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   Abstract
Measuring Efficiency in neural network system development is an open research problem. 
This paper presents an experimental framework to measure the training efficiency of a 
neural architecture. To demonstrate our approach, we analyze the training efficiency of 
Convolutional Neural Networks and Bayesian equivalents on the MNIST and CIFAR-10 
tasks. Our results show that training efficiency decays as training progresses and varies 
across different stopping criteria for a given neural model and learning task. We also find a 
non-linear relationship between training stopping criteria, training Efficiency, model size, 
and training Efficiency. Furthermore, we illustrate the potential confounding effects of 
overtraining on measuring the training efficiency of a neural architecture. Regarding rela-
tive training efficiency across different architectures, our results indicate that CNNs are 
more efficient than BCNNs on both datasets. More generally, as a learning task becomes 
more complex, the relative difference in training efficiency between different architectures 
becomes more pronounced.
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1  Introduction

Artificial Intelligence is predicted to be a critical enabling technology for many of the 17 
Sustainable Development Goals (SDGs). However, its current dependency on massive data-
sets and computer power means that it will also inhibit the attainment of some SDGs, par-
ticularly SDG7 (Affordable and Clean Energy) and SDG 13 (Climate action) (Vinuesa et al. 
2020). Modern Artificial Intelligence (AI) uses data-driven methods like deep learning. It is 
primarily driven by trends of ever larger datasets, larger models, and more powerful com-
puters with the sole concern of improving model accuracy (Kelleher 2019). This dynamic 
resulted in a 300,000x increase between 2012 and 2018 in the computation required to train 
a competitive DL model [3] (this trend far exceeds Moore’s Law). Indeed, it has recently 
been estimated that training one AI model generated the CO2 emissions equivalent to driv-
ing 700,000 km (DeWeerdt 2020).

The environmental challenge posed by AI’s growing energy needs and associated carbon 
emissions has been recognized in recent years. For example, researchers in AI Ethics have 
highlighted this challenge (Bender et al. 2021) and have called for more research on “sus-
tainable methods of AI” (van Wynsberghe 2021). In response to these calls, there is a grow-
ing trend within AI research to move beyond systems evaluations solely based on accuracy. 
Recent research tends to report hardware details and training time alongside accuracy, and 
some papers report FLOPS. However, time and FLOPS are not sufficient to characterize 
Efficiency. There is a growing body of work (e.g., Schwartz et al. 2020; Strubell et al. 2020; 
Li et al. 2020; Sze et al. 2020; Li and John 2003) that shows that more data is required to 
understand the energy and resource trade-off of deep neural networks. Consequently, a criti-
cal step in developing sustainable AI is the development of measures for Efficiency that can 
be integrated into the development process of an AI system.

This paper directly addresses the need for a measure to characterize the Efficiency of a 
neural network architecture on a specific hardware and learning task. A natural efficiency 
ratio of interest for a neural architecture is the ratio between the accuracy of a neural model 
and the energy consumed to achieve this accuracy. Accuracy is usually measured using 
an appropriate measure for the task and dataset distribution (e.g., F1, AUC-ROC, etc.). 
However, several recent results highlight a non-linear relationship between the accuracy 
of a neural model and the size of the model (Nakkiran et al. 2021). This suggests that there 
is likely a non-linear relationship between the training efficiency of an architecture and 
the size of the model instantiating the architecture. At the same time, there is a gap in the 
research literature in terms of how the training efficiency of a neural architecture varies 
across training. Understanding the dynamics of training efficiency is crucial as it informs 
decisions relating to the stopping criterion for training. Consequently, in this work, we set 
out an experimental methodology for comparing the relative Efficiency of different neural 
architectures in terms of their efficiency dynamics as training progresses and the changes in 
Efficiency as the size of the models instantiating the architectures vary. This experimental 
methodology includes both a measure of Efficiency and an experimental framework for 
capturing the necessary data for the efficiency measure.

In order to test and demonstrate the usefulness of our efficiency measure, we use our 
experimental framework to analyze the relative Efficiency of two different neural archi-
tectures, a CNN network (LeNet) and a Bayesian Convolutional Network (BCNN), on the 
MNIST and CIFAR-10 tasks. BCNNs are an interesting case study because, although they 
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have produced better results than LeNet on MNIST and CIFAR-10 (Gal and Ghahramani 
2015), their Efficiency relative to standard frequentist networks has yet to be assessed. Fur-
thermore, given that the outcomes obtained by training a frequentist LeNet architecture with 
backpropagation and its BCNN counterpart trained using approximate variational infer-
ence—implemented via dropout—are very different (training the frequentist LeNet results 
in a point estimate in parameter space, whereas training the BCNN returns a probability 
distribution over a parameter space), it is likely that there will be differences in terms of 
Efficiency between these two architectures.

