
R E S E A R CH AR T I C L E

Gating residues govern ligand unbinding kinetics from
the buried cavity in HIF-2α PAS-B

Marion L. Silvestrini1 | Riccardo Solazzo2 | Soumendu Boral3 |

Melanie J. Cocco4,5 | Joseph D. Closson3,6 | Matteo Masetti2 |

Kevin H. Gardner3,7,8 | Lillian T. Chong1

1Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
2Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Bologna, Italy
3Structural Biology Initiative, CUNY Advanced Science Research Center, New York, New York, USA
4Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California, USA
5Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California, USA
6PhD Program in Biochemistry, CUNY Graduate Center, New York, New York, USA
7Department of Chemistry and Biochemistry, City College of New York, New York, New York, USA
8PhD Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York, USA

Correspondence
Lillian T. Chong, Department of
Chemistry, University of Pittsburgh,
Pittsburgh, PA 15260, USA.
Email: ltchong@pitt.edu

Funding information
National Institutes of Health,
Grant/Award Numbers: R01 GM1151805,
U54CA132378, U54CA137788; G. Harold
and Leila Y. Mathers Foundation,
Grant/Award Number: MF-2112-02288;
Advanced Cyberinfrastructure
Coordination Ecosystem: Services &
Support (ACCESS) program allocations,
Grant/Award Numbers: MCB100109,
CHE230002; University of Pittsburgh
Center for Research Computing,
Grant/Award Number: RRID:
SCR_022735; National Science
Foundation, Grant/Award Number: OAC-
2117681

Review Editor: Lynn Kamerlin

Abstract

While transcription factors have been generally perceived as “undruggable,” an
exception is the HIF-2 hypoxia-inducible transcription factor, which contains

an internal cavity that is sufficiently large to accommodate a range of small-

molecules, including the therapeutically used inhibitor belzutifan. Given the

relatively long ligand residence times of these small molecules and the lack of

any experimentally observed pathway connecting the cavity to solvent, there

has been great interest in understanding how these drug ligands exit the buried

receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-

inducible factor 2α (HIF-2α) and examine how one such small molecule

(THS-017) exits from the buried cavity within this domain on the seconds-

timescale using atomistic simulations and ZZ-exchange NMR. To enable the

simulations, we applied the weighted ensemble path sampling strategy, which

generates continuous pathways for a rare-event process [e.g., ligand (un)bind-

ing] with rigorous kinetics in orders of magnitude less computing time com-

pared to conventional simulations. Results reveal the formation of an

encounter complex intermediate and two distinct classes of pathways for

ligand exit. Based on these pathways, we identified two pairs of conformational

gating residues in the receptor: one for the major class (N288 and S304) and

another for the minor class (L272 and M309). ZZ-exchange NMR validated the
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kinetic importance of N288 for ligand unbinding. Our results provide an ideal

simulation dataset for rational manipulation of ligand unbinding kinetics.

KEYWORD S

enhanced sampling, hypoxia-inducible factor (HIF), kinetics, ligand unbinding, molecular
simulations, nuclear magnetic resonance (NMR)

1 | INTRODUCTION

Buried cavities in proteins present special opportunities
for the design of highly specific drug inhibitors. One such
protein is the hypoxia-inducible factor (HIF) family mem-
ber, HIF-2α, which mediates our body's adaptive response
to decreased tissue oxygen levels (hypoxia). To activate this
response, HIF-2α must form a heterodimer with the aryl
hydrocarbon receptor translocator (ARNT; also known as
HIF-1β) via multiple protein/protein interaction domains
in the two proteins. One of these domains, the second Per-
ARNT-Sim domain of HIF-2α (HIF-2α PAS-B) contains a
290 Å3 internal cavity that is sufficiently large to accom-
modate drug ligands (Key et al. 2009). Among these
ligands are ones that allosterically lower the affinity of the
heterodimer and are specific for the HIF-2α PAS-B domain
over other PAS-B domains (Rogers et al. 2013; Scheuer-
mann et al. 2009, 2013, 2015; Wallace et al. 2016). Given
that the misregulation of HIF pathways is found in several
cancers (Bos et al. 2003; Zagzag et al. 2000), targeted dis-
ruption of the HIF-2α/ARNT interaction by ligand binding
to the buried HIF-2α cavity has become a clinically useful
therapeutic strategy for certain cancers (Chen et al. 2016;
Jonasch et al. 2021).

As demonstrated for many drug targets (Bernetti
et al. 2019), the efficacies of various drug inhibitors of the
HIF-2α PAS-B domain correlate with the residence time,
or the inverse of the off-rate (Key et al. 2009). Of great
interest is therefore the mechanism by which drug inhibi-
tors dissociate from the buried cavity of the HIF-2α PAS-B
domain. While experimental techniques can measure koff
values for the ligand unbinding process, they can only pro-
vide atomic details of the stable ligand-free and ligand-
bound states at either end of this process. On the other
hand, conventional molecular dynamics (MD) simulations
can, in principle, provide atomistic structures of all states
along the unbinding process—including transient states.
However, due to the inaccessible timescales (seconds),
such simulations have been limited to only the stable
states (unbound and bound states) (Diao et al. 2022;
Masetti et al. 2014) and rapid exiting of water molecules
from the receptor cavity (Key et al. 2009).

Various enhanced sampling strategies have therefore
been developed with the aim of either efficiently ranking

compound libraries based on relative residence times
[τRAMD (Nunes-Alves et al. 2021), scaled-MD (Mollica
et al. 2015), targeted MD (Wolf et al. 2019)] or estimating
absolute values of the koff [metadynamics (Tiwary
et al. 2015), Gaussian accelerated MD (Wang and
Miao 2023), path sampling (Dixon et al. 2021; Nunes-
Alves et al. 2018; Ray et al. 2020)]. Among these
strategies, steered MD (Chong and Anderson 2020) or
metadynamics (Callea et al. 2021) have been applied to
study ligand unbinding from the HIF-2α PAS-B domain,
either applying biasing forces or altering the free energy
landscape, respectively. Thus, these strategies strongly
depend on previous knowledge of the unbinding process.
Furthermore, pathways generated using biasing forces
miss key aspects of the relevant rugged energy landscape
(Panteva et al. 2011). Alternatively, path sampling strate-
gies (Chong et al. 2017) such as the weighted ensemble
(WE) strategy (Huber and Kim 1996; Zuckerman and
Chong 2017) can provide an ensemble of unbiased path-
ways and direct estimates of the koff in a blind manner.

