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Unité Mixte de Recherche ENVA-INRA RISQUAL, Ecole Nationale Vétérinaire d’Alfort, 7 avenue
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The effects of nine common food industry stresses on the times to the turbidity (Td) distribution of Listeria
monocytogenes were determined. It was established that the main source of the variability of Td for stressed cells
was the variability of individual lag times. The distributions of Td revealed that there was a noticeable
difference in response to the stresses encountered by the L. monocytogenes cells. The applied stresses led to
significant changes of the shape, the mean, and the variance of the distributions. The variance of Td of wells
inoculated with single cells issued from a culture in the exponential growth phase was multiplied by at least
6 and up to 355 for wells inoculated with stressed cells. These results suggest stress-induced variability may
be important in determining the reliability of predictive microbiological models.

Listeria monocytogenes has been recognized as an important
food-borne pathogen that causes listeriosis. Outbreaks of lis-
teriosis have been associated with milk, cheese, vegetables and
salads, and meat products. The organism is particularly prob-
lematic for the food industry because it is widespread in the
environment (17) and because of its ability to grow within a
wide range of temperatures (�1.5 to 45°C), pH values (4.39 to
9.4), and osmotic pressures (NaCl concentrations up to 10%).

So, extensive research was carried out on predictive models
describing the behavior of this pathogen in foods. Today, the
models describing the environment effect on growth rate of L.
monocytogenes are sufficiently accurate to be used by manufac-
turers, regulators, and scientists to assess microbial risks asso-
ciated with the consumption of foods or to evaluate the rele-
vance of risk management options (1, 2). On the other hand,
the models describing the lag time must be improved to make
the prediction more reliable (22, 29).

Some secondary models have been published to describe the
influence of the environment on the bacterial lag time (5, 14,
41). Many reviews and discussions concerning their applicabil-
ity have been published (28, 32, 35, 38). But the prediction of
the lag time in foods still seems difficult to obtain and it is
necessary to improve predictions (20, 37). As natural contam-
inations of foods occur with very few cells which are occasion-
ally stressed by the food processing and the industry environ-
ment, it is essential to improve models by taking into account
injuries encountered by the cells before they contaminate the
foods and by using a stochastic approach dealing with the
variability of the individual behavior of microbial cells. Models
have been developed to take the effect of injuries on the bac-
terial lag times into account (11, 12, 39). Similarly, the indi-
vidual response was also tackled by some authors such as

Baranyi (6), who showed the relationship between the individ-
ual lag time distributions and the lag time of the bacterial
population. Recently, some individual lag time distributions
have been characterized (23, 33). The variability of individual
lag times seems to be wider as microorganisms are injured (4,
33, 34, 39) or as growth conditions are unfavorable (23, 24, 27).

The aim of this study was to investigate and to compare the
impacts of nine stresses usually met in the food industry on the
distributions of individual lag times of L. monocytogenes. For
this, the distributions of times to the turbidity (Td) of micro-
plate wells inoculated with single L. monocytogenes cells pre-
viously subjected to stress were characterized in optimal growth
conditions.

MATERIALS AND METHODS

Strains and culture conditions. L. monocytogenes 14 (serotype 4b, industrial
environment origin) was maintained at �25°C in 50% glycerol. The strain 14 is
a reference strain of the French program in predictive microbiology Sym’Previus.
Prior to each experiment, a culture was incubated at 30°C for 24 h in tryptone soy
broth (Oxoid, Unipath Ltd., Basingstoke, United Kingdom) supplemented with
0.6% yeast extract (AES Laboratoire, Combourg, France) (TSBye). The first
bacterial culture was diluted as needed to obtain an initial bacterial suspension
of approximately 103 cells ml�1 in TSBye. That initial bacterial concentration
was further incubated in TSBye for 20 h at 25°C to obtain 108 cells ml�1 in the
exponential growth phase.