In summary, the key contributions of this research are: (1) we propose a measure of 
the training efficiency of a neural architecture on a given task; (2) we present a case study 
analyzing the efficiency dynamics of CNNs and BCNNs on multiple tasks across training; 
and (3) we analyze the overall Efficiency of CNN versus BCNN architectures. Our results 
indicate that CNNs are more efficient than BCNNs for training. Also, the Efficiency of both 
architectures varies across training. For both architectures, there is a non-linear relationship 
between training efficiency stopping criteria and between training efficiency and model size. 
Furthermore, we highlight and illustrate the confounding effect that overtraining can have 
on measuring the Efficiency of a neural architecture. Finally, as the learning task becomes 
more complex, the relative difference in training efficiency between different architectures 
becomes more pronounced.

2  Related work

Research on Efficiency in AI can broadly be categorized into four research streams: archi-
tectures, compression, training regimes, and metrics. The first of these streams focuses on 
developing more computationally efficient neural architectures. For example, improving 
the Efficiency of the attention mechanism in transformer models (Vaswani et al. 2017) has 
frequently been a target for this type of research. This is due to the popularity of transformer 
models and the high complexity in time and space O(n2)—of the standard attention mecha-
nism. Within this category of work, the Reformer (Kitaev et al. 2020) proposes an efficiency 
improvement (in terms of computation and memory) to the standard transformer that replaces 
the regular dot-product attention mechanism with one that uses locality-sensitive hashing, 
and the Linformer Wang et al. (2020) replaces the transformer attention mechanism and 
approximates it by a low-rank matrix which reduces the complexity of the attention layer to 
O(n). A recent survey of work on improving efficiency in transformers is presented in Tay 
et al. (2020). Also, although research on neural architecture search has traditionally focused 
on optimizing for a single objective (such as accuracy), recently, there has been a growing 
interest in multi-objective neural architecture search which considers Efficiency (frequently 
hardware efficiency to enable edge deployment) as part of the optimization problem (see 
e.g., Zeng et al. 2020; White et al. 2023; Chen et al. 2023; Lu et al. 2024).

A second stream of research has focused on improving Efficiency by reducing model 
size. Some of this work trades extra computation during initial model training for smaller, 
more efficient models at inference. For example, the EfficientNet (Tan and Le 2019) and 
EfficientNet v2 (Tan and Le 2021) papers propose model scaling methods that seek to maxi-
mize model efficiency during inference (by attempting to minimize the final model depth, 
width, and resolution) while preserving accuracy at the cost of extra computation during 
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training. Similarly, the training methodology proposed in Cai et al. (2019) uses pruning dur-
ing training to reduce model depth, width, kernel size, and resolution. Another example of 
this type of work is the Lottery Ticket Hypothesis (Frankle and Carbin 2018) methodology, 
which focuses on finding small subnetworks that can fit into different hardware platforms 
and generalize better. Some research focused on reducing model size is designed to work 
on pre-trained models. For example, NetAdapt uses empirical measures to reduce several 
hyperparameters in order to fulfill a certain resource budget (Yang et al. 2018), and Distil-
BERT uses model distillation techniques to generate smaller models from a complete BERT 
transformer (Sanh et al. 2019). Zhou and Quan (2023) provides a recent review of work on 
compressing deep neural networks that cover the four main approaches found in the litera-
ture (pruning, quantization, factorization, and distillation) and conclude that optimization 
approaches that combine these different compression approaches are an emerging area of 
research.

The third stream of research focuses on improving the training regime’s Efficiency. Work 
in this stream generally focuses on modifying one or more of the following components 
of the training regime: the ordering of (i.e., curriculum learning) or the selection of the 
training data presented to the model (Jiang et al. 2019; Mindermann et al. 2022; Xie et al. 
2023; Wang et al. 2023; Yang et al. 2023; Wang et al. 2024); dynamically modifying the 
architecture of the model as part of the training process (Gong et al. 2019; Zhang and He 
2020; Pan et al. 2023; Ding et al. 2023); modifying the objective function (Anil et al. 2020; 
Goldfarb et al. 2020; Eschenhagen et al. 2023); and improving the optimization algorithm 
(Liu et al. 2023; Chen et al. 2023).1 (Kaddour et al. 2023) reports a recent empirical study of 
the effectiveness of several of these efficient training approaches against a baseline training 
regime that used the Adam optimizer with a fully decayed learning rate. These experiments 
used a fixed computation budget based on wall time (calculated by multiplying the number 
of iterations of training by the time per iteration for that architecture and training regime on 
a reference hardware system) as the criterion for stopping training. Three budgets were used 
for each experiment: 6 hours, 12 hours, and 24 hours. The results indicate that the tested 
training modifications did not statistically outperform the baseline in most experiments. 
When they did, this improvement was reduced as the computing budget increased.