Here, we apply a combination of atomistic simula-
tions and NMR experiments to study the mechanism by
which a small-molecule ligand (THS-017) exits from the
buried cavity of the HIF-2α PAS-B domain (Figure 1)
(Key et al. 2009). The simulations of this seconds-
timescale process were enabled by the application of the
WE strategy. To measure the kinetics of ligand unbind-
ing, ZZ-exchange NMR experiments were performed, tak-
ing advantage of the ability of this method to directly
measure equilibrium kex rates that can be deconvoluted
into their component kon and koff contributions (Palmer
3rd and Koss 2019). Together, our simulations and exper-
iments provide unprecedented insights on the mecha-
nism by which a drug ligand exits the buried cavity.

2 | RESULTS

2.1 | Simulations reveal an encounter
complex intermediate

Our application of the WE path sampling strategy
enabled the generation of >4000 atomistic pathways
among three independent, simulations of the HIF-2α/
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ligand unbinding process. Figure 2a shows the aggregate
simulation data from these pathways as a function of the
three-dimensional WE progress coordinate consisting of
(i) the cavity solvent accessible surface area (SASA) of the
receptor, (ii) ligand unbinding RMSD, and (iii) the
ligand–receptor distance. These results reveal a metasta-
ble, encounter complex intermediate in which the ligand
has exited the cavity, but forms contacts with the receptor
outside of the cavity and subsequently dissociates to the
unbound ligand and receptor. Assuming a reversible
unbinding process, this intermediate might be formed in
the first step of the binding process, enabling the ligand
to “crawl” into the receptor cavity once the cavity opens.

Our simulations estimate a ligand off-rate (koff) rang-
ing from 1.3 � 104 s�1 to 8.7 � 104 s�1 (Figure S2). While

this estimated koff is three orders of magnitude higher
than the experimental value (1.4 ± 0.3 s�1) (Key
et al. 2009), our simulations have extensively sampled the
ligand unbinding pathways, providing a reliable probe of
the force field's ability to yield accurate kinetics for a
long-timescale process. Using the current force field
(Amber ff19SB) (Tian et al. 2020), the internal cavity of
HIF-2α PAS is likely opening too quickly. Given that the
ligand unbinding process is on the seconds timescale
(mean first-passage time of 0.71 s) (Key et al. 2009), con-
ventional MD simulations would require decades to gen-
erate a single unbinding event using 16 NVIDIA A100
GPUs in parallel. Using the same number of GPUs, our
WE simulations generated the first unbinding event
within a day.

FIGURE 1 The THS-017 small-molecule ligand binds to a buried cavity (cyan) of the HIF-2α PAS-B domain (gray). Crystal structure of

the ligand-bound HIF-2α PAS-B receptor (PDB 3H7W) (Key et al. 2009), revealing the internal cavity (cyan) on the left and the structure of

the THS-017 ligand and surrounding residues of the receptor cavity on the right.

FIGURE 2 Unbinding of the THS-017 ligand from HIF-2α PAS involves an encounter complex intermediate and two distinct classes of

pathways. (a) Hexagonal binned plot of conformations along all successful ligand unbinding pathways generated by three independent WE

simulations as a function of the ligand–receptor separation distance and ligand unbinding RMSD (see section 4). Hexagonal bins are colored

according to the solvent accessible surface area (SASA) of the receptor cavity. The bound and unbound states are delineated in black and a

metastable, encounter complex intermediate is delineated in red. (b) Two pathway classes revealed by clustering of successful unbinding

pathways. The most probable pathway for each class is illustrated using ligand conformations sampled every 5 ns. In pathway class 1, the

ligand exits between the Fα helix and Gβ strand of the receptor. In pathway class 2, the ligand exits between the Eα and Dα helices of the

receptor.
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2.2 | Identification of two ligand exit
points

A hallmark of the WE strategy is not only to provide rigor-
ous kinetics, but also an unbiased path ensemble for
mechanistic analysis. Upon clustering of all simulated
unbinding pathways, our results revealed two distinct
pathway classes that correspond to different ligand exit
points from the buried cavity of the receptor and the prob-
abilities of each pathway class (Figure 2b). Pathway class
1 is the more probable, major route (63%) that involves the
ligand exiting between the Fα helix and Gβ strand. Path-
way class 2 is a relatively minor route (37%) that involves
the ligand exiting between the Eα and Dα helices of the
receptor. As indicated by the event durations, or barrier-
crossing times (Figure S6), the most probable pathways of
class 1 are more direct (shorter) than those of class 2.

2.3 | Mechanism of ligand unbinding at
the atomic level

Consistent with previous simulations of water exiting from
the receptor cavity (Key et al. 2009), our simulations reveal
that ligand unbinding involves not only large-scale motions
of the receptor backbone to open the cavity (e.g., movement
of the Fα helix in pathway class 1), but also transitions to
alternate rotamers of certain sidechains as conformational
gates for the unbinding process. To identify conformational
gates for the ligand unbinding process, we searched for resi-
dues that (i) are kinetically important for the ligand unbind-
ing process and (ii) exhibit motions that are correlated with
the exiting of the ligand from the internal cavity, as detected
using the Leiden network clustering method (Traag
et al. 2019) (see section 4.1). A residue was considered
kinetically important if it either loses native contacts or
gains non-native contacts in the transition state ensemble
(TSE) (“native” refers to contacts in a reference bound-state
structure) for forming the encounter complex intermediate.
To predict mutations that might impact the koff by either
stabilizing or destabilizing the bound state, we focused on
sidechains of residues that lost native contacts in the major-
ity (>80%) of conformations in the TSE.

To identify receptor residues whose dynamics are
correlated with ligand unbinding, we focused on the
“characteristic” (most probable) pathway in each of the
two pathway classes. Upon examining probability maps
of native residue-level contacts in the TSE, four contacts
were lost in >80% of the TSE for both pathway classes
1 and 2 (Figure 3a). Two of these contacts involved
backbone–backbone interactions (S249-Q335 and
D285-Q306) and the other two involved interactions that
contained at least one sidechain (L272-M309 and

N288-S304). The latter two interactions involve (i) the
sidechains of L272 in the Dα helix and M309 in the Gβ
strand, and (ii) the sidechain of N288 in the Fα helix and
backbone of S304 in the Gβ strand. Our results from the
Leiden network clustering analysis identified the L272
and M309 residues as conformational gates for pathway
class 2, and the N288 and S304 residues as conforma-
tional gates for pathway class 1 (Figure 3b). As shown in
Figure 3c, the distance between each of these pairs of res-
idues increases by >8 Å in the TSE of the corresponding
characteristic pathway and then returns to values in
range of its initial bound state (see also Movies S1 and S2,
Supporting Information).

