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� This study achieved label-free
visualization of PD-L1 expression at
tissue level for the first time.

� MLC-Raman histopathology achieved
an accuracy of 0.99 in classifying
distinct PD-L1 expression cells in
GBM IME.

� MLC-Raman histopathology could
identify glioma, CD8+ T cells,
macrophages and normal cells.

� The imaging results exhibited strong
concordance with MxIF and
traditional pathologists’ scoring.

� The entire process from signal
collection to visualization could be
completed within 30 min.
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Machine learning
(IME) is the most important predictive biomarker for immunotherapy. Due to the heterogeneous distri-
bution of PD-L1, post-operative histopathology fails to accurately capture its expression in residual
tumors, making intra-operative diagnosis crucial for GBM treatment strategies. However, the current
methods for evaluating the expression of PD-L1 are still time-consuming.
Objective: To overcome the PD-L1 heterogeneity and enable rapid, accurate, and label-free imaging of PD-
L1 expression level in GBM IME at the tissue level.
Methods: We proposed a novel intra-operative diagnostic method, Machine Learning Cascade (MLC)-
based Raman histopathology, which uses a coordinate localization system (CLS), hierarchical clustering
analysis (HCA), support vector machine (SVM), and similarity analysis (SA). This method enables visual-
ization of PD-L1 expression in glioma cells, CD8+ T cells, macrophages, and normal cells in addition to the
tumor/normal boundary. The study quantified PD-L1 expression levels using the tumor proportion, com-
bined positive, and cellular composition scores (TPS, CPS, and CCS, respectively) based on Raman data.
Furthermore, the association between Raman spectral features and biomolecules was examined bio-
chemically.
Results: The entire process from signal collection to visualization could be completed within 30 min. In
an orthotopic glioma mouse model, the MLC-based Raman histopathology demonstrated a high average
accuracy (0.990) for identifying different cells and exhibited strong concordance with multiplex
immunofluorescence (84.31 %) and traditional pathologists’ scoring (R2 � 0.9). Moreover, the peak inten-
sities at 837 and 874 cm�1 showed a positive linear correlation with PD-L1 expression level.
Conclusions: This study introduced a new and extendable diagnostic method to achieve rapid and accu-
rate visualization of PD-L1 expression in GBM IMB at the tissular level, leading to great potential in GBM
intraoperative diagnosis for guiding surgery and post-operative immunotherapy.
� 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Glioblastoma (GBM) is a highly invasive and location-specific
malignant brain tumor that presents challenges in achieving com-
plete surgical resection [1]. Additionally, it exhibits strong resis-
tance to radiotherapy and chemotherapy [2], resulting in a mean
overall survival of only 10 to 15 months for GBM patients [3]. In
responsive GBM patients, combination immunotherapy rather
than single pathway immunotherapy has shown promise in facili-
tating improvements in survival outcomes, indicating the potential
clinical application of immunomodulation within the suppressive
immune microenvironment (IME) [4–7]. However, the expression
level of programmed death-ligand 1 (PD-L1), which is a crucial pre-
dictive biomarker for immunotherapy, exhibits a highly heteroge-
neous distribution in the IME of GBM even within the same tissue
block [8,9]. This heterogeneity makes it challenging for post-
operative histopathology to accurately capture the PD-L1 expres-
sion in the residual tumor’s IME, thereby limiting its capability to
predict GBM patients’ responses to combination immunotherapy.
Therefore, the intra-operative visualization of PD-L1 expression
within critical functional regions of the residual GBM would
greatly assist surgeons when comprehensively evaluating the bal-
ance between surgical tumor removal and post-operative
immunotherapy.

Immunohistochemistry (IHC) is currently considered the gold
standard for detecting immune biomarkers in tissues [10]. Other
histopathological techniques, such as multiplex immunofluores-
cence (MxIF), multiplexed ion beam imaging (MIBI), and fluores-
cence in situ hybridization (FISH), have been employed to
visualize PD-L1 expression level in GBM IME [11–13]. However,
these methods are time-consuming and involve complex labeling
steps through antigen–antibody or nucleic acid hybridization thus
hindering their applications in intra-operative diagnosis. Further-
more, the currently available intra-operative navigation methods,
such as fluorescence navigation, magnetic resonance imaging
(MRI), and computed tomography (CT), present limitations in
terms of specificity or spatial resolution, thereby restricting the
visualization of PD-L1 expression level in GBM IME [14–16]. Con-
sequently, an urgent need to develop a rapid, accurate, and label-
free diagnostic method for intra-operative visualization of PD-L1
expression in GBM IME exists.
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Raman spectroscopy, a member of molecular vibration spec-
troscopy, uses the inelastic light scattering phenomenon to analyze
molecular components, such as proteins, nucleic acids, and lipids,
in biological tissues without labeling [17]. Raman spectroscopy
offers advantages, including non-destructiveness, low cost, and
resistance to water and air disturbances, which makes it a promis-
ing tool for guiding intra-operative pathological diagnosis in brain
tumors or molecular classification of GBM [18–21]. However, the
classification criteria used in the previous studies were based on
patients or tissue blocks; therefore, these criteria overlooked the
intra-tumoral heterogeneity. For tumor biomarkers, such as PD-
L1, their distribution is highly heterogeneous and appears as scat-
tered patterns, posing challenges in effectively capturing PD-L1
Raman signals for modeling and complex Raman signals for analy-
sis. Therefore, to date, label-free Raman spectroscopy has not been
capable of achieving the PD-L1 visualization at the tissue level.

