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Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis
patients and is a major source of nosocomial infections. This bacterium controls many virulence factors by
using two quorum-sensing systems, las and rhl. The las system is composed of the LasR regulator protein and
its cell-to-cell signal, N-(3-oxododecanoyl) homoserine lactone, and the rhl system is composed of RhIR and the
signal N-butyryl homoserine lactone. A third intercellular signal, the Pseudomonas quinolone signal (PQS;
2-heptyl-3-hydroxy-4-quinolone), also regulates numerous virulence factors. PQS synthesis requires the ex-
pression of multiple operons, one of which is pgsABCDE. Previous experiments showed that the transcription
of this operon, and therefore PQS production, is negatively regulated by the rkl quorum-sensing system and
positively regulated by the las quorum-sensing system and PqsR (also known as MvfR), a LysR-type tran-
scriptional regulator protein. With the use of DNA mobility shift assays and (3-galactosidase reporter fusions,
we have studied the regulation of pgsR and its relationship to pgsA, lasR, and rhIR. We show that PqsR binds
the promoter of pgsA and that this binding increases dramatically in the presence of PQS, implying that PQS
acts as a coinducer for PqsR. We have also mapped the transcriptional start site for pgsR and found that the
transcription of pgsR is positively regulated by lasR and negatively regulated by rkIR. These results suggest that
a regulatory chain occurs where pgsR is under the control of LasR and RhIR and where PqsR in turn controls

PgsABCDE, which is required for the production of PQS.

Pseudomonas aeruginosa is a ubiquitous gram-negative bac-
terium that can infect insects, plants, and animals. As an op-
portunistic pathogen of humans, P. aeruginosa causes acute
infections in immunocompromised individuals and chronic
lung infections in cystic fibrosis patients. Such infections are
made possible through the production of an arsenal of viru-
lence factors, many of which are regulated by cell-to-cell sig-
nals (see reference 36 for a review). P. aeruginosa produces at
least three small compounds that function as intercellular com-
munication signals. The acyl homoserine lactone signals, N-(3-
oxododecanoyl) homoserine lactone (3-oxo-C,,-HSL) and N-
butyryl homoserine lactone (C,-HSL), have been well studied
and function in combination with the LuxR homologs LasR
and RhIR, respectively (16, 30, 31, 33, 34). Together, these
quorum-sensing signals control 6 to 11% of the P. aeruginosa
genome (44, 46, 48). The third P. aeruginosa intercellular signal
is a quinolone compound that was identified as 2-heptyl-3-
hydroxy-4-quinolone (the Pseudomonas quinolone signal
[PQS]) (37). This signal controls multiple virulence factors and
is intertwined in the quorum-sensing cascade, where it appears
to be a regulatory link between the las and ril quorum-sensing
systems (14, 27). PQS is produced in the lungs of cystic fibrosis
patients infected with P. aeruginosa (9) and is required for
virulence in nematodes, plants, and mice (5, 15, 23, 25, 40).
PQS also induces apoptosis and decreases viability in eukary-
otic cells (4).
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The synthesis of PQS requires several putative enzymes en-
coded by the pgsABCDE, phnAB, and pgsH operons (10, 15).
In addition, PqsR (also known as MvfR [5]) is a LysR-type
regulator required for the synthesis of PQS (10, 15) and at least
55 related 4-quinolone compounds (24). A recent genomics
study indicated that 143 genes were differentially regulated in
a pgsR mutant (12), demonstrating the global regulatory na-
ture of the PQS system. Initial studies on the expression of the
PQS synthetic genes indicated that the genes are governed by
a complex regulatory scheme. PqsR was found to have a positive
effect on the transcription of the pgsABCDE and phnAB oper-
ons (5, 26). In addition, the transcription of the pgsABCDE
promoter was positively regulated by LasR-3-oxo-C,,-HSL
and negatively regulated by RhIR-C,-HSL (26). Whether the
LasR, RhIR, and PqsR transcriptional regulators were acting
in a direct or indirect manner to control pgsABCDE expression
was not determined. In this study, the interactions that occur at
the pgsABCDE promoter were investigated. We demonstrate
that the effects of LasR and RhIR on the pgsABCDE operon
occur indirectly through PgsR. We also show that PgsR, but
not LasR or RhIR, binds directly to the pgsABCDE promoter
and that this binding is augmented by the presence of PQS.