A closer inspection of the characteristic pathway for the
major pathway class (class 1) reveals the following mecha-
nistic details for the ligand binding process. Once the N288
and S304 conformational gates open the cavity in the TSE,
the ligand exits the cavity. Shortly afterwards, N288 and
S304 reclose the cavity, returning to their positions in the
bound state and the ligand contacts a part of the receptor
outside of the cavity, forming the encounter complex inter-
mediate. Ligand exit from the internal cavity may also be
facilitated by water molecules entering the cavity. While the
cavity is completely dehydrated in the crystal structure of
the ligand–receptor complex, in our generation of bound-
state conformations using conventional MD simulations, a
single water molecule entered the cavity in the bound state
and remained in the TSE. This water molecule overlaps
with the position of one of the eight crystallographic water
molecules within the cavity of the HIF-2α PAS structure in
the apo form (Scheuermann et al. 2009). Upon forming the
encounter complex intermediate, an additional water mole-
cule entered the cavity and remained after closure of the
cavity, occupying the position of another crystallographic
water molecule in the apo HIF-2α PAS structure.

Based on a representative conformation of the TSE for
pathway class 1, we predicted two mutations involving
N288 that would impact the koff via the absence or pres-
ence of contacts with S304 (Figure 4). First, we predicted
that mutation of N288 to a glutamine (N288Q) would
enable the formation of a hydrogen bond with the S304
residue and therefore reduce the koff via stabilization of
the bound state. Second, we predicted that mutation of
N288 to an alanine (N288A) would eliminate short-range
contacts of the sidechain with nearby residues thereby
increasing the koff via destabilization of the bound state.

2.4 | Experimental validation of the
importance of N288 in ligand entry and exit

To validate the importance of the N288 residue for the
ligand unbinding process, we made point mutations to
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FIGURE 3 Conformational gating residues in pathway class 1 identified by simulation. (a) Native residue contacts in the receptor

residues that are lost in the majority (>80%) of the TSE for forming the encounter complex intermediate in the THS-017 ligand unbinding

process. Data shown is based on characteristic pathways for classes 1 and 2. (b) Locations of gating residues relative to the receptor cavity

containing the THS-017 ligand (yellow): N288 and S304 for pathway class 1, and L272 and M309 for pathway class 2. (c) Time evolution of

the N288-S304 distance (between heavy atoms) in the receptor during the characteristic ligand unbinding pathway for class 1 (top) and of

the L272-M309 distance in the receptor during the characteristic pathway for class 2 (bottom). (d) Snapshots of the characteristic pathway

for class 1, highlighting a substantial increase in the N288-S304 distance (dashed line) upon transitioning from the closed internal cavity of

the bound state (1) to a partial opening of the cavity (2) that permits the ligand (yellow) to exit. Upon rearranging from the encounter

complex intermediate (3) to the unbound state (4), the N288-S304 distance returns to that of the apo receptor.

FIGURE 4 Mutations of N288 predicted to impact koff rates of ligand unbinding. (a) In silico mutations of N288 to glutamine or alanine

in representative bound-state conformations, indicating the possibility of Q288 forming a hydrogen bond with the backbone carbonyl of

S304; in contrast, no hydrogen bond would be expected for N288 or A288 with S304. (b) Predicted impact of N288Q and N288A mutations

on the koff for the THS-017 ligand. The N288Q mutation was expected to stabilize the bound state, increasing the barrier of transition from

the bound state to the encounter complex and yielding a slower koff. On the other hand, the N288A mutation was expected to destabilize the

bound state, decreasing the barrier of transition from the bound state to the encounter complex and yielding a faster koff.
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generate the N288A and N288Q variants of the HIF-2α
PAS-B domain and assayed the impact of these changes
on both thermodynamic and kinetic parameters
(Table S3 and Figure 5). To determine the thermody-
namic parameters of complex formation between the
HIF-2α PAS-B mutants and the THS-017 and the related
THS-020 small compounds (Key et al. 2009), we used iso-
thermal titration calorimetry (ITC) by titrating concen-
trated protein into solutions of dilute ligands (“reverse
mode”) and measuring the evolved heat (Figure S7).
These data were analyzed with a single set binding model
to determine affinities and various energies of the
interaction.

Upon complex formation, we found Kd values ranging
from 0.5 to 1.6 μM (Table S2) indicating moderately
strong affinities between the HIF-2α PAS-B mutants and
these small compounds (Figure S7). The affinities for
both compounds to wild-type HIF-2α PAS-B were very
similar to those previously measured (THS-017: 0.60
± 0.06 μM here vs. 0.59 ± 0.05 μM in Key et al. 2009;
THS-020: 1.35 ± 0.11 μM vs. 1.5 ± 0.7 μM in Key
et al. 2009), giving us confidence in the measured param-
eters. For both compounds, we observed slightly higher
affinities for the N288A mutant compared to wild-type;
correspondingly, affinities were slightly weaker for the
N288Q mutant. In all cases, ligand binding was enthalpi-
cally driven with minor entropic contributions (Table S3
and Figure S7). Consistent with the similar dissociation
constants measured for THS-017 and THS-020 to all three
HIF-2α PAS-B variants, 15N/1H HSQC spectra of all

three proteins are strikingly similar (Figure S8), suggest-
ing no substantial structural changes among them.