Stress experiments. Nine different stresses were applied on cultures in the
exponential growth phase. First, before each stress, once TSBye had been elim-
inated by centrifugation (5,000 � g, 10 min, 4°C), L. monocytogenes cells were
washed in 0.85% of NaCl (Prolabo, Paris, France) (diluent) at 25°C, pH 7, and
centrifuged again (5,000 � g, 10 min, 4°C). Centrifugation did not have any
influence on the individual lag time distribution of L. monocytogenes cells in the
exponential growth phase (data not shown); this stage did not modify the phys-
iological state of the cells. Secondly, the supernatant was eliminated and cells
were recovered in the following conditions: (i) for mineral acid stress, in diluent
at 25°C adjusted to pH 3 with HCl (Prolabo) for 34 min; (ii) for organic acid
stress, in diluent at 25°C adjusted to pH 4.6 with lactic acid (Prolabo) for 48 h;
(iii) for alkali stress, in diluent at 25°C adjusted to pH 12 with NaOH (Prolabo)
for 22 min; (iv) for the first disinfectant stress, in diluent at 25°C supplemented
with 4 mg liter�1 of benzalkonium chloride (BAC) (Fluka, Buchs, Switzerland)
for 13 min; (v) for the second one, in diluent at 25°C supplemented with chlorine
at 2.4 ppm for 1.5 min; (vi) for cold stress, in diluent dispatched in 1-ml aliquots
directly placed at �25°C for 48 h; (vii) for heat stress, in diluent then diluted
(1:100) in physiologic water at 55°C for 3 min; (viii) for osmotic stress, in pH 7
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salt solution at 25% (wt/vol) at 25°C for 25 h; and (ix) for starvation stress, a
second washing was realized in diluent to ensure the complete elimination of
nutrient and the cells were recovered in diluent at 30°C for 24 h. The time of
exposure to each stress was the necessary time to obtain a 1.5 log10 CFU ml�1

loss by enumeration on tryptone soy agar (Oxoid, Unipath Ltd., Basingstoke,
United Kingdom) supplemented with yeast extract at 0.6 g liter�1 (AES Labo-
ratoire) (TSAye). The loss of 1.5 log10 CFU ml�1 was chosen because of the
shape of the inactivation curve observed for the starvation stress. For this stress,
a more significant loss would have been more difficult to achieve. This loss of
cultivability also presented the advantage of being significantly higher than the
error of the viable count enumeration method.

Bioscreen growth experiments. Turbidity growth curves were generated with
an automatic Bioscreen C (Labsystem France SA, Les Ulis, France) reader.
From L. monocytogenes cells in the exponential growth phase and stressed cells,
serial dilutions were made in tryptone salt (Oxoid) broth in order to reach in the
final dilution a maximum concentration of 1.4 cells ml�1 in TSBye preheated at
30°C. Wells of two Bioscreen plates were inoculated with 300 �l of this suspen-
sion to obtain a target value of 0.42 cells well�1, increasing the probability of
having one cell in wells showing growth. Assuming a Poisson distribution of the
cells in the wells (18), the maximum concentration of 0.42 cells well�1 corre-
sponds to a maximum of 35% of wells showing growth and allowed us to say that
less than 20% of these wells contained more than one cell. Then the plates were
placed in the Bioscreen C reader at the incubation temperature of 30°C. The
increase in turbidity was monitored at 600 nm (optical density [OD]). Measure-
ments were taken every 10 min, and the plates were shaken at the medium
intensity for 30 s/min. For each stress experiment, 150 wells were kept for
stressed cells, and the 50 left over were dedicated to L. monocytogenes cells in the
exponential growth phase. Each experiment was replicated at least three times.

Relation between turbidity growth curves and individual lag times. The indi-
vidual lag times of L. monocytogenes cells were estimated through the time of
detection (Td), which is the time required for the microbial population to gen-
erate a 0.05 increase of the initial baseline value of OD (OD0). This optical
density corresponds to a cell density estimated by a viable count of approximately
1.8 � 107 L. monocytogenes cells well�1.

Assuming an exponential bacterial growth at a constant specific growth rate
(�) until the detection time, Td is related to the lag time of the culture (lag) by
the following formula proposed by Baranyi and Pin (7):

Td � lag �
ln�Nd� � ln�N0�

�
(1)

where Nd is the bacterial number at Td and N0 the number of cells initiating
growth in the considered well.

Components of the variance of detection times. In order to estimate the part
of the variability of Td explained by the variability of lag, we tried to estimate the
components of the variance of Td. From equation 1, we can write

Var�Td� � Var�lag� � Var�ln�Nd� � ln�N0�

� �
� 2 · Covar�lag,

ln�Nd� � ln�N0�

� � � ε (2)

where Covar�lag,
ln�Nd� � ln�N0�

� � is the covariance term and ε is an error term

corresponding to the reading inaccuracy of the Bioscreen C reader. The Bio-
screen C reading inaccuracy was assumed negligible.