To address the above challenges, this study developed an inno-
vative machine learning cascade (MLC)-based Raman histopathol-
ogy. This method consisted of three steps: 1) the design of a
coordinate localization system (CLS) and hierarchical clustering
analysis (HCA) to overcome the heterogeneity of GBM IME and pre-
cisely collect Raman spectra training data on unprocessed tissue, 2)
the use of a support vector machine (SVM) to extract useful signals
from complex Raman spectra for visualizing PD-L1 expression level
without labeling, and 3) application of a similarity analysis (SA) to
validate the authenticity of MLC-based Raman histopathology
using an external validation dataset (Scheme 1). In an orthotopic
glioma mouse model, the resulting Raman histopathology method
was successfully used to visualize the distribution of PD-L1 and
differentiate glioma cells, CD8+ T cells, and macrophages with high
PD-L1 expression from glioma cells with low PD-L1 expression and
normal brain tissue with no PD-L1 expression. This visualization
demonstrated a high degree of concordance with MxIF. Further-
more, the tumor proportion score (TPS), combined positive score
(CPS), and cellular composition score (CCS) based on Raman were
used to quantify the expression levels of PD-L1. Finally, the study
examined the association between the extracted Raman spectral
features and differentiating biomolecules within subgroups via
the use of biochemical assays. This novel histopathological method
offers potential for future intra-operative diagnosis of GBM, guid-

http://creativecommons.org/licenses/by-nc-nd/4.0/


Scheme 1. Schematic illustration of machine learning cascade-based Raman histopathology for rapid visualization of PD-L1 expression level in glioblastoma immune
microenvironment.
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ance for tumor excision, and facilitating tailor-made post-operative
combination immunotherapy.
Materials and methods

Ethics statement

All experiments involving animals were conducted according to
the ethical policies and procedures approved by the Ethics Com-
mittee of the Nanjing Medical University (Approval no.
2021DZGKJDWLS-0029).
Orthotopic glioma mouse model construction

Ten C57BL/6 mice (6-week-old females, 18–20 g) underwent
orthotopic implantation of GL261 cells, with eight used for model
training and testing, and the other two mice from another batch
used for external validation data. In vivo MRI was utilized to vali-
date the successful establishment of the orthotopic glioma model.
The details of cell culture, glioma orthotopic implantation, and
mouse MRI results are described in the Supplementary
Information.
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Tissue preparation

To screen the most suitable Raman substrate slides, the signal-
to-noise ratio (SNR) and background Raman signal intensity of four
common Raman substrates, namely mirrored stainless steel
(Lianxing hardware, #304), Raman grade calcium fluoride (CaF,
Microphotons, #A80160131), quartz slides (Puiea Industry,
#7360–0) and Raman grade monocrystalline silicon (Crystal Sili-
con Electronic & Technology Co., Ltd, #JX-S4N111200) were ana-
lyzed. The SNR was defined as the average peak intensities at
851, 1003, 1299, 1313, 1445, and 1659 cm�1 divided by their stan-
dard deviations. In addition, the optimal thickness of frozen sec-
tions was screened by comparing SNR based on mirrored
stainless steel slides.

When the substantial tumors were grown for 25 days, the mice
were anesthetized and perfused through the left ventricle with
normal saline to eliminate the interference of hemoglobin (HB)
to Raman spectra [22]. The HB-free brain was quickly removed
and the middle part containing the tumor was snap-frozen in liq-
uid nitrogen. Successive frozen sections were mounted on custom
mirrored stainless steel slides and stored at � 80 �C for subsequent
Raman signal acquisition. Each stainless steel slide was placed in a
separate sealed section box to prevent changes in composition
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caused by air convection. The adjacent tissues were placed on a
microscope glass slide used for MxIF. The central part of the tumor
was used for histopathology study. Six to eight sections of each
mouse brain tumor were used for Raman spectrum acquisition,
and adjacent sections were used for MxIF imaging.

Histopathology imaging and PD-L1 scoring

The frozen MxIF sections were prepared using a four-color
scheme. PD-L1 expression appeared as red fluorescence, CD8+ T
cell as green, and ionized calcium-binding adapter molecule 1
(Iba1) as cyan. The central parts of the tumors were subject to
hematoxylin and eosin (H&E) staining and subsequent immunohis-
tochemistry (IHC). The specific experimental procedures of
histopathology imaging including MxIF, H&E, and IHC are pre-
sented in Supplementary Information.

The expression level of PD-L1 in tumor or immune cells serves
as a crucial quantitative indicator for tumor immunotherapy. Pre-
sently, the widely accepted quantitative indicators are the TPS and
CPS [23]. PD-L1 TPS was defined as the percentage of viable tumor
cells with partial or complete membrane staining of PD-L1 in at
least 100 viable tumor cells. PD-L1 CPS was defined as the sum
of PD-L1 stained tumor cells and tumor-associated immune cells
per 100 tumor cells. In this study, the counting range of PD-L1
was matched to the Raman collection region in MxIF and not an
absolute 100 cells. Therefore, these MXIF-based PD-L1 scoring indi-
cators were labeled as TPSMxIF, CPSMxIF, and CCSMxIF. Two experi-
enced immunohistochemistry pathologists performed TPSMxIF,
CPSMxIF, and CCSMxIF while blinded to the predicted Raman results.
The scoring results were averaged to obtain the final PD-L1 scores.

Raman signal collection

Raman spectroscopy was performed with a confocal Raman
microscope (Renishaw plc #InVia Reflex). A 785 nm laser source
with a round shape spot and power at about 100 mW was coupled
with an N-Plan 100X (NA 0.85, WD 0.33) Leica objective. The detec-
tor was a charge-coupled device (CCD)-sensitive (1024 � 256 pix-
els) between 200 and 1060 nm and cooled at� 70 �C. A wavelength
shift calibration was periodically performed using multiple stan-
dards (polystyrene, paracetamol, silica) and checked daily. The
final laser power was filtered to reach around 50 mW.

The whole section was first viewed with a 5 � objective lens to
locate the tumor. A 20 � objective lens was then used to find the
glioma boundary corresponding to MxIF. After that, the magnifica-
tion was switched to 50�, and the regions with different levels of
PD-L1 expression were selected via a self-established CLS (see
more details below). According to the MxIF results, the regions
were divided into five subgroups: 1) glioma cells with high levels
of PD-L1 expression (PD-L1G), 2) CD8+ T cells with high levels of
PD-L1 expression (PD-L1T), 3) macrophages with high levels of
PD-L1 expression (PD-L1M), 4) glioma cells with low levels of PD-
L1 expression (PD-L1L), and 5) normal brain tissue. The Raman sig-
nals of each subgroup were collected in a rectangular grid with a
size of approximately 10 lm � 10 lm and a step size of 1 lm.
The Raman single collection time was 1 s with 10 accumulations
for a biometric fingerprint region (674–1764 cm�1). For externally
validated imaging data, the Raman signals were collected over an
area of approximately 100 lm � 100 lm and step size from
1 lm to 5 lm. The acquisition time was optimized to six
accumulations.

