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The development of childhood acute lymphoblastic leukemia
(ALL) typically involves formation of preleukemic clones in early-
life followed by the postnatal acquisition of “second-hit” muta-
tions and copy-number alterations that drive progression to overt
leukemia [1]. “Off-target” V(D)J recombination is a mechanism
known to drive the formation of deletions in ALL [2, 3]. The
recombination-activating gene (RAG) proteins, encoded by RAG1
and RAG2, typically help to generate antibody diversity by
inducing DNA double-strand breaks and recombining the variable
(V), diversity (D), and joining (J) gene segments during the early
stage of B-cell and T-cell maturation, resulting in diverse
immunoglobulins and T-cell receptors (Ig/TCR) [1, 4].
We previously found the frequency of driver gene deletions in

childhood ALL patients was positively associated with early-life
tobacco smoke exposure [5, 6]. Our prior studies were limited to
analysis of eight genes commonly deleted in ALL and targeted by
a multiplex ligation-dependent probe amplification assay, which
did not resolve breakpoint sequences [6]. Previous studies
demonstrating that increased off-target deletions mediated by
V(D)J recombination were associated with passive maternal
tobacco exposure [7] as well as hematologic malignancies [3]
motivated us to investigate whether tobacco exposure during
pregnancy may be associated with RAG recombination-mediated
deletions in childhood ALL. Here, we performed whole genome
sequencing (WGS) in childhood ALL patients with high or low
prenatal tobacco smoke exposure, extending upon our prior
investigations by examining structural variation genome-wide and
mutational mechanisms.
Childhood ALL patients were included from the California

Childhood Leukemia Study (CCLS), described in Supplementary
Methods and in detail elsewhere [8]. ALL patients were
categorized as having “high” (N= 18) or “low” (N= 17) early-
life tobacco exposure based on established epigenetic biomar-
kers (Fig. S1, see Supplementary Methods) [5, 6, 9]. Paired

tumor-normal WGS was performed for the 35 patients, and
quality control assessment, methods for detecting somatic
variants (including single nucleotide variants [SNVs], indels,
and structural variants [SVs]), mutational signature analyses, and
all statistical tests are described in Supplementary Methods.
Two-sided p-values < 0.05 were considered statistically
significant.
The majority of patients (31/35) were of the B-cell immuno-

phenotype. Patient demographic data are included in
Tables S1 and S2. Patients harbored a median of 1729 SNVs and
535 indels, with affected ALL driver genes including KRAS, FLT3,
JAK2, PAX5, ERG, PTPN11, NF1, and RB1 (Fig. S2). The number of
SNVs (p= 0.198) or indels (p= 0.843) were not significantly
different between high and low tobacco exposure patients (Fig. 1).
We identified a median of 33 SVs, 12 deletions, 2 duplications, 6
inversions, and 4 translocations per patient, with a median of 6
SVs overlapping known ALL driver genes, including CDKN2A/B,
IKZF1, VPREB1, and P2RY8 (Fig. S3). Expanding upon our previous
finding for 8 ALL driver genes [5, 6], we found a significantly
higher number of deletions genome-wide (p= 0.001), as well as a
higher frequency of translocations (p= 0.002), inversions
(p= 0.004), duplications (p= 0.017), and overall SVs (p < 0.001),
in the high tobacco exposure patients compared with low
exposure patients (Fig. 1, Table S1). This suggests that early-life
tobacco smoke exposure may be associated with general genomic
instability in ALL tumor samples, or perhaps that tobacco
exposure persists throughout childhood in high-exposure
patients. We note that when limiting to SVs overlapping ALL
driver genes, only total SVs and deletions remained significantly
increased in the high-exposure group (Table S3, Fig. S4); other
types of SV may be passenger events associated with tobacco
exposure or potentially confounded by molecular subtype. Age-at-
diagnosis was positively associated with number of SVs (p= 0.009)
and deletions (p= 0.0005) (Table S4).
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To explore the hypothesis that tobacco exposure-related gene
deletions in childhood ALL are RAG-mediated, we searched
deletion breakpoint sequences for occurrence of RAG motifs
using FIMO [10] (details in Supplementary Methods). We
considered presence of the full recombination signal sequence
(RSS) motif at one or both breakpoints as strong evidence of RAG
recombination (Fig. S5) and presence of only heptamer or
nonamer motifs as weaker evidence. Among 566 total deletions,
255 (45.1%) had at least one breakpoint located in Ig/TCR regions
(on-target), and 311 (54.9%) deletions had both breakpoints in
non-Ig/TCR regions and may therefore be mediated by off-target
RAG recombination. Ninety-three percent of Ig/TCR deletions and
35% of non-Ig/TCR deletions had a full RSS motif within 50 bp of at
least one of two breakpoints (i.e., putatively RAG-mediated). High
tobacco exposure patients had a higher total number of putatively
RAG-mediated deletions than the low exposure group overall
(p= 0.002), and when limited to non-Ig/TCR deletions (p= 0.003)
or Ig/TCR deletions (p= 0.005). High tobacco exposure was also
associated with a significantly higher number of deletions with a
full RSS motif at both breakpoints in non-Ig/TCR regions
(p= 0.004) but not in Ig/TCR regions (p= 0.472) (Table S5).
As the number of RAG-mediated deletions in the high versus