When the initial number of cell N0 is high, we can assume that lag and N0 are
independent (6), and then the term of covariance is negligible as Nd, �, and lag
are independent. In this case, equation 2 can be written

Var�Td� � Var�lag� � Var�ln�Nd� � ln�N0�

� � (3)

Moreover we have

lag �
K
�

(4)

where K is a constant quantifying the “physiological state” of the initial popu-
lation (42); and then we have

Var�lag� � K2 · Var�1
�� (5)

From an experiment carried out with a high inoculum of cells in the exponential

growth phase (3.3 � 104 cells well�1 instead of 0.42), we estimated from viable
count and OD curves (3) a maximum specific growth rate, �, of 0.90 h�1 and a
lag time, lag, of 0.32 h. K was found to be equal to 0.29. As K is greatly smaller
than 1,

Var�lag� �� Var�1
�� (6)

Equation 3 becomes

Var�Td� � Var�ln�Nd� � ln�N0�

� � (7)

The Taylor’s series approximation allows us to write for two independent vari-
ables A and B

Var�AB� � Ā2Var�B� � B� 2Var�A� (8)

Therefore we have for a high initial number of cells

Var�Td� � �1
���

2

[Var(ln�Nd�) � Var(ln�N0�)] � �ln�Nd� � ln�N0�� �2Var�1
��

(9)

It was checked experimentally that Var(Td) � 0.007. Nd was found to correspond
by viable count to a concentration of 1.77 � 107 CFU well�1. Yet, it was not
possible to identify precisely which part of the observed Td is explained by the
terms of equation 9. Indeed we had estimations of N0, Nd, and � from viable
counts but no sufficiently reliable information on their variance. Nevertheless, we

were able to estimate the maximum possible value of Var�1
�� and Var(ln(Nd))

from the experimental result. Var�1
�� is maximum if Var(ln(Nd)) � Var(ln(N0))

� 0, so

Var�1
�� �

0.007

ln�Nd� � ln�N0�� 2
� 1.77 · 10�4 (10)

and Var(ln(Nd)) is maximum when Var(ln(N0)) � Var�1
�� � 0, so

Var(ln�Nd�) � 0.007 · �2 	 0.005 (11)

As the covariance term in equation 2 is negative, we have

Var�Td� � Var�lag� � �1
���

2


Var(ln�Nd�� � Var(ln�N0�)]

� �ln�Nd� � ln�N0�� �2Var�1
�� (12)

For experiments with single cells, N0 was assumed to follow a Poisson distribu-
tion with an average of 0.42 cells well�1. For the estimation of Var(ln(N0)),we
used the positive values of the random samples generated by this distribution
(10,000 iterations). It was found that Var(ln(N0)) 	 0.0934. Var(ln(Nd)) and Var

�1
�� were assumed to be independent of the inoculum’s size and the initial

physiological state. So, from the values previously obtained it was possible to
estimate the minimum part of Var(Td) explained by Var(lag) for experiments
with single cells.

With equation 12 and our results we have

Var�lag� � Var�Td� � 0.185 (13)

Standardization of the datasets. As we aimed at characterizing the statistical
distribution of Td values, the datasets of replicates needed to be cumulated and
their standardization was necessary. The standardization was carried out in two
steps in order to correct the sources of variability between experiments (VarBE).
VarBE has two sources of variability: the variability between experiments due to
the differences in the conditions of growth VarBE1 and the variability between
experiments due to the reproducibility variability in the preparation of the
stressed cells VarBE2. VarBE was estimated through the variance of means of
Td in replicates.