For the collection of the Raman spectra of a single cell, the living
adherent cells were cleaned three times and then immersed in
1� phosphate-buffered saline (PBS). The suspension cells were pre-
pared with 1 � PBS and then seeded at a density of 5 � 105 on cus-
tom round mirrored stainless steel. The cells were kept on ice to
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avoid metabolic changes before Raman signal collection. Cells were
located by 50� lightmicroscopy, and Raman spectrawere collected
from random areas on cells. The single collection time was 1 s with
six accumulations. Six to eight Raman spectral data points were col-
lected for each cell, with 4–5 cells acquired on each round mirrored
stainless steel slide. To obtain the spectra for optimal cell activity,
CD8+ T cells with favorable morphological characteristics such as
small cell size and round shape were chose for Raman measure-
ments. Raman signal collection for cells on each mirrored stainless
steel slide was finished within 15 min. Approximately 40 spectra
were collected for each cell to obtain their average spectra. The
sources, activity, and purity of the cells used for single-cell Raman
spectral acquisition are detailed in the Supplementary Information.

Raman spectra preprocessing

After Raman signal collection, the resulting spectra were pre-
processed with WIRE 4.3 software (Renishaw plc) to reduce the
interferences from the instrument or environment. The preproces-
sor procedure included quality control, spike removal, baseline
correction, and normalization. Detailed procedures are described
in Supplementary Information.

Construction and authenticity assessment of MLC-based Raman
histopathology

Accurate collection of Raman spectra training data by CLS and HCA
The CLS based on computer vision technology was used to pre-

cisely position the laser at specific locations on the sample. The sys-
tem used the original point, which serves as the reference point for
the system, to establish coordinates for other points on the sample.

As the original point, ruler, and boxes were distinct, the system
was designed to detect contours by setting the threshold. For
instance,while detecting the box contour, the input red–green–blue
(RGB) image was converted into a grayscale image, and pixels
exceeding the threshold were removed from the threshold. A
findContours function (OpenCV, Python 3.6.5., RRID: SCR_001658),
which retrieves contours from the binary image, was then used to
achieve the expected contour. Using the contour index, the locations
of the rectangle’s vertices were obtained, and the location of the
point could also be acquired in the same way. Finally, the coordi-
nates were established by defining the location of the point as the
origin. The coordinates of the bounding boxes could be calculated
through the distance and ruler scale as shown below:

xd ¼ xv � xp
len ðrulerÞ � scale

yd ¼ yv � yp
len ðrulerÞ � scale

in which xv, yv and xp, yp represent the location of one vertex
and the point in the pixel image, respectively. The len (ruler) is
the length of the lower-right ruler. xd and yd represent the scaled
coordinates of the vertex. Occasionally, when the angles of the
MxIF and Raman optical image were inconsistent, the angles of
the MxIF would be adjusted.

HCA is an effective method for identifying and excluding outlier
Raman spectra in large datasets [24]. In this study, the HCA was
used to differentiate the Raman spectra of undesired cell types
from the region of interest (ROI) following specific steps:

1) The preprocessed Raman spectra data of ROI were imported
into R (version 4.2.2);

2) The distance matrix among each Raman spectra data was
calculated by the Euclidean method of distance function
and reflected on the y-axis of a cluster dendrogram;
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3) Taking the distance matrix as input, the single clustering
method in the hclust function was used for HCA;

4) A plot function was used to draw a clustering tree, and
Raman spectra data from other regions were screened
according to the distance of a branch from the major cluster.

Visualization of PD-L1 expression level in glioma IME by SVM
Several classifiers, including SVM, linear discriminant analysis

(LDA), Gradient Boosting Trees (GBT), and Random Forest (RF)
were screened to extract useful signals from complex Raman spec-
tra for classifying different cells with high or low expression of PD-
L1 in glioma IME [25,26].

First, the Raman spectra data after HCA screening were ran-
domly divided into 80 % as the training dataset and 20 % as the
testing dataset using the sample_n function from the dplyr R pack-
age. Next, we developed different classifiers with their respective
tuning parameters optimized using a grid search: 1) SVM radial
classifier with the radial basis kernel function and sequential min-
imal optimization for parameter optimization (e1071 R package);
2) LDA classifier with the tuning parameter, shrinkage (MASS R
package); 3) GBM classifier with tuning parameters, including
the number of trees, interaction depth, and shrinkage (gbm R pack-
age); and 4) RF classifier with tuning parameters, including the
number of trees and the number of variables randomly sampled
at each split (randomForest R package). For each classifier, the tun-
ing parameters were optimized using 10-fold cross-validation
(caret R package). The model performance was evaluated on test-
ing datasets using metrics such as mean sensitivity, specificity,
and accuracy. Additionally, multiclass receiver operating charac-
teristic (ROC) curves were generated and the area under the curve
(AUC) served as a measure of the model accuracy.

The model with the optimal performance was used to visualize
and score PD-L1 expression. According to the immunofluorescence
color results from different cells in glioma IME, corresponding
pseudo colors were assigned to the predicted classification results
of the SVM model to construct SVM-predicted imaging (ggplot2 R
package).

Under the assumption of uniform cell sizes for each cell type,
the number of cells is directly proportional to the number of
Raman sampling points taken with a consistent step size. Conse-
quently, SVM-predicted results were utilized to indirectly compute
PD-L1 expression levels, including TPS and CPS. Additionally, the
CCS was introduced to quantify the percentage of various tumor
or immune cells that exhibit high PD-L1 expression within the
overall cell population. This includes the glioma, CD8+ T cell, and
macrophage composition scores (GCS, TCS, and MCS, respectively).
These scores were specifically denoted as TPSRaman, CPSRaman, and
CCSRaman. First, the table function (R 4.2.2) was used to calculate
the frequency of each predicted value of SVM, and then the prop.
table was used to obtain the proportion of different types of cells
in the total number of cells, namely CCSRaman. The TPSRaman and
CPSRaman were calculated according to the following formulas [23].