The fourth stream of research is focused on developing measures and methodologies 
for assessing the performance or Efficiency of an AI solution for a given problem. One 
focus within this stream of research has been on hardware efficiency, see, e.g., Davis et al. 
(2009); Sze et al. (2020). Another focus for this stream of research is on performance or 
Efficiency during inference. Frequently, this work focuses on pruning models during train-
ing to improve Efficiency at inference, see, e.g., Liu et al. (2017) and Han et al. (2015), 
which both use the reduction in floating point operations per inference as a measure of how 
their pruning approaches improve network efficiency. Examples of work in this area that 
are relevant to this work include Canziani et al. Canziani et al. (2016), and Jurj et al. Jurj et 
al. (2020). Both of these works propose measures of Efficiency during inference, and what 
is particularly relevant for this work is that they use a direct measure of energy consumed 
(rather than FLOPs) as a measure of resource usage (work done) when calculating Effi-

1 We note that within the research on improving optimization algorithms the concept of training efficiency is 
often framed in terms of the convergence rate achieved by the algorithm for a fixed architecture on a learning 
task (see e.g. Kingma and Ba 2014; Ying et al. 2024). By contrast, in this work, we are focused on measuring 
the training efficiency of a neural architecture (rather than an optimization algorithm) on the task.
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ciency. Similarly, Desislavov et al. (2021) examines the trends in computational and energy 
costs associated with deep learning model inference and assesses whether the exponential 
growth in model parameters translates into a proportional increase in energy consumption. 
Their analysis considers algorithmic improvements and hardware advancements to under-
stand their impact on energy consumption. We conclude that algorithmic advancements and 
hardware specialization have significantly improved the energy efficiency of DNNs.

The work most relevant to this research is focused on Efficiency during model train-
ing. As noted in Schwartz et al. (2020), in the research model, training occurs much more 
frequently than post-deployment inference, so understanding Efficiency during training is 
in and of itself an important topic. Indeed, Schwartz et al. (2020) reviews several different 
measures for Efficiency or work done during training (including, carbon emissions, electric-
ity usage, elapsed real time, number of parameters, and floating point operations (FLOPS)) 
and argue that FLOPS is the fairest measure to use to compare different approaches. They 
attribute two properties to FLOPS in support of this argument: (a) FLOPS directly measures 
the work done when running a specific instance of a model and, therefore, is related to the 
energy consumed, and (b) it is agnostic to the hardware on which the model is run. However, 
metrics based on counts of operations performed by a neural network require hardware pro-
filing, and this is computationally expensive to perform (Mills et al. 2021). Consequently, 
developing a metric for training efficiency that does not require hardware profiling is desir-
able. Bartoldson et al. (2023) presents a recent review of the most commonly used metrics 
in efficiency research, including training time, FLOPs, number of model parameters, elec-
tricity usage, carbon emissions, and operand sizes. Overall, they found that all these metrics 
have significant limitations in either not directly measuring the factors of interest or being 
dependent on confounding factors such as hardware, time, etc. Finally, we note that all of 
the metrics discussed above (be it FLOPs, CO2  emissions (Strubell et al. 2020) or using 
wall time as a measure (Li et al. 2020)) do not consider model accuracy on a task and so do 
not measure efficiency per se but rather are an estimate of work done. We propose a novel 
efficiency metric considering the relationship between accuracy and work/resource usage.

However, we looked for alternative energy consumption and Efficiency measures dur-
ing training to avoid the hardware profiling challenges associated with FLOPS measures. 
Li et al. Li et al. (2016) explore the power behavior and energy consumption of several 
CNN architectures on both CPUs and GPUs, with a particular focus on characterizing the 
energy consumption of different layer types (convolution, pooling, ReLU, and so on) during 
training. Similar to Li et al. Li et al. (2016) (and Canziani et al.’s work on inference effi-
ciency (Canziani et al. 2016), and Strubell et al.’s work on predicting CO2  emissions (Stru-
bell et al. 2020)), we propose using energy consumed rather than FLOPS as our measure of 
work done/resource usage. Also, like Canziani et al. Canziani et al. (2016), we are interested 
in measuring Efficiency, that is, the relationship between performance (e.g., accuracy) and 
resource usage (e.g., energy consumed). However, we are focused on the training phase 
rather than on inference. Furthermore, like Strubell et al. Strubell et al. (2020) and Li et 
al. Li et al. (2016), we focus on the training phase. However, we go beyond measuring the 
energy consumed in training a specific model and propose a measure of the relative Effi-
ciency of a neural architecture (distinct from a specific model) on a given task. We compare 
the LeNet CNN architecture against a Bayesian Convolutional Network (BCNN) as a test 
case for our efficiency measure. We chose this comparison because BCNNs are not trained 
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with backpropagation, and we conjecture that this comparison may reveal exciting interac-
tions between training regimes and model efficiency.