MATERIALS AND METHODS

Bacterial strains, plasmids, and media. Bacterial strains and plasmids used in
this study are listed in Table 1. P. aeruginosa strains were maintained at —70°C
in 10% skim milk (Becton Dickinson, Sparks, MD). Freshly plated cells from
skim milk stocks were used to begin all experiments. P. aeruginosa cultures were
grown in peptone tryptic soy broth (32). When necessary to maintain plasmids,
cultures were supplemented with 200 pg/ml carbenicillin. Escherichia coli strain
DH5«a was cultured in Luria-Bertani broth (42) and supplemented with 100
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TABLE 1. Bacterial strains and plasmids

Strain or plasmid Relevant genotype or phenotype Reference
Strains
E. coli DH5a F'lendA1 hsdR17 supE44 thi-1 recAl gyrA relAl A(lacZYA-argF) U169 deoR [$80 dlac 49
A(lacZ)M15 recAl|
P. aeruginosa strains
PAOL1 Wild type 19
MP551 pqsR::TnlS phoA/hah::Tc; derived from strain PAO1 15
PAO-R1 lasR::Tc; derived from strain PAO1 17
PDO111 rhIR::Tn501; derived from strain PAO1 2
Plasmids
pACYC184 General purpose cloning vector 6
pPCS11 tacp-lasR on pACYC184 38
pECPS8 tacp-lasR on pEX1.8 This study
pJPP8 tacp-rhIR on pEX1.8 35
pDSWS tacp-pgsR on pEX1.8 This study
pMTP58 Minimum tiling pathway cosmid 58 which contains pgsR; Tet" 20
pLP170 lacZ transcriptional fusion vector 39
pMWC1003 PqsR'-lacZ transcriptional fusion This study
pEX1.8 P. aeruginosa expression vector 35

pg/ml ampicillin and/or 30 wg/ml chloramphenicol to maintain plasmids. Liquid
cultures were grown at 37°C and shaken at 250 rpm.

Construction of plasmids. To obtain a PqsR expression plasmid, PCR was
used to generate a 1,039-bp DNA fragment that began at the pgsR start codon
(ATG) and ended 36 bp downstream from the stop codon. The oligonucleotide
primers for PCR were engineered to contain a blunt end at the start codon and
a single HindIII site downstream from the stop codon. Plasmid pEX1.8, a tacp
expression vector with both an E. coli and a P. aeruginosa origin of replication,
was digested with EcoRI, treated with Klenow fragment to fill in the 5 overhang,
and then digested with HindIII. After digestion with HindIII, the pgsR-contain-
ing fragment was ligated into pEX1.8 to yield pDSW8. Plasmid pECP8 was
constructed using the same strategy by ligating a PCR-derived DNA fragment
that contains the coding region of /asR into pEX1.8. Plasmids pDSWS8 and
pECPS contain a tacp-pqsR and a tacp-lasR fusion, respectively, in which there is
optimal spacing between the ribosome binding site from pEX1.8 and the start
codon of pgsR or lasR. To construct a pgsR’'-lacZ reporter plasmid, a 924-bp
fragment corresponding to bp —618 to +210 relative to the pgsR translational
start site was amplified by PCR with oligonucleotide primers and P. aeruginosa
strain PAO1 chromosomal DNA. The amplified product was digested with
BamHI to yield a 698-bp fragment that was ligated into the BamHI-digested lacZ
fusion vector pLP170. The resulting plasmid, pMWC1003, harbors a pgsR'-lacZ
transcriptional fusion. All gene fusions were sequenced to ensure cloning integ-
rity.

Preparation of E. coli cell lysates containing PqsR, LasR, or RhIR. Overnight
cultures of E. coli strain DH5a containing expression vectors (pDSWS, pECPS,
or pJPP8) were subcultured to an absorbance of 0.1 at 600 nm. When desired, a
specific cell-to-cell signal or an organic extract of a wild-type P. aeruginosa
culture was dried in flasks before the subculture was added. Final concentrations
of signals were as follows: 10 uM 3-oxo-C,,-HSL, 10 uM C,-HSL, and 20 pM
PQS. The organic extract was prepared by extracting a 24-h P. aeruginosa culture
with acidified ethyl acetate (37). The final amount of organic extract resuspended
in the subculture was equivalent to twice the subculture volume (e.g., an entire
extract from a 20-ml culture extraction was resuspended in a 10-ml subculture).
Subcultures were then grown for 2 h, and IPTG (isopropyl-B-p-thiogalactoside)
was added at a concentration of 1 mM to induce the tacp-pgsR, tacp-lasR, or
tacp-rhiR fusion. After two additional hours of growth, cells were harvested and
passed through a French pressure cell at 735 Ib/in? to yield a whole-cell lysate.
Protein assays (Bio-Rad, Hercules, CA) were performed on cell lysates to de-
termine protein concentrations for DNA mobility shift assays.