To test the role of N288 in the ligand entry/exit path-
ways out of the HIF-2α PAS-B pocket predicted by the
MD models (Figures 3b and 4), we measured the ligand
association and dissociation rate constants of THS-017
and THS-020 against the HIF-2α PAS-B variants using
NMR ZZ-exchange spectroscopy (Figure 5). This method
has been used to measure such exchange rates (kex) in a
range of macromolecular systems undergoing slow (milli-
second-to-second timescale) dynamic equilibria (Farrow
et al. 1994; Iwahara and Clore 2006; Rubinstenn
et al. 1998), including for these two THS compounds
against wild-type HIF-2α PAS-B (Key et al. 2009). Such
experiments are conducted by preparing samples with
roughly equal populations of apo- and compound-bound
protein and recording 2D 15N/1H correlation spectra with
a modified pulse sequence where the two chemical shift
evolution periods are separated by a delay of up to 1 s
(compared to approximately 10 ms separation in conven-
tional 15N/1H sensitivity-enhanced HSQC; Kay et al.
1992). During this extended delay, chemical exchange
allows the observation of crosspeaks coupling signals from
apo-protein molecules which bind a ligand during that
period (or alternatively, by a ligand-bound protein releas-
ing compound). By fitting the time-dependent decays of
such peaks (and corresponding “autopeaks” representing
proteins which neither dissociate or bind a ligand during
the delay) from the ZZ-exchange data, one can obtain
NMR-derived kex values representing the sum of the

FIGURE 5 NMR ZZ-exchange data from HIF-2α PAS-B and small-molecule ligands. (a) Structures of the THS-017 and THS-020 small-

molecule ligands. (b) ZZ-exchange NMR spectra of mixing delays of 10, 300, and 1000 ms showing the generation of crosspeaks of L273 and

Y267 residues while increasing the mixing delays from 10 to 1000 ms. The autopeaks are indicated as “aa” and “bb,” crosspeaks are
indicated as “ba” and “ab” to indicate their states as either apo [a] or bound [b] in the 15N and proton chemical shift evolution periods,

respectively. (c) Peak intensities of Y267 and L273 residues were fitted as a function of exchange mixing time showing the time-dependent

decays of peaks. Peak colors correspond to the peaks in the 300 ms spectrum of (b). (d) Bar plots showing association (kon) and dissociation

rate (koff) constants of HIF-2α PAS-B variants with the THS-017 and THS-020 ligands.
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on- and off-rates. Using these with the Kd values indepen-
dently determined from ITC data, we calculated second-
order association rate constants (kon) and first-order ligand
dissociation rate constants (koff) (Table S4).

From these analyses, we measured increased on- and
off-rates for both compounds to the N288A mutant recep-
tor, consistent with a lower energetic barrier for small
molecules transiting between solvent and the HIF-2α
PAS-B internal cavity. Such a result is consistent with
decreasing the sidechain bulk of N288 from the side of
pathway class 1 in Figures 3b and 4. Additional support
for this role was seen by the reduced rate of entry and
exit for both THS compounds with the N288Q mutation,
which we anticipated from enlarging the N288 sidechain
along this entry and exit pathway. Notably, the wild-type
rates are very similar to those previously reported in Key
et al. (2009), providing an independent measure of the
precision and accuracy of our measurements. We also
underscore that all these association rates are quite rapid
(kon > 106 M�1 s�1) for all compounds and proteins
despite the completely internal nature of the cavity, sup-
porting the relatively rapid nature of protein conforma-
tional changes needed to access it.

3 | DISCUSSION

Several simulation studies have explored potential path-
ways by which a ligand might enter or exit the cavity of
the HIF-2α PAS-B receptor. In the first such study in
2009, Key et al. (2009) carried out conventional MD sim-
ulations of the ligand-free (apo) receptor and found that
water molecules in the cavity can exchange with bulk sol-
vent via two primary routes and a third minor route. The
primary routes are (i) between the Fα helix and Gβ
strand, and (ii) between the short Eα helix, Fα helix, and
AB loop. The minor route is between the Eα and Dα heli-
ces. More recently, two studies have simulated pathways
involving either binding or unbinding of a drug ligand by
applying an external bias to “steer” the ligand along the
primary water-exit routes identified by Key et al. (2009).
Chong and Anderson (2020) applied steered MD to simu-
late ligand binding and Callea et al. (2021) applied
steered MD and metadynamics to simulate ligand
unbinding. A parallel study by Diao et al. (2022) on the
related HIF-3α system has used conventional MD
approaches to suggest ligand entry and exit pathways via
dynamics identified in simulations of the apo- and
ligand-bound protein.

Compared to these previous studies, our simulated
unbinding pathways of the THS-017 small-molecule
ligand differ in two respects. First, our ligand unbinding
pathways involved only one of the two primary routes,

that is, between the Fα helix and Gβ strand. Second, our
simulations captured pathways along the minor route
between the Eα and Dα helices but found this route to be
more probable than previously suggested [37% vs. only
3% in Key et al. (2009)]. These differences are not surpris-
ing given that the previously identified ligand exit routes
from the internal cavity of the receptor were based on
exit routes for a single water molecule, which is much
smaller than an organic small-molecule ligand. Notably,
pathway class 2 is suggested in MD simulations on HIF-
3α PAS-B, and aspects of ligand binding into a site imme-
diately adjacent to the flexible regions are suggested by
structures of photoactive yellow protein covalently bound
to hydroxycinnamic acid (PYP) (Kort et al. 1996) and
small carboxylic acids to the CitA PAS domain (Kramer
et al. 2007). Finally, despite the absence of the ARNT
binding partner for HIF-2α in our simulations, none of the
pathways involved ligand exiting at the HIF-2α/ARNT
heterodimer interfaces identified in crystal structures of
the isolated PAS-B domains (Scheuermann et al. 2009) or
larger multidomain constructs (Wu et al. 2015).

It is worth noting that neither of the two previous
studies involving steered MD simulations identified any
of the conformational gating residues revealed in our
study (N288 and S304 in pathway 1; L272 and M309 in
pathway 2). These gating residues were likely missed due
to the use of a biasing force in the simulations. Impor-
tantly, several experimental findings validate the gating
role of these residues. First, the kinetic importance of
N288 has been validated by NMR experiments on N288A
and N288Q mutants of HIF-2α PAS-B in our study. Addi-
tionally, the importance of S304 is consistent with a nega-
tive control in which the mutation of the cavity-facing
S304 to a methionine was found to obliterate drug bind-
ing HIF-2 (Rogers et al. 2013).

A wide range of artificial small molecules bind to the
HIF-2α PAS-B cavity, including academic and
industrially-derived compounds that led to the clinically
used belzutifan (Rogers et al. 2013; Scheuermann
et al. 2013, 2015; Wallace et al. 2016). The affinities and
potencies of many of those compounds are in the nano-
molar regime, making them substantially tighter than the
THS-017 and THS-020 compounds we chose for simula-
tion and experiment here. Our choice is deliberate, as the
THS compounds bind to the same internal cavity as the
higher affinity compounds and have higher off-rates,
which are essential to “tuning” the residence times to the
ms–sec timescales amenable for both WE simulation and
ZZ exchange NMR analysis.