Standardization to correct VarBE1. For wells inoculated with stressed cells,
the mean and the variance of Td values were very dependent on extreme values
in a data set. So, the impact of growth conditions was corrected by using Td

values of the wells inoculated with cells in the exponential growth phase, in-
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cluded in the same plate. It consisted of a transformation of the Td values by
centering the mean of each data set for the cell in the exponential growth phase.

tij � Td,ij � �Tex, · j � Tex, · · � (14)

where tij is the standardized value of Td,ij, the ith value of Td for the jth exper-
iment; Tex, · j is the mean of Td values of the wells inoculated with cells in the
exponential growth phase of the jth experiment; and Tex, · · is the mean of Tex, ·

j.
Standardization to correct VarBE2. A second step was proposed for the

standardization of Td values for wells inoculated with stressed cells. This step

aimed at correcting the heterogeneity between experiments of the preparation of
the stressed cells. This step was carried out by using the 5th percentile of the
distribution of tij values. Indeed, the 5th percentile was preferred to the mean,
which is too much dependent on extreme values, particularly when datasets are
small.

t�ij � tij � �t5j � t5 · � (15)

where t�ij is the standardized value of tij (equation 14), t5j is the 5th percentile of
tij values of the jth experiment, and t5 · is the mean of t5j.

An example of the standardization process is shown in Fig. 1.

FIG. 1. Standardization steps of detection time values for the three datasets (#1, #2, and #3) of L. monocytogenes cells stressed by chlorine.
(a) Optical density growth curves at 600 nm (OD-OD0) in TSBye at 30°C of the wells showing growth. Dashed line: limit of detection (OD0 � 0.05).
(b) Histogram of observed detection times (Td) issued from OD growth curves. (c) Histogram of transformed detection times after the first step
of standardization (t). (d) Histogram of transformed detection times after the second step of standardization (t�). (e) Histogram of the cumulated
values of t� of the three datasets (Tds).
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Fitting data. The standardized detection times (Tds), t for cells in the expo-
nential growth phase and t� for stressed cells, were fitted to various parametric
distributions using Regress� (version 2.5.1 by Michael P. McLaughlin; http:
//www.causaScientia.org/software/Regress_plus.html) or the nlinfit subroutine of
MATLAB software (version 6.5.1; The Math Works Inc., Natick, MA). The
cumulative distribution functions were issued from Regress�. The log-likelihood
criterion was chosen to select the theoretical distribution functions fitting the
best observed Tds distributions. Quantile-quantile plots were also edited to check
visually the goodness of fit of Tds distributions.

RESULTS

Detection time distribution for L. monocytogenes cells in the
exponential growth phase. Taking into account the compo-
nents of the variance of Td allowed us to say that only 11% of
the observed variability is explained by the lag time variability
(Table 1). An extreme value type I distribution (or extreme
value distribution with an upper bound) was fitted to the 544
values of Tds obtained from 37 datasets (Fig. 2).

Influence of the stresses on detection time distributions.
Using the standardization method for Td values of stressed
cells makes it possible to take into account the variance be-
tween experiments and to group datasets. Table 1 depicts the
means and variances of Td before and after standardization.
The results of the standardization support the conclusion that
the observed variability was mainly explained by individual lag
time variability. No effect of the physiological state of the cells
was noticed on the growth rate. The distributions of detection
times revealed the importance of the increase of lag time for
stressed L. monocytogenes cells. By using the mean of Tds to
compare the impacts of the nine stresses, the following classi-
fication was obtained (ascending impact): HCl, cold, lactic
acid, chlorine, NaOH, NaCl, starvation, BAC, and heat. Un-
doubtedly BAC and heat stresses had the greatest impact on
the lag time duration in our experimental conditions. The
mean of Tds was multiplied by 1.65 for BAC stress and by 1.87
for heat stress in comparison with the mean of Tds values for
cells in the exponential growth phase. On the other hand, acid
and cold stresses didn’t seem to have the same influence and
the mean was multiplied by a factor of 1.1.

The distributions of detection times revealed the importance
of the increase of cellular variability for stressed L. monocyto-
genes cells. Variance was also used to compare the impacts of
the nine stresses applied. By using this parameter, the follow-
ing classification was obtained (ascending impact): HCl, lactic

acid, cold, NaOH, starvation, NaCl, chlorine, heat, and BAC.
For example, the variance of Tds for L. monocytogenes cells in
the exponential growth phase was multiplied by 355 compared
to wells inoculated with BAC-stressed cells. The mineral acid
stress, which had the smaller impact on the mean of detection
times, generated a multiplication of the variance by 6.