DNA mobility shift assays. PCR was used to generate DNA fragments con-
taining the pgsA4 (253 bp), lasB (255 bp), and rhlA (216 bp) promoter regions.
DNA fragments were labeled with [y-*?P]JATP (Perkin-Elmer, Wellesley, MA)
by using T4 polynucleotide kinase (Invitrogen, Carlsbad, CA). The binding
assays were carried out in buffer containing 10 mM Tris-HCI (pH 8.0), 60 mM
KCl, 1 mM EDTA, 1 mM dithiothreitol, and 10% glycerol (28). Each reaction
mixture contained 0.3 pg of salmon sperm DNA, 10*-cpm-radiolabeled DNA,
and 0 to 60 pg of protein. Reaction mixtures were incubated at room tempera-

ture for 20 min and separated by electrophoresis at 4°C on a native 6% poly-
acrylamide gel in 0.5X Tris-borate-EDTA buffer. Radiolabeled bands were vi-
sualized by autoradiography. X-ray film was exposed for either a short period
(approximately 2 to 3 h) or a longer period (24 or 72 h) as noted in Results.

Primer extension analysis of the pgsR transcript. RNA was purified from P.
aeruginosa strain PAO1(pMTP58) by a CsCl density gradient separation tech-
nique as described previously (26). Cosmid pMTP58 was included to increase the
number of copies of pgsR mRNA. Two primers were used to locate the pgsR
transcriptional start site. The primers were as follows: 5'-CACGTGATTCAGG
TTATGAATAGGCA-3', which corresponds to nucleotides +27 to +2 relative
to the pgsR start codon, and 5'-AGCGGAGGAAATCGAACCGGAGGCGA-
3", which corresponds to nucleotides +72 to +46 relative to the pgsR start codon.
Primers were radiolabeled using [y->P]JATP and T4 polynucleotide kinase (In-
vitrogen), and extensions were performed as described previously (26) using 40
png of RNA and Superscript II RNase H™ reverse transcriptase (Invitrogen).
Primer extension reaction mixtures were electrophoresed on a sequencing gel
along with mixtures for DNA sequencing reactions completed using a T7 Seque-
nase version 2.0 DNA sequencing kit (USB) and pMTP58 as a template.

Monitoring pqsR’-lacZ expression. Freshly plated cells of P. aeruginosa strains
PAOI, PAO-R1, PDO111, and MP551, all containing pMWC1003, were used to
inoculate 10-ml overnight cultures. Overnight cultures were washed with fresh
media and used to inoculate 10-ml subcultures to an absorbance of 0.05 at 660
nm. Subcultures were grown to mid-logarithmic phase and washed with fresh
media, and 1.0-ml aliquots (starting at an A4, of 0.05) were added to 13-ml
culture tubes. After 24 h of growth, B-galactosidase (B-Gal) activity was mea-
sured in duplicate samples. All data are reported in Miller units (29) as the
means * the standard deviations (0"~ ') of results from three separate experi-
ments.

Monitoring pgsR’-lacZ expression in E. coli. Freshly plated cells of E. coli
strain DHS« harboring plasmid pMWC1003 and either pPCS11 or pACYC184
were used to inoculate overnight cultures in A medium (42) supplemented with
25 mM glucose and 1 mM MgSO,. Overnight cultures were used to inoculate
subcultures to an absorbance of 0.08 at 600 nm and grown for 3 h in the presence
of 1 mM IPTG. Cultures were then transferred into tubes containing evaporated
3-0x0-Cy,-HSL (or no 3-oxo-C,,-HSL as a control) and were grown for an
additional 90 min (the final 3-oxo-C,-HSL concentration was 100 nM). B-Gal
activity was then measured in duplicate samples. All data are reported in Miller
units as the means = the standard deviations (¢”" ') of results from three
separate experiments.