low tobacco exposure patients may reflect the frequency of
overall deletions in each patient group, we next examined the
proportion of deletions that appeared to be mediated by off-target
RAG recombination. In non-Ig/TCR regions, high-exposure patients
harbored a significantly higher proportion of putatively RAG-

mediated deletions than low-exposure patients (40.5% vs. 20.9%;
p= 0.001) (Fig. 1C, Table S6, Fig. S6). We also identified a higher
proportion of non-Ig/TCR deletions with the full RSS motif at both
breakpoints in high versus low exposure patients (9.5% vs 2.2%;
p= 0.0297) (Fig. 1D). This off-target effect was in the opposite
direction of the on-target effects observed in Ig/TCR regions
(Fig. S7), suggesting a potential skewing towards off-target RAG
recombination in the high tobacco exposure group.
In support that these are true RAG-mediated events, the RSS

motif (full RSS, heptamer or nonamer) was largely internal to
deletion breakpoints in both patient groups (Fig. 1E, Fig. S8A, B).
Further, of heptamers located internal to deletion breakpoints,
121/124 (97.6%) at non-Ig/TCR deletions and 394/398 (99.0%) at
Ig/TCR deletions were found in the correct orientation for typical
V(D)J recombination where the RAG motifs are deleted in the form
of “excision circles”. Analysis of non-templated nucleotide
sequences at deletion breakpoints provided additional support
for RAG-mediated deletions, as described in Supplementary
Methods and Results.
De novo motif analysis using HOMER (see Supplementary

Methods) identified the RAG heptamer as significantly enriched at
deletion breakpoints (Fig. S9). Consistent with FIMO results, high
tobacco exposure patients harbored a higher proportion of
deletions with at least one off-target RAG heptamer (high vs.
low groups: 32.7% vs 18.7%; p= 0.013) and a higher proportion of
deletions with off-target RAG heptamer at both breakpoints (6.4%
vs 1.1%; p= 0.076) (Fig. S10, Table S7). No additional significant

Fig. 1 Somatic alterations and RAG-mediated deletions by prenatal tobacco smoke exposure status in childhood ALL patients. Analysis of
somatic alterations was conducted using whole-genome sequencing data in 35 paired tumor-normal samples. The number of different
somatic alteration types in the high tobacco exposure (n= 18) and low tobacco exposure (n= 17) childhood ALL patients is displayed by box
and whisker plots for (A) single nucleotide variants (SNVs) and insertion deletion polymorphisms (indels), and (B) structural variants (SVs:
deletions, duplications, inversions, translocations). Statistical comparisons were performed using Wilcoxon rank sum tests (***P < 0.001;
**P < 0.01; *P < 0.05). Analysis of off-target (non-Ig/TCR) RAG-mediated deletions in the high and low tobacco exposure patients was
performed using FIMO. Bar plots display the proportion of deletions in non-Ig/TCR regions with at least one breakpoint (C) or with both
breakpoints (D) having an RSS motif in childhood ALL patients with high (n= 18) or low (n= 17) tobacco exposure. A total of 220 non-Ig/TCR
region deletions were detected in high tobacco exposure patients and 91 non-Ig/TCR deletions in low exposure patients. Error bars represent
95% bootstrapped confidence intervals. Chi-square tests were used to compare the proportions of deletions with at least one RAG motif
(either full, heptamer or nonamer) between two groups. Fisher’s exact tests were used to compare the proportions of deletions with a RAG
motif at both breakpoints between two groups. E The proportion of non-Ig/TCR (i.e., off-target) putatively RAG-mediated deletions with at
least one full RSS motif was plotted against the distance of the motif from the deletion breakpoint, ranging from within 5-bp to 200-bp. A
positive distance represents bases interior to the deletion breakpoint (inside the deletion) and a negative value represents bases exterior to
the breakpoint (outside the deletion). Proportions are displayed for the high (n= 18) and low (n= 17) tobacco exposure patients separately.
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motifs identified by HOMER had a target frequency above 5%
(Fig. S11).
Patient age-at-diagnosis was positively associated with both the

