 rpm. Digested
cells were filtered using a 70 μm strainer and resuspended in PBS + 1%
Gelatin + 0.1% RNasin. Cells were manually counted with hematocymeter
then stained for viability with 50 uM mL−1 of Calcein AM (#C3099, Thermo
Fisher Scientific) and FcR blocked (#130-059-901, Miltenyi Biotec) for
15 min at RT. After incubation and washing, cells were stained with CD45-
APC (#304 012, BioLegend) for 20 min at 4 °C. After washing, cells were
resuspended in PBS + 0.04% BSA (Sigma-Aldrich) + 0.1% RNasin and
DAPI staining (Invitrogen) was performed

Single-Cell RNA and TCR Sequencing: CD45 live cells were sorted with
the MoFlo AstriosEQ (Beckman Coulter) and manually counted to as-
sess viability with Trypan blue. Ex vivo CD45 cells from tumors were re-
suspended at a density of 600–1200 cells μL-1 with a viability of >90%
and subjected to a 10X Chromium instrument for single-cell analysis. The
standard protocol of 10X Genomics was followed and the reagents for the
Chromium Single Cell 5′ Library and V(D)J library (v1.0 Chemistry) were
used. 12′200 cells were loaded per sample, with the targeted cell recovery
of 7′000 cells according to the protocol. Using a microfluidic technology,
single cell were captured and lysed, mRNA was reverse transcribed to bar-
coded cDNA using the provided reagents (10X Genomics). 14 PCR cycles
were used to amplify cDNA and the final material was divided into two
fractions: first fraction was target-enriched for TCRs and V(D)J library was
obtained according to manufacturer protocol (10X Genomics). Barcoded
V(D)J libraries were pooled and sequenced by an Illumina HiSeq 2500 Se-
quencer. The second fraction was processed for 5′ gene expression library
following the manufacturer’s instruction (10X Genomics). Barcoded sam-
ples were pooled and sequenced by an Illumina HiSeq 4000 sequencer.

The scRNA-seq reads were aligned to the GRCh38 reference genome
and quantified using Cellranger count (10x Genomics, version 3.0.2).
scTCR-seq (VDJ) data were aligned to the same human genome using the
cellranger vdj (10X Genomics, version 3.1.0). Only true cells (with a “True”
label in the “is_cell” column of the all_contig_annotations.csv file) were
kept for further analyses. Cells from the VDJ sequencing were mapped to
the scRNA-Seq data (5’GEX). This allowed to only select CD8+ TCR clones
for downstream analyses.

Peptide Synthesis: Peptides produced by the Peptides and Tetramers
Core Facility (PTCF) of the University of Lausanne were HPLC purified
(≥90% pure), verified by mass spectrometry, and kept lyophilized at
−80 °C.

TCR Validation: To validate antigen specificity and interrogate T cell re-
activity, TCR𝛼/𝛽 pairs were cloned into recipient Jurkat cell line (TCR/CD3
Jurkat-luc cells (NFAT), Promega, in-house stably transduced with hu-
man CD8𝛼/𝛽 and TCR𝛼/𝛽 CRISPR-KO) and activated peripheral T cells.,
as previously described[29,41] with minor modifications. In brief, paired 𝛼

and 𝛽 chains were annotated based on TCRpcDist-3D, and corresponding
full-length codon-optimized DNA sequences were synthesized at GeneArt
(Thermo Fisher Scientific) or Telesis Bio. DNA strings served as template
for in vitro transcription (IVT) and polyadenylation of RNA molecules as
per the manufacturer’s instructions ((HIScribe T7 ARCA mRNA kit, NEB),
followed by co-transfection into recipient T cells.

Jurkat cells were electroporated using the Neon electroporation sys-
tem (Thermo Fisher Scientific) with the following parameters: 1325 V,
10 ms, 3 pulses. Electroporated Jurat cells were either co-cultured with
peptide-pulsed HLA-matched presenting cells followed by a biolumines-
cence assay or interrogated by pMHC-multimer staining to assess peptide-
specificity. For the luciferase assay, 2 × 104 Jurkat cells were cocultured
with 4 × 104 PHA-activated CD4 T cells (CD4 blasts) in the presence of
1 mm specific peptides in 96-well plates. After overnight incubation, the as-
say was performed using the Bio-Glo Luciferase Assay System (Promega).

The following experimental controls of TCR transfection were included:
mock (transfection with water) and a control TCR (irrelevant crossmatch
of a TCR𝛼 and 𝛽 chain from a private TCR library). Luminescence was
measured with a Spark Multimode Microplate Reader (Tecan). As positive
control of T cell aspecific stimulation Jurkat cells were cultured in the pres-
ence of TransAct (Miltenyi). Alternatively, Jurkat cells were interrogated by
pMHC-multimer staining with the following surface panel: anti-CD3 APC
Fire 50 (SK7, Biolegend), anti-CD8 Pacific Blue (RPA-T8, BD Biosciences),
anti-mouse TCR𝛽-constant APC (H57-597, Thermo Fisher Scientific) and
with viability dye Aqua (Thermo Fisher Scientific). FACS samples were
acquired with LSRFortessaTM (BD Bioscience) flow cytometer and FACS
data analyzed with FlowJo v10 (TreeStar).

For the avidity assay, autologous activated PBMCs were electroporated
with aNeon electroporation system (Thermo Fisher Scientific). Cells were
resuspended at 15–20 × 106 cells mL−1 in buffer R and mixed with 500 μg
of TCR𝛼 chain RNA together with 500 μg of TCR𝛽 chain RNA and elec-
troporated with the following parameters: 1600 V, 10 ms, 3 pulses. The
functional avidity of hCMV pp65-specific T cells was assessed by IFN-𝛾
Enzyme-Linked ImmunoSpot (ELISpot, Mabtech) assay with limiting pep-
tide dilutions (ranging from 10 μg mL−1 to 0.1 pg mL−1) as described.[42]

Briefly, 2 × 103 transfected T cells were plated per well in a pre-coated 96-
well ELISpot plate (Mabtech) together with 5 × 104 CD4 blasts and chal-
lenged with limiting dilutions of the specific peptide. EC50 values were de-
rived by dose-response curve analysis (log(peptide concentration) versus
response) using GraphPad Prism software (v.7, GraphPad). The peptide
concentration required to achieve a half-maximal cytokine response (EC50)
was determined and referred to as the functional avidity.

Selection of Tumor Antigens: NeoDisc was used for the selection of tu-
mor antigens as previously described.[29]
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