PQS analysis. Freshly plated P. aeruginosa cultures were used to inoculate
1-ml cultures for overnight growth. Cultures were extracted with acidified ethyl
acetate as previously described (3). Extracts were dried, resuspended in a small
volume of 1:1 ethyl acetate-acetonitrile, and separated by thin-layer chromatog-
raphy (TLC) as described previously (37). Resolved TLC plates were photo-
graphed under long-wave UV light.
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RESULTS

LasR and RhIR do not interact with the pgs4 promoter.
Previously, it was shown that the transcription of pgsA is pos-
itively controlled by the las quorum-sensing system and nega-
tively controlled by the ril quorum-sensing system and that
these two systems appear to compete for regulatory effects
(26). These results, along with the discovery of two putative
quorum-sensing operator sequences upstream from the pgsA
promoter (26), suggested that regulation by and competition
between the two systems may be occurring in this region. To
determine whether LasR and/or RhIR binds the pgsA pro-
moter, DNA mobility shift assays were performed in both the
presence and absence of each protein’s respective cell-to-cell
signal. Surprisingly, neither LasR nor RhIR interacted with the
pgsA promoter. In the presence or absence of 3-oxo-C,,-HSL,
LasR caused no shift in DNA mobility for the pgs4 promoter
(Fig. 1A). To ensure that our LasR-containing lysate would
interact with a specific DNA fragment, we showed that the
lysate caused an interaction with the lasB promoter (Fig. 1C).
The two different shifted complexes seen in this control assay
were similar to that seen by Schuster et al. (45) and indicated
that our cell lysate contained active LasR. Similarly, in the
presence or absence of C,-HSL, RhIR did not produce a shift
in DNA mobility for the pgs4 promoter (Fig. 1B). In a control
experiment, the RhlR-containing cell lysate caused a mobility
shift of the rhl4 promoter in the absence (Fig. 1D) and pres-
ence (data not shown) of C,-HSL. While this shift was small, it
was comparable to that reported by Medina et al. (28) and
indicated that the cell lysate contained active RhIR.

PqgsR interacts with the pgsA promoter. It was shown previ-
ously that pgsA4 promoter activity requires the presence of pgsR
(26). This gene, which is required for PQS synthesis (10, 15), is
homologous to members of the LysR-type transcriptional reg-
ulator family. Many LysR-type transcriptional activators con-
tain a conserved DNA binding domain and a variable coin-
ducer binding domain (see reference 43 for a review). These
transcription factors typically bind a promoter region in the
absence of a coinducer and bind a nearby site in the presence
of a coinducer (43). Others have shown that PqsR interacts
with the phnAB promoter in the absence of a coinducer and
that pgsR positively regulates the expression of phnAB (5).
Because pgsA expression requires pgsR, it seemed likely that
PgsR was interacting with the pgs4 promoter. To test this
hypothesis, E. coli cell lysates containing PqsR were used in
DNA mobility shift assays with the pgs4 promoter region as
described above. As we suspected, PqsR interacted with the
pgsA promoter, thereby causing a shift in DNA mobility (Fig.
2A). This interaction occurred in the absence of any P. aerugi-
nosa-produced factors which presumably would mean that the
PgsR coinducer was not present. To determine whether the
interaction with the pgsA promoter could be augmented by a
coinducer, E. coli strain DH5a(pDSW8) was grown in the
presence of an ethyl acetate extract of culture supernatant
from wild-type P. aeruginosa (strain PAO1). Most interestingly,
the PgsR-containing lysate from these cells caused a much
stronger DNA shift than that from cells which were grown in
the absence of the organic extract (Fig. 2B). This shift was
clearly visible when the gel had been exposed to X-ray film for
only 3 h, while the shift with PqsR alone was not visible (Fig.
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FIG. 1. Neither LasR nor RhIR binds the pgs4 promoter. (A) Ra-
diolabeled DNA containing the pgs4 promoter region was added to a
LasR-containing cell lysate that was prepared in the absence (lanes 1
to 5) or presence (lanes 6 to 10) of 10 pM 3-oxo-C,,-HSL (C,,).
(B) Radiolabeled DNA from the pgsA promoter region was added to
an RhIR-containing cell lysate prepared in the absence (lanes 1 to 5)
or presence (lanes 6 to 10) of 10 uM C,-HSL (C,). (C) Radiolabeled
DNA from the lasB promoter region was added to a LasR-containing
cell lysate prepared in the presence of 10 wM 3-oxo-C,,-HSL. (D) Ra-
diolabeled DNA from the rhl4A promoter region was added to an
RhIR-containing cell lysate prepared in the absence of C,-HSL. The
total protein concentration of each lysate was determined, and the
following amounts of protein were added per reaction: lanes 1 and 6,
0 pg; lanes 2 and 7, 10 pg; lanes 3 and 8, 20 pg; lanes 4 and 9, 40 pg;
and lanes 5 and 10, 60 pg. Total binding reaction mixtures were then
electrophoresed on nondenaturing 6% polyacrylamide gels. Gels were
dried, and overlaid X-ray film was exposed for approximately 2 or 24 h
before development. Results presented are from film exposed for 2 h,
which showed the same number of bands as film exposed for at least
24 h (data not shown).