number (p= 0.0007) and proportion (p= 0.005) of non-Ig/TCR
putatively RAG-mediated deletions (Table S4). Patient age may be
a proxy for cumulative dose of tobacco exposure, there may be
age-related differences in molecular subtypes that vary by RAG-
mediated deletions, or a longer latency period between exposure
and ALL diagnosis may provide more time for somatic alterations
to develop.
In a multilevel model, which accounted for the varying number

of deletions in each patient, non-Ig/TCR deletions identified
among the high tobacco exposure patients had 2.44-fold higher
odds (95% CI:1.13–5.38) of being putatively RAG-mediated than
deletions in the low exposure group (Table 1), with an even
stronger association when the full RSS motif was found at both
breakpoints (OR= 4.70, 95% CI:1.34–29.75). Further analyses and
statistical modeling of putatively RAG-mediated deletions, includ-
ing in relation to age-at-diagnosis, ethnicity, and additional
features, are presented in Supplementary Information and
Table S8.
Finally, we explored whether any mutational signatures were

associated with tobacco exposure but found no significant
differences between high and low exposure patients (details in
Supplementary Results, Table S9–14, Figs. S12–16).
Altogether, our results support a potential leukemogenic role of

early-life tobacco exposure, a preventable environmental factor, in
childhood ALL development. Case-control studies of parental
smoking based on questionnaire data, which are subject to
misclassification bias, have shown inconsistent associations with
childhood ALL risk [11–13]. We recently reported a lack of
association between DNA methylation at the AHRR CpG
cg05575921, an epigenetic biomarker of maternal smoking during
pregnancy, and childhood ALL risk [14], which supported previous
evidence regarding all childhood ALL combined. Although results
from our case-only analyses appear inconsistent with case-control
study findings, they suggest that tobacco smoke exposure may
have tumor subtype-specific effects on ALL development.
There is a paucity of evidence on the potential influence of

environmental factors on RAG recombination activity, although
tobacco smoke exposure was previously implicated in off-target
RAG recombination in cord blood lymphocytes [7, 15]. The role of
early-life tobacco exposure in childhood ALL may not necessarily
be directly mutagenic but instead have effects on the developing
immune system, for example through upregulation of RAG
proteins or via stalling of lymphocyte development given that
RAG proteins are most active in immature lymphocytes, which
warrants future investigation.
Our study has some limitations. Small sample size limited

statistical power and our ability to adjust for potential confoun-
ders, such as molecular subtype. Tobacco exposure was analyzed
as a binary variable, and potential dose-response relationships
were not examined. Epigenetic biomarkers of prenatal tobacco
exposure were derived from newborn dried bloodspots, although
it is possible that these may be correlated with postnatal exposure
to parental smoking during childhood, a more relevant time
window of exposure given that second-hit deletions in ALL
typically arise postnatally [1]. We also cannot rule out other
unmeasured environmental exposures that may correlate with
prenatal tobacco exposure. Further studies are needed to confirm
our findings and to understand the precise biological mechanisms
and timing of exposures that underlie the association between
tobacco exposure and deletions in childhood ALL.

DATA AVAILABILITY
This study used biospecimens from the California Biobank Program. Any uploading of
genomic data and/or sharing of these biospecimens or individual data derived from
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these biospecimens has been determined to violate the statutory scheme of the
California Health and Safety Code Sects. 124980(j), 124991(b), (g), (h), and 103850 (a)
and (d), which protect the confidential nature of biospecimens and individual data
derived from biospecimens. Should we be contacted regarding individual-level data
contributing to the findings reported in this study, inquiries will be directed to the
California Department of Public Health Institutional Review Board to establish an
approved protocol to utilize the data, which cannot otherwise be shared peer-to-
peer. Full results for somatic mutations and structural variants identified in each
tumor sample by whole-genome sequencing and results of RSS motif analysis are
included in the Supplementary Data files.
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