We note that these higher-affinity compounds are
typically larger than THS-017, potentially impacting the
relative use of the two different exit routes described in
our work, as may the presence of other protein domains
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in the HIF-2α protein or the larger HIF-2α/ARNT hetero-
dimer. This said, we are encouraged by results of conven-
tional MD simulations of apo- and drug-loaded HIF-3α/
ARNT heterodimers that suggest that a ligand entrance/
exit pathway analogous to our pathway class 2 is used by
that system, which the authors support with studies of a
single point mutation (Diao et al. 2022). From our per-
spective, both pathways classes 1 and 2 identified here
are inherently accessible to the isolated HIF-2α PAS-B
domain—and likely other PAS domains—and appear to
be solvent-accessible in structures of HIF-3α/ARNT, sug-
gesting that further comprehensive experimental and
simulation studies are needed to fully address the relative
uses of these pathways across diverse PAS-containing
transcription factors.

In closing, we have characterized the seconds-
timescale process by which a small-molecule ligand
(THS-017) exits from a completely buried cavity in the
HIF-2α PAS domain at the atomic level using a combina-
tion of WE-enabled MD simulations and NMR experi-
ments. The resulting pathways offer unprecedented views
of ligand dissociation from the HIF-2α PAS domain. First,
our pathways revealed a two-step unbinding mechanism
in which the first step is the formation of a metastable
encounter complex intermediate. Second, based on the
transition-state ensemble for this initial step, we identi-
fied two pairs of conformational gating residues (N288/
S304 in the major pathway class and L272/M309 in the
minor pathway class). Both of the above findings were
overlooked by previous simulation studies using steered
MD and/or metadynamics (Callea et al. 2021; Chong and
Anderson 2020), underscoring the value of generating
pathways in an agnostic manner using methods such as
WE, that is, without applying any biasing forces or alter-
ing the energy landscape. Importantly, the gating roles of
N288/S304 and L272/M309 are consistent with NMR
experiments, including the present ZZ-exchange
NMR results that validate the kinetic importance of the
N288 residue.

Our WE simulation workflow is a general strategy
that can be adapted for any ligand exiting process from
the buried cavity of a protein, including other PAS
domains such as those of the transcription factor subunit,
aryl hydrocarbon receptor nuclear translocator (ARNT)
(Xu et al. 2024) and the related light-oxygen-voltage
(LOV) photoreceptors (Harper et al. 2003; Losi
et al. 2018). As a direct characterization of mechanism,
the resulting pathways can facilitate the rational
enhancement of kinetics for protein engineering or drug
discovery. Given the importance of controlling the activ-
ity of these “protein switches” by differential occupancy
of internal binding sites by small molecule cofactors,
such insights—along with their implications for ligand

selectivity and residence—can provide crucial routes to
the natural and artificial control of many protein
systems.

4 | MATERIALS AND METHODS

4.1 | Computational methods

4.1.1 | Preparation of the simulation system

Heavy-atom coordinates for the receptor (HIF-2α PAS
domain) in complex with the ligand (THS-017) were
extracted from chain A of the crystal structure (PDB
code: 3H7W) (Key et al. 2009). The three unresolved resi-
dues 234, 235, and 350 at the N- and C-termini of the
receptor were built using the builder module of
the PyMol molecular visualization program (Schrodinger
2015). Hydrogens were added using the Reduce tool
(Word et al. 1999), as implemented in MolProbity
(Williams et al. 2018) according to neutral pH. The
AMBER ff19SB force field (Tian et al. 2020) was used to
model the protein receptor and GAFF2 parameters
(Wang et al. 2004) were derived for the THS-017 ligand
(Table S1) with partial charges fit to electrostatic poten-
tials using the restricted electrostatic potential (RESP)
method (Bayly et al. 1993); electrostatic potentials were
calculated at the HF/6-31G* level of theory using the
Gaussian 16 A03 software package (Frisch et al. 2016).
The ligand–receptor complex was solvated in a truncated
octahedral box of OPC water molecules (Izadi et al. 2014)
with a 18-Å clearance between the complex and the edge
of the box. To ensure a net neutral charge for the simula-
tion system, 7 Na+ and 3 Cl� counterions were added
using Li-Merz parameters for the OPC water model
(Sengupta et al. 2021). Additional ions were included to
yield the same salt concentration (17 mM NaCl) as NMR
experiments described below. The simulation system was
then energy-minimized and equilibrated in multiple
stages. In the first stage, 20 ps of dynamics were per-
formed in a constant volume and a target temperature of
25�C while applying harmonic positional restraints of
1.0 kcal mol�1 Å�2 to all heavy atoms of the receptor that
are resolved in the crystal structure. In the second stage,
the systems were equilibrated for 1 ns at a target temper-
ature of 25�C and target pressure of 1 bar while maintain-
ing positional restraints on the protein heavy atoms. In
the final stage, 1 ns of unrestrained dynamics were per-
formed at a constant temperature of 25�C and constant
pressure of 1 bar. Constant temperature was maintained
using a weak Langevin thermostat with a frictional coef-
ficient of 1 ps�1 and constant pressure was maintained
using a Monte Carlo barostat (Allen and Tildesley 2017)
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with pressure changes attempted every 0.2 ps. To enable
a time step of 2 fs, bonds to hydrogens were restrained to
their equilibrium values using the SHAKE algorithm
(Ryckaert et al. 1977). Short-range, non-bonded interac-
tions were truncated at 10 Å and long-range electrostatic
interactions were treated using the particle mesh Ewald
method (Essmann et al. 1995).

4.1.2 | Generation of initial bound-state
conformations

To generate representative conformations of the bound
state for our ligand unbinding simulations, five 1-μs con-
ventional MD simulations were initiated from the
energy-minimized and equilibrated ligand-bound struc-
ture of the HIF-2α PAS receptor (as described above)
using the GPU-accelerated AMBER22 dynamics engine
(Case et al. 2020). A set of 25 bound-state conformations
was then selected every ns from the latter 5 ns of each
simulation. Consistent with the NMR experiments below,
these simulations were run at a constant temperature of
25�C and constant pressure of 1 bar. Further simulation
details are the same as described above for the final stage
of equilibration.