TPSRaman ¼ PD� L1G

ðPD� L1G þ PD� L1LÞ

CPSRaman ¼ PD� L1G þ PD� L1T þ PD� L1M

ðPD� L1G þ PD� L1LÞ � 100
Authenticity assessment of SVM-predicted imaging by SA

Based on the SVM prediction results, visualization and scoring
of PD-L1 were obtained. We compared the MxIF and SVM-
predicted images of another batch of mice to evaluate the authen-
ticity of the SVM algorithm.
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The structural similarity (SSIM) method was adopted to evalu-
ate the similarity between SVM-predicted imaging and MxIF. The
SSIM was calculated as the ratio of similarities in luminance, con-
trast, and structure [27], defined as shown below:

SSIM ¼ l x; yð Þ½ �a � c x; yð Þ½ �b � s x; yð Þ½ �c

lðx; yÞ ¼ 2lxly þ C1

l2
x þ l2

y þ C1

cðx; yÞ ¼ 2rxry þ C2

r2
x þ r2

y þ C2

sðx; yÞ ¼ rxy þ C3

rxry þ C3

in which x is the MxIF image, and y is the Raman map. L(x, y), c
(x, y) and s(x, y) represent the luminance, contrast, and structure
comparisons, respectively. lx, ly, rx, and ry represent the mean
intensities and standard deviations of x and y, respectively. In this
study, the constants of C1, C2, and C3 were included to prevent
instability, and ‘‘a = b = c = 1” was generally set. The SSIM was in
the range of 0 to 1, and SSIM was equal to 1 if and only if x = y.
Considering the calculation of SSIM (scikit-image, Python) was
based on a single-color zone of MxIF or SVM-predicted imaging,
k-means (OpenCV, Python) was used for segmenting color zones.
The iteration details of SSIM color clustering by k-means are pre-
sented in Supplementary Information.

Exploration of the association between Raman spectral features and
biomolecules

The relationship between the Raman spectra and the levels of
PD-L1 expression or cell types was studied by analyzing the Raman
spectra from reference biomolecules and single cells. For obtaining
the typical Raman spectra of lipids, proteins, nucleic acids, and car-
bohydrates, 24 pure chemical compounds were selected due to
their reported abundance in both normal brain tissue and glioma
[28,29]. These substances include cholesterol, cholesteryl stearate,
sphingomyelin, phosphatidylcholine (PC), phos-
phatidylethanolamine (PE), phosphatidylinositol (PI), phos-
phatidylserine (PS), oleic acid, ganglioside, collagen, actin,
histone, PD-L1, matrix metalloproteinases 2(MMP2), isocitrate
dehydrogenase-1(IDH-1), deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), cytochrome c (Cyt c), b-carotene, glycogen, D-
Glucosamine 6-phosphate (D-GlcN-6-P), hyaluronic acid (HA),
arachidonic acid (ARA), and DL-lactic acid. Detailed information
and the corresponding Raman spectra are presented in the Supple-
mentary Information. For solid samples, 1 lg powder was placed
on a mirrored stainless steel slide and pressed into a thin sheet.
For liquid samples, 20 lL liquid was dropped onto a mirrored
stainless steel slide after which their Raman spectra were collected
with similar processes. Each chemical compound underwent
Raman spectroscopymeasurements in at least six different regions,
and the resulting averaged spectra were used as the final reference
spectra.

Principal component analysis (PCA) and RF importance plots
were combined to extract Raman characteristic peaks among dif-
ferent subgroups. To apply PCA to Raman spectra data, the prcomp
function from the stats R package was used to extract the differ-
ence spectra or PCA loadings from 1015 variables across different
subgroups. A three-dimensional (3D) scatter plot using plot_ly
(Plotly R package) was applied to display interactive 3D PCA plots.
The rotation R package was used to obtain the score for all princi-
pal components (PCs), and the three PCs with the highest score
were selected for further analysis. By fitting a linear combination
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of 24 preselected reference biomolecules to each PC (lm function in
R), the biomolecules that contributed the most to the PC loadings
were identified by examining the regression coefficient (coef func-
tion in R) [30]. The varImp function in the caret R package was used
to calculate the importance of differential indicators among differ-
ent groups from the RF model and the top 50 important indicators
were selected.

Biochemical assays

Transfection, RNA extraction, real-time reverse transcriptase
polymerase chain reaction (RT-qPCR), western blot analysis, and
flow cytometry analysis were performed as described in detail in
the Supplementary Information.

Statistics analyses

Statistical analyses can be found in the Supplementary
Information.

Data availability

The data generated in this study are available upon request
from the corresponding author.

Code availability

All code needed to replicate these results is available at https://
github.com/Zhouqing96/Glioma_Raman_code.

Results

Construction of orthotopic glioma mouse model

The C57BL/6 mice were implanted with GL261 cells for con-
structing an orthotopic glioma mouse model. In vivo T2-WI MRI
showed that tumor allografts were mainly located around the cor-
pus striatum and grew gradually after injection of GL261 cells
(Supplementary Fig. S4). A representative mouse MRI, histological
imaging (H&E, IHC, MxIF), and optical image are shown in Fig. 1A1-
5. As a high throughput IHC method, MxIF can display different
immunomarkers in tumor tissue via multiple fluorescence label-
ing, which was used as a reference for PD-L1 expression in glioma
IME. The region with a high level of PD-L1 expression in tumor tis-
sue is shown in red (Fig. 1B1), which corresponds to the IHC stain-
ing image (Fig. 1A3). In addition, CD8 shown in green, and IBa1
shown in cyan were used to label the major immune cells of
CD8+ T cells and macrophages, respectively (Fig. 1B2 and B3).
CD8+ T cells in tumor tissue and macrophages in the boundary
zone between tumor and normal tissue showed high levels of
PD-L1 expression, which are shown in orange and light blue in
the merged image, respectively (Fig. 1B4).

Optimization of experimental conditions for Raman spectra collection

Before Raman spectra collection, several experimental condi-
tions, such as Raman substrates used in measurements, storage
time, and thickness of brain tissues were optimized. Firstly, stain-
less steel and CaF substrates exhibited minimal background Raman
signals (Supplementary Fig. S5A). When preparing frozen tissue
sections from white matter, gray matter, and tumors on these sub-
strates, the stainless steel substrate yielded the highest SNR of
sample Raman signals, which was used for the next set of experi-
ments (Fig. S5B). The SNRs of Raman signals obtained from fresh
tissue sections and frozen tissue sections stored for 1 h and 2weeks
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were then compared, and no significant difference was observed
(Fig. S5C). Furthermore, to keep consistent between frozen sections
for Raman signal collection and MxIF, the thicknesses of tissue sec-
tions had been optimized to 5 lm (Fig. S5D).