2B). (The autorad shown in Fig. 2A was exposed for 72 h in
order to detect the mobility shift.) These data indicated that
the PgsR coinducer was contained in the ethyl acetate extract
of the P. aeruginosa culture supernatant. Since PQS is present
in such an extract (along with many other compounds) and
PgsR controls PQS production, we speculated that PQS would
be a likely candidate for a coinducer of PqsR. To determine if
this was correct, E. coli strain DH5a(pDSW8) was grown in the
presence of synthetic PQS in order to prepare a PqsR-contain-
ing cell lysate for the DNA mobility shift assay. Most excitingly,
we found that in the presence of PQS, the interaction of PqsR
with the pgsA promoter region was greatly enhanced (Fig. 2C).
As in Fig. 2B, the autorad presented in Fig. 2C was exposed to
X-ray film for only 3 h, and the majority of labeled DNA had
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FIG. 2. Binding of PgsR to the pgs4 promoter. Radiolabeled DNA
containing the pgsA promoter was incubated with E. coli cell lysates
containing PqsR. PqsR-containing cell lysate was prepared in the ab-
sence (lanes 1 to 5 of panels A, B, and C) or the presence of an ethyl
acetate extract of a P. aeruginosa culture (lanes 6 to 10 of panel B) or
20 uM PQS (lanes 6 to 10 of panel C). The total protein concentration
of each lysate was determined, and the following amounts of protein
were added per reaction: lanes 1 and 6, 0 pg; lanes 2 and 7, 10 pg; lanes
3 and 8§, 20 wg; lanes 4 and 9, 40 pg; and lanes 5 and 10, 60 pg. Total
binding reaction mixtures were then electrophoresed on nondenatur-
ing 6% polyacrylamide gels. Gels were dried, and overlaid X-ray film
was exposed for approximately 3 (B and C) or 72 (A) h.

shifted to a higher molecular weight. Extracts prepared in the
absence of PQS did not produce a detectable mobility shift
when X-ray film was exposed for 3 h (Fig. 2C). This result
showed that PQS greatly enhanced the interaction between
PgsR and a target promoter (pgsA), thereby implying that PQS
acts as a coinducer for PqsR. Control experiments also showed
that the addition of excess unlabeled competitor DNA (a P.
aeruginosa promoter that is not controlled by PqsR) at various
concentrations that were up to 200-fold higher than the con-
centration of the radiolabeled pgsA promoter had no effect on
the mobility of pgsA in the presence of PqsR and PQS (data
not shown). This indicated that the interaction between the
PqsR-PQS complex and the pgs4 promoter was specific. Fi-
nally, it can be noted that a minor shifted band was observed
above the major shifted complex on autorads exposed for
longer times when PqsR was prepared in the presence of P.
aeruginosa culture extract or synthetic PQS (data not shown).
Such a result suggests that, as seen with another LysR homolog
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(7), PgsR and the PqsR-PQS complex bind to different loca-
tions in the pgs4 promoter region.

pqsR is controlled by the las and rhl quorum-sensing sys-
tems. The data presented in Fig. 1 and 2 indicate that pgsA4 is
controlled indirectly by LasR and RhIR and directly by PqsR.
We suspected that the indirect effects of LasR and RhIR on
pgsA expression may be occurring through PgsR. Before con-
structing a pgsR'-lacZ transcriptional fusion to study pgsR reg-
ulation, we mapped the pgsR transcriptional start site through
primer extension analysis. These experiments showed that two
primary transcriptional start sites existed for pgsR (Fig. 3A and
B). The two sites were 190 and 278 bp upstream from the pgsR
ATG start codon, respectively. The results of repeat experi-
ments with the same primer are presented in Fig. 3. A second
primer was used in a separate primer extension analysis, and
this analysis resulted in the identification of the same start sites
(data not shown). A minor primer extension product also ap-
peared between the mapped sites in only one experiment (Fig.
3B), but the significance of this product is not known. The
transcriptional start site that is farther upstream contains an
appropriately located region that matched five out of six bases
of the consensus sequences for both the —35 and —10 regions
of a o’%type promoter (Fig. 3C). No sequences similar to
known promoter consensus sequences could be identified for
the transcriptional start site that is closer to the pgsR start
codon.