4.1.3 | Weighted ensemble simulations of
ligand unbinding

Simulations of the ligand unbinding process were
enabled using the weighted ensemble (WE) path sam-
pling strategy (Huber and Kim 1996; Zuckerman and
Chong 2017). The WE strategy is a parallel algorithm for
enhancing the efficiency of sampling rare events
[e.g., protein–protein binding (Saglam and Chong 2019),
large-scale transitions in proteins (Sztain et al. 2021)].
This strategy typically involves defining a progress coor-
dinate toward a target state, dividing this coordinate into
bins, running multiple trajectories in parallel, and sub-
jecting these trajectories to an iterative resampling proce-
dure at fixed short time intervals τ to maintain a target
number of trajectories per bin. The resampling procedure
involves replicating trajectories that visit less-visited bins
and splitting the parent trajectory weight evenly among
the resulting child trajectories; to save computing time,
trajectories that remain in already-visited bins are occa-
sionally terminated and the weight of the terminated tra-
jectory is merged with that of a trajectory that will be
continued. This resampling procedure ensures that all
trajectory weights (probabilities) sum to one at any point
during the simulation such that no statistical bias is
introduced, enabling direct calculations of rates.

All WE simulations were run using the open-source
WESTPA 2.0 software package (Russo et al. 2022). To
generate pathways and rates for the unbinding of the
THS-017 ligand from the HIF-2α PAS receptor, we car-
ried out three independent weighted ensemble
(WE) simulations of the ligand unbinding process. Each
WE simulation was carried out for a molecular time Nτ
of 100 ns where N is the number of WE iterations and τ is
the resampling time interval of 100 ps, yielding a total
simulation time of 35.1–41.5 μs within 14–16 days using
16 NVIDIA A100 GPUs in parallel.

An overview of our WE simulation workflow is as
follows:

1. Randomly selected five conformations from the pre-
equilibrated ensemble of 25 initial bound-state confor-
mations (described above).

2. Initiated a WE simulation from the five, equally
weighted conformations using a multistage adaptive
binning scheme. To maintain a non-equilibrium
steady state, trajectories that reached a ligand–
receptor separation distance of 10 Å were “recycled”
by initiating a new trajectory with the same statistical
weight from a conformation that was randomly
selected from the pre-equilibrated ensemble of bound-
state conformations.

3. Once the calculated off-rate (koff) remained at a steady
value for at least 100 WE iterations, the WESS
reweighting procedure (Bhatt et al. 2010) was applied
to accelerate convergence of the simulation to a non-
equilibrium steady state.

4. Extended each WE simulation for 100 WE iterations
with updated trajectory weights to further verify simu-
lation convergence.

5. Repeated steps #3 and #4 until the koff value remained
at a steady value, that is, the instantaneous mean of
the koff at the final iteration of the simulation was
within the 95% confidence interval [as determined
using Monte Carlo blocked bootstrapping (Efron and
Tibshirani 1986; Huber and Kim 1996)] of the mean
values at prior iterations.

Further details of the multistage adaptive binning
scheme (Torrillo et al. 2021; Zhang et al. 2022), WESS
reweighting procedure (Bhatt et al. 2010), and calculation
of the koff are provided below.

For each WE simulation, we used a three-
dimensional progress coordinate consisting of (i) a cavity
solvent accessible surface area (SASA) to monitor the
extent to which the receptor cavity (residues within 7 Å
of the ligand) opens to the surrounding solvent, (ii) a
“ligand unbinding” RMSD, defined as the heavy-atom
RMSD of the ligand after aligning on the receptor in the
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crystal structure of the ligand–receptor complex, to moni-
tor relative orientations of the ligand and receptor, and
(iii) the ligand–receptor separation distance to monitor
the extent of ligand dissociation. A resampling time inter-
val τ of 100 ps was used along with a multistage adaptive
binning scheme (Torrillo et al. 2021; Zhang et al. 2022)
(see below) and a target number of 8 trajectories/bin.

Dynamics were propagated in the NPT ensemble at
25�C and 1 bar, as described above for conventional MD
simulations of the bound state. As required for WE simu-
lations (Bogetti et al. 2023b), a stochastic thermostat
(i.e., a weak Langevin thermostat) was used to maintain
constant temperature.

4.1.4 | Multistage adaptive binning scheme

As shown previously (Zhang et al. 2022), application of
the minimum adaptive binning (MAB) scheme in multiple
stages distributes trajectory weights more evenly along the
progress coordinate to make more effective use of the
WESS reweighting procedure for a non-equilibrium steady
state (Bhatt et al. 2010). Here we applied a three-stage
MAB scheme. The MAB scheme adaptively positions a
specified number of bins (Figure S1) along a progress coor-
dinate after each WE iteration based on the positions of
the leading, trailing, and “bottleneck” trajectories along
the progress coordinate (Torrillo et al. 2021). The WE
resampling procedure is then applied with the goal of pop-
ulating each bin with the target number of trajectories
(here, 8 trajectories/bin).

4.1.5 | Weighted ensemble steady-state
reweighting procedure

To accelerate the convergence of each WE simulation to
a non-equilibrium steady state, we periodically applied a
weighted ensemble steady-state (WESS) reweighting pro-
cedure (Bhatt et al. 2010), as implemented in WESTPA.
WESS reweighting was applied whenever the calculated
koff value had leveled off for at least 100 WE iterations
(see Figure S2). This reweighting procedure updates tra-
jectory weights for a steady state by solving the following
set of steady-state equations:

X
j
pi

SSkij ¼
X

j
pj

SSkij,

where pi
SS is the steady-state population in bin i, and kij

is the rate of transition between bins i and j. Only bins
along the third dimension of the progress coordinate
(ligand–receptor separation distance) were used for the
reweighting procedure; the positions of these bins were

defined as indicated by the following array: [0, 0.5, 0.75,
1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 6, 7, 8,
9, 10, 20, “inf”].

4.1.6 | Calculation of the dissociation rate
constant

We calculated the dissociation rate constant koff directly
from our WE simulations using the Hill Relation for a
first-passage process (Aristoff et al. 2023; Hill 2005),

koff ¼ 1
MFPT A!Bð Þ¼Flux A!BjSSð Þ,

where the inverse of the mean first-passage time from
state A to state B MFPT A!Bð Þ is given exactly by the
conditional probability flux Flux A!BjSSð Þ, for the non-
equilibrium steady state consisting of trajectories from an
initial state A (i.e., bound state) to a target state B
(i.e., unbound state). This probability flux was calculated
as the running average probability per unit time (every τ of
100ps) of trajectories that have exited state A and entered
state B, given that the trajectories were more recently in
state A.