Figure 3 shows that the cumulative distribution of Tds values
turns into heterogeneous shapes. Theoretical distributions
have been fitted to Tds values. Six different theoretical distri-
butions were found (Table 2) for the nine stresses. Figure 4
clearly reveals that they fit well the Tds distributions. Extreme
value type II distribution was fitted for acids, alkali, and chlo-
rine stresses, a gamma distribution for starvation stress, and a
Weibull distribution for heat-stressed cells. For cold and BAC
stresses, bimodal distributions were found to be suitable to fit
Tds. There is no a priori reason to choose a bimodal distribu-
tion for cold-stressed L. monocytogenes cells, but the presence
of a few (10%) cells with very long detection times (Fig. 3 and
Fig. 4) suggests that a mixture of two distributions might be
acceptable.

FIG. 2. Observed and fitted density distributions of the standard-
ized detection times Tds (in hours) of wells inoculated with L. mono-
cytogenes cells in the exponential growth phase. Continuous curve:
fitted extreme value type I distribution (cumulative density function
and parameters in Table 2). Histogram: observed frequencies of Tds.

TABLE 1. Means and variances of observed (Td) and standardized (Tds) detection times of single cells
of L. monocytogenes in different physiological states

Physiological state No. of
values

Td Tds

Mean (h) Var(Td) (h2) Mean (h) Var(Tds) (h2) Var(lag) (h2) Var(lag)/Var(Tds) (%)a

Exponential growth phase 544 18.41 0.385 18.50 0.208 0.023 11.1
HCl 92 20.43 1.219 20.45 1.211 1.026 84.7
Cold 109 21.16 12.385 21.13 12.412 12.227 98.5
Lactic acid 108 23.91 7.372 22.74 7.320 7.135 97.5
Chlorine 143 24.38 36.173 24.30 36.001 35.816 99.5
NaOH 137 25.50 13.244 25.52 13.110 12.925 98.6
NaCl 108 26.05 36.149 26.23 34.762 34.577 99.5
Starvation 84 26.37 28.083 26.84 27.112 26.927 99.3
BAC 170 30.06 75.805 30.51 73.916 73.731 99.7
Heat 89 33.59 39.132 34.48 38.103 37.918 99.5

a Minimum percentage of the variance explained by individual lag time variability as Var(lag) � Var(Td) � 0.185 h2.
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DISCUSSION

The aim of this study was to compare the impacts of nine
different stresses on the individual lag times of L. monocyto-
genes. A small number of previous studies have sought to
examine this phenomenon of the historical impact of stress on
individual lag times; furthermore, they have essentially con-
cerned one stress (4, 33, 34). By using a similar physiological
parameter, the loss of cultivability, for each stress, we suc-
ceeded in classifying the impacts of nine different stresses on
the individual lag time distributions.

After observation of the sources of variability of detection
times (Table 2), it can be advanced that the method of turbidity
detection times produced by single cells is suitable to charac-
terize lag time distributions of stressed cells. With a maximum
of 35% of positive wells on the microplates, it can be asserted
that the probability of having more than one cell in the wells
did not have a deep impact on the distributions (Table 2). The
observed variability cannot be explained by the presence of
more than two cells in the same well. Indeed by choosing a
maximum of 35% of positive wells, this results in an 80%
probability of having a single cell. Other authors used an in-
oculation level resulting in a 70% probability of having a single
cell, for Robinson et al. (27), and a 60% probability, for Métris
et al. (23).

The presence of cells in the exponential growth phase on the
same microplates with stressed cells allowed us to correct the
variability between experiments due to the differences in the
conditions of growth. For the same loss of cultivability on

TSAye, the mean of Tds was multiplied by a factor between 1.1
and 1.87. Heat and BAC stresses induced the greatest increase
of the mean of Tds (Fig. 5). After observation of the variances
of Tds (Table 1), the nine stresses can be classified in four
groups. The first includes HCl stress, which has the weakest
impact on the total variance of Tds. The second group is com-
posed of lactic acid, NaOH, and cold stresses; their variance of
Tds is approximately 30 times more important than the vari-
ance of Tds for cells in the exponential growth phase. Starva-
tion, NaCl, and chlorine stresses form the third group. The
factor of multiplication of the variance of Tds for cells in the
exponential growth phase is 140 for this group. The last group
is composed of heat and BAC stresses. For this last group the
variance of Tds is multiplied by 180 and 355, respectively, in
comparison to the variance of Tds for cells in the exponential
growth phase.