To determine the relationship between LasR, RhIR, and
PgsR, we monitored the expression of a pgsR’-lacZ transcrip-
tional fusion in strains PAO1 (wild type), PAO-R1 (lasR),
PDOL111 (rhlR), and MP551 (pgsR). Interestingly, the data
showed that the wild-type strain PAO1 produced 1,308 = 68
Miller units of activity from the pgsR’-lacZ fusion and that the
lasR mutant produced only 303 * 14 Miller units of activity
(Fig. 4). This indicated that lasR controlled pgsR transcription
in a positive manner. To confirm that this control was happen-
ing in a direct manner, we examined the effect of LasR and
3-0x0-C,,-HSL on pgsR expression in E. coli. The resulting
data showed that in the presence of only LasR, pgsR'-lacZ was
expressed at a level similar to that of the background B-Gal
activity produced by the parent vector control (Fig. 5). How-
ever, when 3-0x0-C,,-HSL was added in the presence of LasR,
PpgsR'-lacZ expression greatly increased (Fig. 5). This showed
that LasR and 3-oxo-C,,-HSL were required and sufficient for
pgsR induction in E. coli, which indicated that their effect on
pgsR is direct.

The data presented in Fig. 4 also show that the expression of
pgsR’-lacZ in an rhIR mutant, strain PDO111, produced 1,958
+ 238 Miller units, which is an increase (approximately 1.5
times higher) in expression over that seen in the wild-type
strain PAO1. Although the increase in expression seen in
strain PDO111 was minor, it nevertheless demonstrated that
rhIR can have a negative regulatory effect on pgsR transcrip-
tion. This supports previous data which showed that the rA/
quorum-sensing system represses pgsA transcription (26).
These data could not be confirmed as described above in an E.
coli bioassay due to the high level of background B-Gal activity
produced by the expression vector in E. coli (Fig. 5 and data
not shown). Finally, we found that pgsR is not autoregulated at
the transcriptional level under the conditions tested. The ex-
pression of pgsR’-lacZ in the pgsR mutant, strain MP551, was
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FIG. 3. Mapping the pgsR start of transcription. (A) Primer exten-
sion analysis of the pgsR transcript. Sequencing reaction mixtures are
labeled according to nucleotide (A, C, G, or T), and lane P contains
the mixture for the primer extension reaction performed with RNA
isolated from P. aeruginosa strain PAO1(pMTP58). Extension prod-
ucts are labeled TS1 and TS2. (B) Repeat of primer extension analysis
as described for panel A. Panel B is presented to show that TS1 and
TS2 are at the same locations as in panel A. (C) Promoter region of
pgsR. The pgsR transcriptional start sites are indicated by bent arrows
at TS1 and TS2, and the pgsR ATG start codon is underlined. The —35
and —10 regions of a potential ¢’’-type promoter upstream from TS1
are boxed and labeled. A putative quorum-sensing operator sequence
(47) is also boxed, with highly conserved nucleotides in bold.
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FIG. 4. Transcriptional regulation of pgsR in P. aeruginosa. P.
aeruginosa strains PAO1 (wild type), PAO-R1 (lasR), PDO111 (rhlR),
and MP551 (pgsR) containing plasmid pMWC1003 (pgsR’'-lacZ) were
cultured as described in Materials and Methods and assayed for B-Gal
activity. Data are presented in Miller units as the means * ¢! of
results from duplicate assays from three separate experiments.

PAO1

very similar to that seen in the parent strain, PAO1 (Fig. 4).
Overall, our results indicated that pgsR is positively regulated
by lasR and may be regulated by rA/R in a negative manner.
Taken together with the previous report on the regulation of
the pgsA promoter by lasR, rhiIR, and pgsR, these data suggest
that a regulatory chain occurs where pgsR is under the control
of lasR and rhIR and, in turn, pgsR controls the pgsABCDE
operon, which is required for the production of PQS.

PqsR complements PQS production in a lasR mutant. The
data discussed above imply that the decreased production of
PQS in a lasR mutant should be complemented by the expres-
sion of pgsR. To investigate this hypothesis and connect our
findings to a phenotype, we constructed a pgsR expression
plasmid (pDSWS) that contains pgsR controlled by the tacp
promoter (see Materials and Methods). This plasmid was used
to transform P. aeruginosa strain PAO-R1, and PQS produc-
tion was monitored by TLC analysis of ethyl acetate extracts of
the P. aeruginosa cultures. As shown previously (37), the lasR
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FIG. 5. LasR and 3-oxo-C,,-HSL induce pgsR expression in E. coli.
Subcultures were grown for 90 min in the presence or absence of
3-0x0-C,,-HSL, and duplicate B-Gal activity assays were performed.
Data are presented in Miller units as the means * o~ ! of results from
three separate experiments. Lane 1, E. coli strain DHSa(pMWC1003,
pPCS11) without 3-oxo0-C,,-HSL; lane 2, E. coli strain DH5a
(PMWC1003, pPCS11) with 3-oxo-C,,-HSL; lane 3, E. coli strain
DH5a(pMWC1003, pACYC184) (control).
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FIG. 6. PgsR complements PQS production in a lasR mutant. Ethyl
acetate extracts of the indicated cultures were separated by TLC and
visualized under UV light. Lanes 1 and 5, synthetic PQS; lane 2, extract
from strain PAOI1; lane 3, extract from strain PAO-R1(pEX1.8); lane
4, extract from strain PAO-R1(pDSWS).