4.1.7 | State definitions

For rate-constant estimation and all other simulation
analysis, states were defined based on the two-
dimensional probability distribution as a function of the
ligand–receptor separation distance and the ligand
unbinding RMSD (Figure 1a). The initial bound state was
defined as any conformation with a ligand–receptor sepa-
ration distance <2.5 Å and a ligand unbinding RMSD
<3 Å. The target unbound state was defined as having a
ligand–receptor separation distance >6 Å. As mentioned
above in the WE simulation workflow, trajectories were
recycled at a ligand–receptor separation distance of 10 Å
to permit the calculation of koff values for unbound states
with shorter separation distances. An encounter complex,
metastable intermediate in which the ligand has exited
from the cavity and is bound to a different part of the
receptor was defined as any conformation with a ligand
unbinding RMSD between 12 and 17 Å, and a ligand–
receptor distance <2.5 Å.

4.1.8 | Clustering of pathways into distinct
classes

To characterize pathway diversity, we clustered all ligand
unbinding pathways from our three independent WE
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simulations into distinct classes using the Linguistics
Pathway Analysis of Trajectories with Hierarchical clus-
tering (LPATH) method (Bogetti et al. 2023a). The
LPATH method involves a three-step procedure: (1) dis-
cretize configurational space into states visited by suc-
cessful pathways, (2) extract a text-string representation
of each pathway using conformations sampled at a speci-
fied time interval, (3) apply the Gestalt pattern matching
algorithm (Ratcliff and Metzener 1988) to yield a similar-
ity score for each pair of pathways A and B (similarityAB)
and then cluster the pathways into distinct classes based
on a distance metric (d¼ 1� similarityAB). In the last
step, clustering is performed using a hierarchical agglom-
erative approach with Ward linkage criteria (Ward 1963).

In our study, we discretized the configurational space
based on ligand exit points (step 1), that is, selecting six
residues beyond the receptor cavity that are positioned
on different secondary structure elements (K253, A277,
F280, S292, G305, and L310) and assigning conforma-
tions to states 1–6 that correspond to the residue that is
closest to the ligand (Figure S3a). Text-string representa-
tions of each pathway were then extracted as sequences
of possible states 1–6 for conformations sampled every
WE iteration (100 ps) (step 2). Only the barrier-crossing
portions of each pathway were considered, leaving out
conformations of the stable states (bound and unbound
states). Based on the resulting dendrogram of pathway
clusters (step 3), we identified two distinct pathway clas-
ses (Figure S3b).

4.1.9 | Identification of correlated residue
motions

To identify residue motions of the protein receptor that
are correlated with the ligand unbinding process, we
applied the Leiden network clustering (a.k.a. community
detection) algorithm (Traag et al. 2019) to the most prob-
able pathway for each of the two pathway classes. In our
application of this method, we considered pairs of resi-
dues to be in contact if they were separated by at least
two residues in the amino-acid sequence and the distance
between their closest heavy atoms was <4.5 Å for more
than 10% of the simulation time. Conformations were
sampled every 10 ps along each pathway for the network
clustering analysis. We then calculated a linear correla-
tion matrix using the Pearson correlation coefficient
ρ X=Yð Þ for a pair of residue contacts X and Y ,

ρ X=Yð Þ¼ X� Xh ið Þ Y � Yh ið Þ
σX σY

,

where <…> is the time average over the ligand unbinding
pathway and σ is the standard deviation. The value of

ρ X=Yð Þ ranges from �1 (negative correlation) to 1 (pos-
itive correlation), with 0 indicating no correlation
between the pair of residue contacts. To identify
clusters of residues that correlate to various extents
with ligand exiting from the receptor cavity
(Figure S4), we rearranged the correlation matrix into
an approximate block-diagonal form and applied the
Leiden network clustering algorithm, as implemented
in the Python package MoSAIC (Diez et al. 2022). Fol-
lowing others (Post et al. 2022), we used a resolution
parameter γ of 0.5.

4.1.10 | Identification of kinetically
important residues

To identify kinetically important residues in the ligand
unbinding process, we examined probability maps of
pairwise residue contacts in the TSE (see below). To gen-
erate these maps, we first calculated a heavy-atom dis-
tance matrix for each protein conformation in the TSE
using the cpptraj program of the AMBER 22 software
package (Case et al. 2020). Next, we assigned each matrix
the statistical weight of the corresponding conformation
from the WE simulation. In the resulting maps, we
divided the residue contacts into two sets: (i) non-native
contacts gained relative to the bound-state reference
structure (equilibrated crystal structure), and (ii) native
contacts lost relative to the bound-state reference struc-
ture. To predict mutations that could impact the ligand
unbinding kinetics, we focused on the latter set of residue
contacts.

The TSE consisted of 20 conformations with equal
probabilities of committing to the encounter complex
intermediate and initial bound state, that is, pseudo-
committor values ranging from 0.4 to 0.6 to include an
approximate uncertainty of 0.2 (Figure S5). We use the
“pseudo-committor” term given that our simulations
were run under non-equilibrium steady state conditions,
generating trajectories in primarily a unidirectional
steady state (unbinding direction). In our pseudo-
committor analysis, we calculated the probability of each
conformation committing to the intermediate state before
reaching the initial bound state. Pseudo-committor
values were calculated from a history-augmented Markov
state model (haMSM) using the msm_we package (Russo
et al. 2022) by numerically solving for the stationary dis-
tribution with an initial dual-absorbing boundary condi-
tion (i.e., probabilities of the bound state and encounter
complex intermediate were each set to one and the prob-
abilities of all other microbins were set to zero). The ini-
tial distribution was then propagated (multiplied) with
the transition matrix until a convergence of <10�5 was
reached.
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4.2 | Experimental methods