Association between Raman spectral features and biomolecules

The association between Raman spectral features and biomole-
cules has previously been studied by qualitatively exploring the
relationship between the Raman spectra and the levels of PD-L1
expression in different cells. First, PCA was employed to figure
out the Raman spectra difference between PD-L1G and PD-L1L sub-
groups. The 3D PCA images indicated that the PC3 loading could
best differentiate between these two subgroups, and the PC3 load-
ing displayed many differential peaks existing in positive and neg-
ative directions (Fig. 6A and B). To screen the differential Raman
peaks, RF was then used to process the Raman spectra and showed
five extracted peaks at 723, 783, 837, 874, and 1437 cm�1 (Fig. 6C,
the detailed RF map is presented in Supplementary Fig. S12A).
Compared to PD-L1L, PD-L1G displayed stronger peak intensities
at 837, 874, and 1437 cm�1 and weaker peak intensities at 724
and 783 cm�1. After that, the origin of the above Raman spectra
difference was explored by applying a linear fit between the PC3
loading and the typical Raman spectra of 24 reference biomole-
cules in cells (Supplementary Fig. S2). The linear fit results could
identify the biomolecules related to the spectral difference and
rank their contributions (Fig. 6D) and demonstrated that gan-
glioside, PD-L1, and arachidonic acid (ARA) made notable contribu-
tions (shown in red) to high levels of PD-L1 expression, whereas
sphingomyelin, histone, and DNA made notable contributions
(shown in green) to low levels of PD-L1 expression.

Based on a similar strategy, the Raman spectra difference
among PD-L1G, PD-L1T, and PD-L1M subgroups and the spectra dif-
ferences between PD-L1L and normal brain tissue were studied to
reveal the biological association between cell types and Raman
spectral features. Compared to PD-L1G, PD-L1T showed characteris-
tic Raman peaks at 1091, 1245, and 1575 cm�1, and PD-L1M exhib-
ited stronger peak intensities at 1300 and 1658 cm�1 (Fig. 6E–G,
Fig. S12B), implying that ganglioside, phosphatidylcholine (PC),
and cytochrome c (Cyt c) notably contributed to PD-L1T, while sph-
ingomyelin and oleic acid notably contributed to PD-L1M (Fig. 6H).
In addition, normal brain tissue displayed a characteristic Raman
peak at 1264 cm�1 and stronger peak intensities at 865, 1435,
and 1658 cm�1 when compared with PD-L1L (Fig. 6I–K,
Fig. S12C). These spectra differences suggest that PE and PI are rel-
atively abundant in normal brain tissue (Fig. 6L).

The PD-L1 protein is the most direct biomarker for evaluating
PD-L1 expression and its relevance to Raman peaks has been quan-
titatively studied. By comparing the PC3 loading in Fig. 6B with
typical Raman spectra of PD-L1 protein as shown in Supplementary
Fig. S2, the characteristic Raman peaks of PD-L1 were determined
to be at 837 and 874 cm�1. For quantitatively exploring the corre-
lation between these Raman peaks and PD-L1 expression, GL261
cells with high, medium, and low levels of PD-L1 expression were
established via plasmid and siRNA transfection. qPCR, western blot,
and immunofluorescence imaging all confirmed the levels of PD-L1
expression in these cell lines (Fig. 7A–C, Supplementary Fig. S13).
Flow cytometry showed that the expression levels of PD-L1 in
PD-L1_High, PD-L1_Mid, wild type, and PD-L1_Low subgroups
were 11.60 %, 9.49 %, 2.55 %, and 0.71 %, respectively (Fig. 7D).
The average Raman spectra of different cells are shown in
Fig. 7E. The peak intensities at 837 and 874 cm�1 were all positive
linear correlation to the levels of PD-L1 expression (Fig. 7F and G).
The intensity variations successfully showcased the increase in PD-
L1 content in glioma cells with the increasing levels of PD-L1
expression.

https://github.com/Zhouqing96/Glioma_Raman_code
https://github.com/Zhouqing96/Glioma_Raman_code


Fig. 1. MRI, histology, and optical images of mouse orthotopic glioma. A1-A5, T2WI, H&E, IHC for PD-L1, MxIF for IME, and optical image for Raman measurements of
mouse brain tissue bearing GL261 orthotopic allografts. B1-B4, Magnified different channels of MxIF images (B1, PD-L1; B2, CD8; B3, Iba1; B4, merge) with coordinate
localization system from the yellow frame in A4. B5, Magnified image from the yellow frame of A5. C1-C5, Magnified MxIF images (C1, glioma cells; C2, CD8+ T cells; C3,
microglial/macrophages with high PD-L1 expression; C4, glioma cells with low PD-L1 expression; C5, normal brain tissue) of the five frames in B4. The region of interest is
selected by a boundary box with coordinate values given by the coordinate localization system. The positions of the five regions in B5 can be matched with B4 according to
the coordinate values. Scale bar: A, 1 mm; B, 500 lm; C, 10 lm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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PD-L1 expression scoring and correlation with TPSMxIF, CPSMxIF, and
CCSMxIF

Constructed upon the accurate SVM-predicted imaging for visu-
alizing PD-L1 expression in glioma IME, two representative SVM-
predicted images were used to compare the PD-L1 scoring based
on Raman and MxIF. These images encompassed PD-L1G, PD-L1L,
PD-L1T, and PD-L1M. The predicted SVM imaging results are shown
in Fig. 5B and Fig. 5G, while the corresponding adjacent sections of
MxIF images are presented in Fig. 5C and Fig. 5H, respectively. SA
shows the SVM-predicted images, and the adjacent MxIF shows
consistency with average SSIM values of 75.38 % and 75.6 % for
Fig. 5B and C and Fig. 5G and H, respectively. The computed
TPSRaman, CPSRaman, CCSRaman, TPSMxIF, CPSMxIF, and CCSMxIF values
are visually displayed in Fig. 5D and I respectively, and displayed
no statistical difference based on paired-samples t-test
(P = 0.118) or Wilcoxon matched pair sign rank test (P = 0.686).
In addition, the PD-L1 expression scoring based on Raman demon-
strated a strong correlation with the PD-L1 scoring conducted by
two immunohistochemistry pathologists using MxIF (all R2 � 0.9,
P < 0.01) as shown in Fig. 5E and J. Collectively, this indicates that
TPSRaman, CPSRaman, and CCSRaman could provide a quantitative
assessment of PD-L1 expression level in glioma IME and exhibited
a high level of correlation with MxIF. Additional PD-L1 expression
scoring and correlation analysis between SVM-predicted imaging
and the corresponding MxIF in Fig. 4 are presented in Supplemen-
tary Fig. S11.