mutant (containing a control plasmid) does not make a detect-
able amount of PQS under these conditions (Fig. 6, lane 3).
However, when strain PAO-R1 contained pDSWS, PQS was
produced at a level comparable to that in the wild-type strain
PAOL1 (Fig. 6, lanes 2 and 4). These data agree with those of
Diggle et al. (14), who showed that PQS production is depen-
dent on factors in addition to LasR. The data presented in Fig.
6 demonstrate that the expression of PqsR complemented the
production of PQS in a /asR mutant and provide additional
evidence to support our conclusion that pgsR is controlled by
LasR in P. aeruginosa.

DISCUSSION

This research began with a desire to learn more about the
regulation of PQS production, with a specific focus on the
control of the pgsABCDE operon. Our data quickly led us into
a study that included multiple transcriptional regulators that
were found to be working in a regulatory chain to control PQS
production. Previous data had indicated that LasR and RhIR
were having a positive and a negative effect, respectively, on
the pgsA promoter (26). The pgsA promoter region had been
identified previously (26), and we used these data to develop a
DNA mobility shift assay to monitor interactions that occurred
in the pgsA regulatory region. Our initial data showed that
neither LasR nor RhIR, with or without their specific activat-
ing signals, would interact with the pgs4 promoter (Fig. 1).
This finding suggested that these regulators may instead be
controlling another regulator that affects pgs4. We hypothe-
sized that PqsR would be the most likely intermediate regula-
tor in this chain. PgsR is a LysR homolog that has been shown
to control both the pgsABCDE and phnAB operons (5, 26).
LysR homologs usually function in conjunction with a coin-
ducer and interact with a DNA region of dyad symmetry near
the —35 region of a promoter (43). In the absence of a coin-
ducer, LysR-type regulators also interact with a DNA se-
quence approximately 30 bp upstream from the —35 region of
a promoter (43). Our data first showed that PqsR alone would
interact with the pgsA promoter region in a relatively ineffi-
cient manner (Fig. 2). However, the presence of PQS greatly
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enhanced the interaction of PqsR with the pgs4 promoter
region (Fig. 2). This exciting result amounts to the discovery of
a target protein for PQS and implies that PQS is a coinducer
for PgsR. Such a finding is an important step in the elucidation
of how PQS affects P. aeruginosa.

A search of the pgs4 promoter region revealed two appro-
priately located sequences that resembled LysR-type protein
binding sites (43). The first sequence begins at —65 relative to
the pgsA transcriptional start site and has A and T nucleotides
that are 11 bp apart. This region consists of a 5-bp sequence
that shares dyad symmetry with a sequence 10 bp downstream.
The second potential PgsR binding site sequence extends from
—51 to —39 and again has a T and an A that are 11 bp apart
and a 5-bp region that shares dyad symmetry with a sequence
that begins 2 bp downstream. While these sites are similar to
LysR-type protein binding sites in both sequence and location,
additional analysis of the pgs4 promoter region is required to
determine exactly which sequences are bound by PqsR and the
PqsR-PQS complex.