4.2.1 | Protein expression and purification of
HIF-2α PAS-B mutants

Human HIF-2ɑ PAS-B constructs (residues 240–350 of
wild-type and N288Q, N288A mutants) were generated in
the pHis6x-Gβ1 expression plasmid, as described earlier
(Harper et al. 2003; Scheuermann et al. 2009). His6-
tagged HIF-2α PAS-B proteins were overexpressed in
E. coli BL21(DE3) cells, grown in M9 minimal media
supplemented with 1 g/L U-15N-NH4Cl at 37�C until
OD600 � 0.7–0.9, followed by 16–18 h additional growth
at 18�C in the presence of 0.5 mM isopropyl
β-D-thiogalactoside (IPTG). Cells were harvested, lysed
by sonication in a lysis buffer (50 mM Tris–HCl,
pH 7.4 at 25�C, 150 mM NaCl, 10 mM imidazole, 1 mM
DTT, 1 mM PMSF) and centrifuged at 34,500g for 45 min
to precipitate the cell debris. Proteins were purified by
Ni2+ affinity chromatography, and subsequently diluted
1:10 with a cleavage buffer (50 mM Tris–HCl, pH 7.5 at
25�C, 0.1 mM EDTA). After cleavage of the N-terminal
affinity tag by His6-tobacco etch virus (TEV) protease
(Blommel and Fox 2007), a second round of Ni2+ affinity
column purification was performed to remove the cleaved
tags and TEV protease. HIF-2ɑ PAS-B proteins were fur-
ther purified using a Superdex 75 size-exclusion column in
the final buffer (50 mM Tris–HCl, pH 7.4 at 25�C, 17 mM
NaCl, 1 mM DTT). Proteins were concentrated to 350–
400 μM using a stirred ultrafiltration unit with a 10 kDa
filter, as determined by ultraviolet absorption using the
predicted molar absorptivity (ε280 = 17,670 M�1 cm�1).

4.2.2 | Compound sources

THS-017 (2-nitro-N-[(thiophen-3-yl)methyl]-4-(trifluoro-
methyl)aniline) and THS-020 (N-[(furan-2-yl)methyl]-
2-nitro-4-(trifluoromethyl)aniline) were purchased from
ChemSpace and BLDpharm, respectively.

4.2.3 | Isothermal titration calorimetry

All isothermal titration calorimetry (ITC) measurements
were carried out at 25�C with a Nano ITC calorimeter
(TA Instruments). Titrations were performed in “reverse
mode” (250–300 μM protein in syringe, 20 μM ligand in
cell), with 25 injections of 1.8 μL of protein solutions
(50 mM Tris, pH 7.4, 17 mM NaCl, 1 mM DTT, 0.2%
DMSO), using 350 rpm stirring and 250 s delay between
succeeding injections. Compound solutions were diluted
from 10 mM stock solution to 20 μM in a buffer containing

50 mM Tris, pH 7.4, 17 mM NaCl, 1 mM DTT, with the
final DMSO concentration of 0.2%. Evolved heats were
experimentally determined from control titrations of HIF-
2ɑ PAS-B into compound-free buffer and were subsequently
subtracted from the corresponding ligand titrations. The
resulting data were analyzed using the NanoAnalyze soft-
ware package (version 3.12.5) and fitted to the single site
binding model to obtain the stoichiometry (n), the dissocia-
tion constant (Kd) and the enthalpy of binding (ΔH).

4.2.4 | ZZ-exchange NMR spectroscopy

NMR experiments were performed at 25�C using an
800 MHz Bruker Avance III cryoprobe-equipped spec-
trometer. To determine the association and dissociation
rate constants for ligand binding, we employed a ZZ-
exchange-modified 15N/1H heteronuclear single quantum
correlation (HSQC) experiments with a Z-axis pulsed-
field gradient, which gives rise to the time-dependent
exchange peaks via heteronuclear longitudinal magneti-
zation transfer between the bound and unbound states
(Farrow et al. 1994). Samples for NMR spectroscopy were
prepared as follows: 120 μM of compound (THS-017 or
THS-020) was added (from a 100 mM stock solution in
DMSO-d6) to 240 μM HIF-2α PAS-B mutants in 50 mM
Tris, pH 7.4, 17 mM NaCl, 1 mM DTT, 7% (v/v) D2O in a
5 mm NMR sample tube. The total DMSO concentration
in the prepared sample was 0.12%. Ligand association
(kon) and dissociation rate (koff) constants were calculated
from a simultaneous fit of the crosspeak and autopeak
intensities measured from a series of spectra with mixing
delays of 10, 30, 50, 80, 100, 130, 150, 180, 200, 300,
400, 600, 800, and 1000 ms (collected in random order to
minimize errors which might correlate with delay length)
to the McConnell equations (Farrow et al. 1994). All NMR
data processing, analysis, and curve fitting were performed
using NMRFx Analyst version 11.4.4 (Norris et al, 2016)
modified to incorporate ZZ-exchange analyses.

Practically, fits to peak intensities followed the
approach outlined by Farrow et al. (1994), with the inten-
sities of the auto peaks for the two states (apo and ligand-
bound) denoted by “a” and “b” given by

Iaa Tð Þ¼ Ia 0ð Þ – λ2 – a11ð Þe�λ
1
T þ λ1 – a11ð Þe�λ

2
T

h i
= λ1 – λ2ð Þ,

Ibb Tð Þ¼ Ib 0ð Þ – λ2 – a22ð Þe�λ
1
T þ λ1 – a22ð Þe�λ

2
T

h i
= λ1 – λ2ð Þ,

while the intensities of the exchange peaks corresponding
to the transfer of magnetization from “a” to “b” (Iab(T))
and from “b” to “a” (Iba(T)) are given by
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Iab Tð Þ¼ Ia 0ð Þ a21e
�λ

1
T – a21e�λ

2
T

� �
= λ1 – λ2ð Þ,

Iba Tð Þ¼ Ib 0ð Þ a12e
�λ

1
T – a12e�λ

2
T

� �
= λ1 – λ2ð Þ,

respectively. λ1,2 is defined according to the relation
λ1,2 = ½ [(a11 + a22) ± {(a11 – a22)

2 + 4kab kba}
1/2], where

a11 = Ra + kab, a12 = �kba, a21 = �kab, a22 = Rb + kba,
Ra and Rb are the longitudinal relaxation rates of magne-
tization in sites a and b, respectively. Ia(0) and
Ib(0) denote the amount of longitudinal nitrogen magne-
tization associated with states a and b at the start of the
mixing period T. kab and kba are the exchange rates for
magnetization converting from site a to b and b to a,
respectively.
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