Authenticity assessment of PD-L1 expression visualization via SA

An additional 4856 Raman spectra were collected from other
batches of orthotopic gliomamouse models to perform SA between
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the SVM-predicted and MxIF images. In the core regions of the
glioma, the SVM-predicted imaging provided a clear image of an
increase in aggregation of PD-L1G and PD-L1T. The imaging results
exhibited a high degree of similarity (mean SSIM of 84.00 %) with
the corresponding MxIF images (Fig. 4A–F3). In the peritumoral
region, scattered infiltration of PD-L1T was observed on the SVM-
predicted imaging, a finding that showed a remarkable agreement
with the MxIF (mean SSIM of 88.85 %) results (Fig. 4G–I4). The
infiltration boundaries between the tumor and normal tissue
showed a higher presence of PD-L1M (mean SSIM of 80.24 %) as
shown in Fig. 4J–L4. The average SSIM value of each cell imaging
was 84.31 % with PD-L1T exhibiting the highest SSIM of 92.44 %.
The difference in SSIM values between the core and peripheral
areas of the tumor in Fig. 4 may be attributed to the sparsely dis-
tributed PD-L1G cells, leading to higher mean values and lower
variances. Overall, the SVM-predicted imaging could visualize the
PD-L1 expression level in glioma IMT and delineate the infiltration
boundaries distinctly. The imaging results displayed a high degree
of similarity to the corresponding MxIF images, revealing signifi-
cant heterogeneity in the spatial distribution of PD-L1 expression
cells. The single-channel images of the MxIF results mentioned
above are available in Supplementary Fig. S10.

PD-L1 expression visualization in glioma IME via SVM-predicted
imaging

The visualization step of MLC was achieved using SVM-
predicted imaging. After randomly selecting 80 % of Raman spectra
as the training dataset and the rest as the testing dataset (Supple-
mentary Table S2), the classified models aimed at distinguishing
PD-L1 expression in different cells were established based on var-
ious supervised algorithms. In Fig. 3A, SVM exhibited an outstand-
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ing average accuracy of 0.990 for classifying PD-L1G, PD-L1T, PD-
L1M, PD-L1L, and normal brain tissue, which was higher than other
algorithms, such as LDA (0.976), GTB (0.966), and RF (0.965).
Detailed statistical parameters are provided in Supplementary
Table S3. Among all data, only three spectra of PD-L1M, seven spec-
tra of PD-L1G, and six spectra of PD-L1L were incorrectly identified
(Fig. 3B). Furthermore, the AUC based on the SVM showed that the
classification accuracy for PD-L1T (1.000) was the highest followed
by the normal brain tissue (0.996), PD-L1M (0.987), PD-L1L (0.984),
and PD-L1G (0.982) as shown in Fig. 3C. Considering the highly
classified accuracy of SVM, the visualization of PD-L1 expression
in glioma IME could be achieved based on SVM-predicted imaging.
As an example, when choosing a framed region containing PD-L1G
and PD-L1T (Fig. 3D), the Raman spectra were collected by the
coordinate localization system and then classified by SVM. The
obtained SVM-predicted imaging clearly indicated the boundary
between these two cells, resembling that observed in the MxIF
image. (Fig. 3E and F).

Accurate collection of Raman spectra training data via CLS and HCA

After optimization of experimental conditions, Raman spectra
were collected, analyzed, and assessed with the help of MLC for
visualizing PD-L1 expression in glioma IME. CLS and HCA were
designed to accurately collect the Raman spectra of specific regions
for training classification models. Considering that MxIF could
indicate different immune cells and their PD-L1 expression
Fig. 2. Raman spectra classification and calibration by HCA. A, Optical images of each
Raman spectra of each cell line (i, CD8+ T; ii, HT22; iii, Microglial; iv, GL261 cells). The
image of PD-L1G region in brain tissue. D, HCA diagram of Raman spectra collected from th
red part (iii) in D. The grey regions indicate the characteristic Raman peaks of CD8+ T cells
the reader is referred to the web version of this article.)
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(Fig. 1B1–4), the CLS aimed at matching the ROI of Raman signal
collection from optical images with adjacent MxIF images. After
setting a point of origin (yellow dot) and framing the ROI as a rect-
angular box on MxIF images, this system could efficiently identify
this box and yielded the coordinates (x, y) of box vertexes on sec-
tion based on computer version technology (Fig. 1C1–5). Based on
the resulting coordinates, it can precisely locate the same region on
adjacent sections for Raman signal collection as the size and orien-
tation of the two adjacent sections remain consistent. By virtue of
the coordinate localization system, a total of 5029 Raman spectra
were collected from the framed regions and divided into five sub-
groups consisting of PD-L1G, PD-L1T, PD-L1M, PD-L1L, and normal
brain tissue.

To potentially exclude the Raman signals from other cell types
in framed regions, HCA was employed to further calibrate the spec-
tra data. In this study, the Raman spectra of pure GL261 and HT22
cell lines, as well as primary CD8+ T from mouse peripheral blood
and primary microglial cells from newborn mouse brain tissue
were served as reference for obtaining the characteristic Raman
peaks of glioma, normal brain tissue, CD8+ T cell, and macrophage
in IME of glioma, respectively. The CD8+ T cells and microglial cells
for Raman signal collection achieved activity levels of 93.63 ± 1.8
9 % and 96.5 ± 1.61 %, with purities of 87.9 ± 1.59 % and about
90.0 %, respectively (Fig. S6 and S7). The naive state of primary
CD8+ T cells in peripheral blood was 32.56 ± 2.31 %, which was
higher than that in the glioma IME with significant statistical dif-
ference (32.56 ± 2.31 % > 5.67 ± 2.82 %, Shapiro-Wilk, all
cell line. The black dots represent the collected regions of Raman spectra. B, Average
grey regions indicate the differentiated Raman peaks between cell lines. C, Optical
e yellow frame in C. E, Average Raman spectra of whole data (i), orange part (ii), and
. Scale bar: 10 lm. (For interpretation of the references to color in this figure legend,
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P > 0.05, Levene’s test, P = 0.81, two samples t test, P < 0.001,
Fig. S8). It should be noted that these pure cells especially CD8+ T
cells can not totally simulate the physiological states of cells in
IME of glioma, so they only used for differentiate cell types. First,
their Raman spectra at the single cell level were first collected
(Fig. 2A and 2B). To highlight the Raman spectral differences, the
Raman spectra of GL261, HT22, and primary microglial cells were
overlapped (Supplementary Fig. S9). The main spectra difference
among these four types of cells originated from DNA / RNA (783
and 1237 cm�1), saccharide (899 cm�1), ribose (990 cm�1), phos-
pholipids (1094 and 1746 cm�1), proteins (1250 and 1669 cm�1),
lipids (1335 and 1452 cm�1) and amino acids (1602 cm�1) [31].
The Raman vibrational mode involved in this study and the major
assignment are shown in Supplementary Table S1. The Raman
spectra collected from each ROI in tissue sections were then clus-
tered based on unsupervised HCA, and undesired spectra dissimilar
to the characteristic Raman signals of the corresponding cell line
could be easily recognized and removed. As an example, a region
of PD-L1G was located via the coordinate localization system
(Fig. 2C), and the Raman spectra of this region were collected
and classified into two categories (Fig. 2D). After removing the
undesired category (orange part in Fig. 2D), which showed the
characteristic Raman peaks at 990, 1094, 1250, 1335 and
1602 cm�1 of CD8+ T cells, the remaining spectra resembled the
typical Raman spectra of GL261 cells (iv in Fig. 2B), indicating suc-
cessful spectra calibration for obtaining pure PD-L1G signals
(Fig. 2E). Using the above algorithm, a total of 352 Raman spectra
were removed, and the remaining data included 1294 spectra of
PD-L1G subgroup, 721 spectra of PD-L1T subgroup, 638 spectra of
PD-L1M subgroup, 1058 spectra of PD-L1L subgroup, and 966 spec-
tra of normal brain tissue subgroup.
Discussion