The fact that pgs4 was controlled by PqsR, LasR, and RhIR
but that only PgsR interacted with the pgs4 promoter region
logically led to the hypothesis that pgsR must be controlled by
LasR and RhIR. With this in mind, our studies were then
directed toward the control of pgsR. The pgsR gene is located
adjacent to the PQS synthetic operons, pgsABCDE and phnAB.
The data presented in Fig. 4 show that pgsR is positively reg-
ulated by the las quorum-sensing system and negatively regu-
lated by the rhl quorum-sensing system. The ability of LasR
and 3-oxo-C,,-HSL to activate pgsR was also demonstrated in
E. coli, thereby indicating that LasR and 3-oxo-C,,-HSL are
required and sufficient for pgsR activation (Fig. 5). These data
are in agreement with data from two different mRNA microar-
ray analysis experiments in studies of quorum sensing-con-
trolled genes in P. aeruginosa (18, 44). However, the results in
Fig. 4 and 5 conflict with those of Cao et al. (5), who suggested
that there is no regulatory effect of either lasR or 7hlR on pgsR.
The most likely cause for these conflicting data is that our
pqsR'-lacZ reporter fusion contains 171 bp of additional up-
stream DNA compared to the fusion used by Cao et al. (5).
While their fusion should contain both promoter regions that
were identified in Fig. 3, it does not contain a potential quo-
rum-sensing operator centered 248 bp upstream from the tran-
scriptional start site of extension product TS1 (Fig. 3C). Déziel
et al. (12) also allude to a potential quorum sensing-controlled
operator sequence that was absent from the pgsR reporter
fusion used by Cao et al. (5). This sequence contains the highly
conserved (47) CT and AG nucleotides at positions 3 and 4
and 17 and 18, respectively. In addition, it matches 14 out of 20
bp of the quorum-sensing operator of the rsal promoter,
which is regulated by the las quorum-sensing system (11). Our
pgsR’'-lacZ fusion contains 85 bp beyond this putative opera-
tor, which could explain why the data in Fig. 4 and 5 show that
LasR controls pgsR while Cao et al. (5) reported that it does
not. It must be pointed out here that the potential operator
sequence is quite distant from the pgsR transcriptional start
sites so its presence may be purely coincidental. The quorum-
sensing control of pgsR may be through this site or a less-
conserved operator that cannot be identified by sequence com-
parisons.

With regard to the negative regulation of PQS production,
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FIG. 7. Model of the P. aeruginosa cell-to-cell signaling hierarchy. The details of this model are deliberated in Discussion. Plus and minus
symbols indicate positive and negative effects, respectively. The Lasl and RhlI signal synthase proteins were left out due to space limitations.
Virulence factors include the many virulence determinants and other cell factors that are regulated by the transcriptional activator-signal

complexes.

our data derived from P. aeruginosa experiments indicated that
rhIR had a negative effect on pgsR transcription (Fig. 4). The
rhl quorum-sensing system did not have as great a negative
effect on pgsR as it did on pgsA, which leads us to speculate
that a small effect on the expression of this transcriptional
regulator could be amplified in a gene that it controls (e.g.,
PgsA).

Taken together, our data show that PQS is an important part
of the cell-to-cell signaling hierarchy of P. aeruginosa. The
production of all three P. aeruginosa cell-to-cell signals appears
to be finely regulated and interconnected. To try to help un-
derstand this complex regulatory scheme, we have included a
model that shows how each signal affects the others (Fig. 7). In
this model, the cell-to-cell signaling cascade starts with the
induction of /lasR and lasl. LasR is regulated by multiple fac-
tors, including Vir and GacA (1, 41), and las/ is tightly con-
trolled by positive autoregulation (in conjunction with LasR)
and two negative regulators (RsaL and QscR) (8, 11). LasR-

3-0x0-C,,-HSL then positively influences 74/R and rhll (22, 38)
and pgsH (48), which encodes a putative monooxygenase that
is proposed to catalyze the final step of PQS synthesis (13). A
competitive regulatory event occurs at the pgsR promoter, with
LasR-3-0x0-C,,-HSL and RhIR-C,-HSL inducing and re-
pressing pgsR (Fig. 4 and 5), respectively. PqsR then interacts
with PQS, and the PqsR-PQS complex regulates the pgsA
promoter (Fig. 2) (26) (and probably the phnA promoter [5])
to cause an increased amount of PQS to be produced. The
positive feedback on PQS production that is implied by PQS’s
acting as a coinducer for PqsR has been seen in a similar
regulatory cascade in which ToxR (a LysR homolog) controls
toxoflavin production in Burkholderia glumae (21). PqsR-PQS
then has a positive effect on rAll (27), which could lead to
negative feedback on PQS production. The effect of PqgsR-PQS
on rhll production can be demonstrated only in a lasR mutant
(15), which suggests that the effect occurs at a time when lasR
is not being expressed. All three cell-to-cell systems also con-
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trol numerous cell functions, including many virulence factors
(44, 40).

In summary, we have begun to unravel the complex regula-
tory cascade that governs PQS synthesis in P. aeruginosa. The
discovery that PQS appears to be a coinducer for PgsR is
important for our understanding of PQS bioactivity and will
lead to future studies on the function of PQS. The ability of
PQS to alter gene regulation and virulence in P. aeruginosa is
an indicator of a promising target for therapeutics aimed at
decreasing the pathogenesis of this opportunistic pathogen.
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