With about 100 standardized data issued from at least three
replicates, we obtained suitable distributions. Regarding the
variability of lag time presented here, it can be noticed that 100
values are often enough to precisely characterize a distribu-
tion, but when the variability becomes high, more than 100
values should be obtained. That was the case with BAC stress
and its high variance of detection time values (Table 1).

With cells subjected to nine different stresses and cells in the
exponential growth phase, we obtained seven different shapes
of distribution of detection times. The distributions fitted were
strongly adjusted to data (Fig. 4).

In our study, the distribution of detection times for inocu-

FIG. 3. Observed cumulative distributions of the standardized detection times of L. monocytogenes in TSBye at 30°C. Dashed line: cumulative
distribution of Tds (in hours) for wells inoculated with cells in the exponential growth phase. Continuous curves: cumulative distributions of
observed Tds for wells inoculated with cells previously stressed by (a) HCl, (b) cold, (c) lactic acid, (d) NaOH, (e) chlorine, (f) starvation, (g) NaCl,
(h) BAC, and (i) heat.
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lated single cells in the exponential growth phase is skewed on
the left. That is not in agreement with the results of Wu et al.
(40), who fitted a normal distribution to individual lag times of
cells in the exponential growth phase. However, their 40 values
are insufficient to properly characterize a distribution. Smelt et
al. (33) also used cells in the exponential growth phase (Lac-
tobacillus plantarum), and their detection time values followed,
as our results, a left-skewed extreme value distribution. How-
ever, as we focused on the sources of variances of detection
times for cells in the exponential growth phase (Table 1), it is
obvious that the variance of individual lag times is not the main
source of variability and their distribution cannot be reached.

The gamma distribution that we obtained (Table 2) for
starved L. monocytogenes cells confirmed the findings of Métris
et al. (23) who also fitted a gamma distribution to Listeria in-
nocua cells issued from a stationary-phase culture. These cells
can be considered as undergoing a starvation stress and thus it
should be considered that individual lag times for starved cells
of the main strains of Listeria may be gamma distributed.

For the three stresses involving a modification of pH (both
acid and alkali stresses), the same distribution was fitted on the
standardized detection times: the extreme value type II distri-
bution. More generally, for the nine stresses presented in our
communication, right-skewed distributions were obtained like
Smelt et al. and Stephens et al. (33, 34) obtained with heat-
injured Salmonella and L. plantarum.

Contrary to the findings of Métris et al. (23) who found a
good linear correlation relationship (r2 � 0.94) between the
means and the standard deviations of the detection time values
by studying the effect of environmental growth conditions, the
linear correlation between the means and the standard devia-
tions was weak (r2 � 0.68) in our experiments (Fig. 5). The
coefficient of variation of detection times for Métris et al. (23)
rose from 5 to 10% as the growth conditions became less
favorable. Treatments, which generated bacterial stress, ap-
peared to have more influence on the variability of individual
lag times than the growth conditions. Indeed, the coefficient of

TABLE 2. Theoretical distributions fitted to standardized detection time values of L. monocytogenesa

Physiological state Distribution Cumulative density function Parameters

Exponential growth phase Extreme value type I 1 � exp(�exp((y � a)/b)) a � 18.678 (18.674, 18.682)
b � 0.372 (0.367, 0.376)

HCl Extreme value type II exp(�((y � a)/b)�c) a � 14.02 (�49.2, 17.80)
b � 5.95 (2.13, 60.70)
c � 8.74 (3.38, 100)

Cold Mixture of normal and Laplace p · �((y � a)/b) � (1 � p) ·
stdLaplaceCDF((y � c)/d)

a � 20.26 (20.11, 20.40)
b � 0.74 (0.64, 0.85)
c � 30.39 (26.06, 35.18)
d � 4.52 (1.69, 7.76)
p � 0.92 (0.87, 0.97)

Lactic acid Extreme value type II exp(�((y � a)/b)�c) a � 15.13 (8.61, 18.30)
b � 6.42 (3.11, 13.10)
c � 4.80 (2.49, 9.71)

Chlorine Extreme value type II exp(�((y � a)/b)�c) a � 18.02 (16.41, 19.06)
b � 3.80 (2.64, 5.59)
c � 2.15 (1.52, 3.10)