Understanding the PD-L1 expression level in IME of residual
GBM within critical functional regions intraoperatively would be
Fig. 3. Visualization of PD-L1 expression in glioma IME by SVM-predicted imaging. A,
L1L and normal brain tissue. (One-way ANOVA, *P < 0.05). B, SVM confusion matrix for cla
SVM. D, MxIF images of glioma tissue containing PD-L1G and PD-L1T (the same region as F
same region in E. Scale bar: 10 lm. (For interpretation of the references to color in this
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beneficial for predicting the response to combination immunother-
apy in GBM patients and optimizing treatment strategies. In this
study, an MLC-based Raman histopathology was developed to
enable rapid, accurate, and label-free visualization of PD-L1
expression levels in the IME of residual GBM. Initially, an ortho-
topic glioma mouse model was established by implanting GL261
cells into C57BL/6 mice, and brain tissue sections were histologi-
cally imaged using MxIF as a reference for PD-L1 expression in
glioma IME. Subsequently, experimental conditions such as the
type of Raman substrates, storage time, and thickness of brain tis-
sue sections were optimized before collecting Raman spectra.

As the core of this study, the MLC-based Raman histopathology
consists of three steps (see Graphical Abstract). In the first step,
the CLS and HCA were designed to accurately collect Raman spec-
tra from specific regions in tissue sections. The CLS could provide
the coordinates (x, y) of ROI on an MxIF image, and the same region
on the adjacent tissue section could be found using the above coor-
dinates for Raman signal collection. Thus, under the localization of
MxIF, the Raman spectra of PD-L1G, PD-L1T, PD-L1M, PD-L1L, and
normal brain tissue were collected and divided into the corre-
sponding five subgroups (Fig. 1). HCA was subsequently used to
calibrate the spectra data by excluding the Raman signals from
undesired cells. This unsupervised algorithm classified the Raman
spectra into several clusters and identified the undesired cell types
based on the characteristic Raman spectra of pure cell lines (Fig. 2).
This method effectively overcame the cellular and molecular
heterogeneity of glioma tissue and accurately collected the Raman
spectra of different cell types for training the model, which was the
premise of accurate PD-L1 expression visualization in glioma IME.
The next step involved using SVM to construct a classification
model and generate SVM-predicted imaging and scoring. Com-
pared to other supervised algorithms, such as LDA, GTB, and RF,
SVM exhibited higher average accuracy, reaching up to 0.990 for
classifying the five subgroups (Fig. 3). SVM has a radial basis func-
tion kernel and demonstrates excellent model generalization capa-
bility and proficiency in capturing complex and non-linear decision
Average accuracy of different algorithms for classifying PD-L1G, PD-L1T, PD-L1M, PD-
ssification of five subgroups. C, ROC curve, and AUC (95CI) for different subgroups by
ig. 3C). E, Magnified image of the yellow frame in D. F, SVM-predicted imaging of the
figure legend, the reader is referred to the web version of this article.)



Fig. 4. Similarity analysis between the SVM-predicted imaging and MxIF from different regions. A, D, MxIF images of tumor core regions. G, MxIF images of tumor
peripheral region. J, MxIF images of the boundary between the tumor and normal brain tissue. The yellow dashed lines in G and J indicate the boundaries. Scale bar: 100 lm.
B, E, H, and K are SVM-predicted imaging. C, F, I, and L are the corresponding MxIF images derived from the yellow boxes in A, D, G, and J. B1-4, C1-4, E1-4, F1-4, H1-4, I1-4,
K1-4, L1-4, Different color blocks extracted by k-means according to the colors in B, C, E, F, H, I, K, L, respectively. The percentages were the SSIM values of the two images
above. Scale bar: A, D, G, J, 100 lm; C, F, I, L, 10 lm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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boundaries thus making it particularly suitable for Raman spectra
data even with large numbers of variables (n = 1015) as previously
described [32,33]. Among the subgroups, PD-L1T showed the high-
est classification accuracy due to the prominent Raman peaks at
990, 1094, and 1237 cm�1 associated with DNA [34], which may
originate from the dominant nucleus in T-cells. Owing to its high
classification accuracy, SVM-predicted imaging clearly delineated
the molecular boundaries of PD-L1 and the boundaries between
tumor and normal brain tissue, to reveal the spatial heterogeneity
of PD-L1 expression in cells. The imaging results successfully illus-
trated the aggregated PD-L1G and PD-L1T in the dense central
region of the tumor. In contrast, scattered PD-L1T cells were
observed in the peritumoral region, a finding that is consistent
with the reported pattern of tumor-infiltrating lymphocyte infil-
tration in untreated human GBM [35]. This phenomenon may be
attributed to the gradual infiltration of T-cells from peripheral
blood or tertiary lymphoid structures into the tumor [36, 37]. In
the third step, SA was performed to assess the authenticity of the
SVM-predicted imaging by comparing it to MxIF. It is worth noting
that a high degree of similarity between the SVM-predicted imag-
ing and MxI with a mean SSIM of 84.31 % was found. The PD-L1T
group showed the highest similarity (mean SSIM of 92.44 %), which
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was consistent with the classification results obtained by SVM
(Fig. 4). Based on this result, PD-L1 expression scores were deter-
mined for different cell types. As a supplement to visualization,
PD-L1 scoring provided a more objective and quantitative assess-
ment of PD-L1 expression levels. In this study, TPSRaman, CPSRaman,
and CCSRaman were found to be highly correlated with their corre-
sponding TPSMxIF, CPSMxIF, and CCSMxIF (Fig. 5). Importantly, the
entire process from signal collection to visualization and scoring
of PD-L1 expression could be completed within 30 min, a finding
that indicated the potential intra-operative application of MLC-
based Raman histopathology.

To investigate the association between spectral features and
biomolecules, the relationship between the Raman spectra and
the levels of PD-L1 expression in different cell types was qualita-
tively explored (Fig. 6). Feature extraction methods, such as PCA
and RF, along with the 24 reference biomolecules were used in this
study to verify the biological sources of these Raman characteristic
peaks. After extracting the differential Raman peaks, PD-L1G dis-
played stronger peak intensities at 837, 874, and 1437 cm�1 com-
pared to PD-L1L. These spectral differences implied an increase in
PD-L1 contents in PD-L1G. Similarly, the Raman spectra differences
implied that PD-L1T contained higher levels of PC and Cyt c, and



Fig. 5. Representative images of PD-L1 expression in glioma IME and corresponding PD-L1 scoring. MxIF images of A, tumor boundary region containing PD-L1G, PD-L1L,
and PD-L1M, and F, tumor peripheral region containing PD-L1G, PD-L1L, and PD-L1T. B, G, SVM-predicted imaging. C, H, Corresponding MxIF images. B1-3, C1-3, G1-3, H1-3,
Different color blocks extracted by k-means according to the colors in B, C, G, and H, respectively. D, I, PD-L1 expression scoring based on Raman and MxIF. E, J, Correlation
analysis of PD-L1 expression scoring between Raman and MxIF. Scale bar: A, F, 100 lm; C, H, 10 lm.
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PD-L1M had more sphingomyelin and oleic acid when compared
with PD-L1G. Among these biomolecules, Cyt c is abundant in acti-
vated T-cells and is involved in apoptosis induction [38,39], while
PC is present in T-cells and regulates cellular functions, such as
proliferation inhibition [40,41]. Sphingomyelin, a component of
cell membranes, is relatively abundant in macrophages due to its
higher proportion in cell membranes, while oleic acid has been
demonstrated to be the main lipid component in macrophages
[42]. The Raman spectra differences also indicated that normal
brain tissue contained higher levels of PE and PI compared to PD-
L1L, a finding that is consistent with the abundance of glycerophos-
pholipids in brain tissue [43]. Furthermore, the correlation
between characteristic Raman peaks of PD-L1 and the levels of
PD-L1 expression was quantitatively studied (Fig. 7). The peak
intensities at 837 and 874 cm�1 showed a positive linear correla-
tion with the level of PD-L1 expression in GL261 cells. Thus, Raman
spectra could provide information about the biomolecular compo-
sitions of cells, including PD-L1 and even their relative contents,
enabling accurate visualization of PD-L1 in glioma IME.
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This MLC-based Raman histopathology, due to its label-free,
rapid, and accurate visualization of PD-L1 expression levels within
gliomas, holds promise for clinical application, particularly in cases
involving gliomas located in critical brain functional regions. By
collecting Raman spectra from resected tissues after rinsing with
normal saline and rapid freezing, intraoperative diagnosis can be
obtained, assisting surgeons in making optimal resection decisions.
Furthermore, it enables personalized combination immunotherapy
targeting residual lesions. However, this preliminary study was
conducted using an orthotopic glioma mouse model. Future work
will focus on improving machine learning algorithms and extend-
ing the study to human GBM samples. Additionally, using MxIF
from adjacent sections as a verification standard may lead to
inconsistencies in cell morphology between the SVM-predicted
imaging and the MxIF. Lastly, this method is currently limited to
isolated tissues, and its signal intensity and penetration depth
are unsatisfactory due to the inherent constraint of Raman spec-
troscopy. Subsequent studies may involve in vivo Raman imaging
through biocompatible Raman probes and integrating combination



Fig. 6. Raman spectra differences among different subgroups and corresponding biological origins. A, E, I, 3D PCA image, B, F, J, Average Raman spectra and PC loadings,
C, G, K, RF important maps (same color assigned to same Raman peaks) and D, H, L, PC fitting diagrams of PD-L1G versus PD-L1L, PD-L1G versus PD-L1T versus PD-L1M and PD-
L1L versus normal brain tissue, respectively. The grey regions in B, F, and J indicate the differential Raman peaks extracted by RF. The red and green in D, H, and L mark the
major contributive biomolecules in the positive and negative directions in PC loadings, respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 7. Positive linear correlation between characteristic Raman peaks and levels of PD-L1 expression. A, qPCR, B, Western blot, C, immunofluorescence images, D, Flow
cytometry and E, Average Raman spectra of GL261 cells with different levels of PD-L1 expression. The grey regions in E indicate the characteristic Raman peaks of PD-L1. F and
G, Linear regression analysis between the levels of PD-L1 expression and the Raman peak intensities at 836 and 874 cm�1, respectively. Scale bar: 20 lm.
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immunotherapy to assess the effectiveness of the proposed
method.
Conclusions

In summary, this study established an innovative diagnostic
method called MLC-based Raman histopathology for label-free
visualization of PD-L1 expression levels in brain tissues with glio-
mas. This technique is rapid, accurate, and convenient. Multiple
machine learning algorithms, including CLS, HCA, SVM, and SA,
were cascaded to accurately collect Raman spectra for training
models, visualize PD-L1 expression levels in GBM IME, and finally
assess the authenticity of imaging results. Furthermore, the study
examined the association between Raman spectra features and
biomolecules using biochemical assays. To the best of our knowl-
edge, this study is the first to achieve label-free visualization of
PD-L1 expression at a tissue level, and it could be extended to other
tumor biomarkers or any target cells of interest. Considering the
absence of labeling requirements and the miniaturization and
low cost of Raman spectrometers, this study paves the way for
intra-operative molecular pathological diagnosis of GBM, poten-
tially improving GBM treatment strategies by considering func-
tional localization and PD-L1 expression levels, and enabling
post-operative tailor-made combination immunotherapy.
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