NaOH Extreme value type II exp(�((y � a)/b)�c) a � �29.54 (�252.61, 106.88)
b � 53.47 (12.80, 276.65)
c � 21.03 (4.72, 100.00)

NaCl Exponential 1 � exp((a � y)/b) a � 20.31 (20.31, 20.31)
b � 5.95 (4.87, 7.09)

Starvation Gamma 
(c,(y � a)/b) a � 19.49 (18.96, 19.66)
b � 3.98 (2.65, 5.60)
c � 1.93 (1.21, 3.33)

BAC Mixture of 2 normal p · �((y � a)/b) � (1 � p) · �((y � c)/d) a � 21.89 (21.16, 22.15)
b � 0.78 (0.56, 1.04)
c � 33.99 (32.49, 35.60)
d � 7.75 (6.61, 8.78)
p � 0.29 (0.19, 0.39)

Heat Weibull 1 � exp(�((y � a)/b)a) a � 25.86 (25.63, 25.91)
b � 9.45 (8.02, 10.03)
c � 1.41 (1.13, 1.76)

a For the cumulative density function, �(x) is the standard cumulative normal distribution, stdLaplaceCDF(z) is the standard cumulative Laplace distribution, and
�(w,x) is the incomplete gamma function. For the parameters, the 95% confidence limits are in parentheses.
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variation of detection times in our study was between 5 and
28% for stressed cells.

The variability of lag times presented in this study confirms
the findings of other fields of microbiology. Indeed, marked
heterogeneity occurs between individual cells within a clonal
population. Such heterogeneity has already been revealed in
almost any phenotype which is determinable at the single cell

level, e.g., in the intracellular pH (13, 25, 31) or cell morphol-
ogy (15, 16, 30, 36).

Because there are so many factors having an influence on
the individual lag behavior (35), accurate physiological expla-
nations of lag time heterogeneity are very difficult to obtain.
An important general working hypothesis, formulated by Rob-
inson et al. (26), states that lag is determined by two (hypo-

FIG. 4. Quantile-quantile plots of the sample quantiles of the standardized detection times (Tds) versus theoretical quantiles from the fitted
distributions for L. monocytogenes cells stressed by (a) HCl, (b) cold, (c) lactic acid, (d) NaOH, (e) chlorine, (f) starvation, (g) NaCl, (h) BAC, and
(i) heat.

FIG. 5. Standard deviations versus mean values of the standardized detection time (Tds) distributions of L. monocytogenes cells for all the
studied stresses.
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thetical) quantities. The first quantity is the amount of work
the cell has to perform to recover a physiological state that
allows the cell to multiply. For example, Hornbaek et al. (19)
observed a trimodal intracellular pH cell distribution for Ba-
cillus licheniformis. The capacity to multiply being correlated to
intracellular pH, they revealed that the subpopulation of cells
exhibiting lower intracellular pH had significantly longer lag
phases than populations of cells having higher intracellular pH.
The second quantity is the rate at which the cell can perform
that work. The rate may be identified in case of stress with
metabolic processes of repair systems (21). These processes
vary with the nature of the stress and involve the synthesis of
ATP, RNA, and DNA (10). As these mechanisms of repair
were present in low abundance, Booth (9) proposed that their
concentration in the cells would follow stochastic processes
leading to their Poissonian distribution. Such an imbalance in
the cells could generate a different rate for cells having the
same work to do to recover the capacity of growth.

This research sought to evaluate and classify the impacts of
stresses on individual lag time distribution of L. monocyto-
genes. The results of this study give information on the conse-
quences of food processing on L. monocytogenes lag time. As
we have shown, lag time distribution is dependent on the stress
undergone by the cell. It results in an increased variability of
lag times and in their particular distribution. Increased under-
standing of the individual behaviors after stress and the factors
that affect them will contribute to the development of im-
proved predictive models. These results reinforce the need to
move about a stochastic approach of bacterial growth, espe-
cially when predictive microbiology is used for assessing the
exposure to microbiological hazards (8). In the future we will
focus on the study of the individual lag time variability by ap-
plying successive stresses corresponding to food processing
events in order to optimize the evaluation of processing meth-
ods with respect to bacteriological safety and the quality of the
food.
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