3  Defining an efficiency measure for deep neural networks

The concept of Efficiency is fundamental to this work:

Definition 1  Efficiency measures a system’s capacity to achieve a goal (measured by a met-
ric) with a given amount of resources.

When considering the training efficiency of a neural network on a learning task, it is natural 
to consider how the accuracy of the network architecture varies as the energy consumed for 
training changes. This is the efficiency ratio that equation 1 defines and that Figure 1 illus-
trates (in this figure, the arrow represents an efficiency calculation—in the form of Equation 
1—where the arrow points from the denominator to the numerator).

	
Efficiency ∝ Accuracy

Energy
� (1)

However, it is difficult to directly calculate a general estimate of the ratio of energy to accu-
racy for a given neural architecture on a task because the ratio is dependent on measures 
used to measure energy and accuracy and is sensitive to hyperparameter decisions (e.g., net-
work size), and training regime decisions (e.g., convergence criteria). Consequently, in this 
section, we set out a methodology for calculating this efficiency ratio by averaging across 
a sequence of experiments that allow for hyperparameters and training regime variations. 
Then, we used these results to compute our final measure.

3.1  Metrics for Energy and Accuracy

Deciding what system components to report energy consumption over is not trivial. For 
example, although the CPU, GPU, and memory are natural system components to consider 
when tracking energy consumption during the training of a network, other parts of the sys-
tem, such as fans, buses, and transistors, also consume energy related to training (Huang et 
al. 2019; Li and John 2003). However, due to the difficulties in measuring the energy con-
sumption of these secondary or satellite components, we have decided to focus our analysis 
on the energy consumed during our experiments from the GPU, CPU, and RAM.

We could use several different measures to measure these components’ energy usage. 
For example, one family of energy measures often used for neural network research is those 
based on counting the number of computational operations; for example, Schwartz et al. 

Fig. 1  Network training efficiency visualized as 
the ratio of accuracy to energy
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suggest using the number of FLOPS (Schwartz et al. 2020). FLOPS, however, is one of 
many types of operation that can be considered. Data movement operations can be much 
more expensive regarding energy consumption (Horowitz 2014; Sze et al. 2020). However, 
one of the challenges with tracking energy consumption by counting operations is that the 
energy consumed by an operation is affected by the sparsity of the data being processed and 
the data representation being used (Zheng and Mazumder 2019). For example, switching 
from 32 to 16-bit floating point reduces the energy cost of FLOP operations (and in some 
cases, this can be done with negligible impact of model accuracy (Micikevicius et al. 2017)) 
and also reduces energy consumption by reducing data movement (i.e., reduced memory 
bandwidth) and reduced energy per memory access (due to smaller memories).

In our experiments2 the hardware used was a Tesla T4 with 15109 MiB memory, from 
Google Colab (driver version 470.63 and CUDA version: 11.2) and energy collection for 
the GPU was done using NVIDIA System Management Interface version 460.39 and for 
recording the energy consumed by the CPU and RAM during training we use the powertop3 
system interface which is a Unix native system tool. We used these tools in each experiment 
to repeatedly sample and record the energy consumption rate by the GPU, CPU, and RAM 
access components as each network is being trained. We then calculate the Efficiency of 
the trained model as the ratio between the performance obtained by the model and the total 
energy consumed 4 to train the model, as follows:

	
Eff (Acc,W, i = epoch) =

Acci∑i
n=0[Wn]

� (2)

where Acci  is the accuracy obtained on that epoch of training of the model, ∑
[Wn] is the sum of the energy samples obtained up to that epoch of training, and 

Wn = WGPU
n

⊕
WCPU

n

⊕
WRAM

n , 
⊕

 is the concatenation operation.
The selection of the appropriate measure for model performance depends on the task type 

(e.g., classification, regression, segmentation, and so on) and factors such as the distribu-
tion of class labels within the data (Kelleher et al. 2020). In the experiments we report in 
this paper, the tasks are classification tasks with balanced label distributions, so we have 
chosen to use simple accuracy for the task. Specifically, we report a model’s accuracy (Acc) 
on the test set after training has converged. In experiments where we use a hold-out test set 
methodology, Acc is simply the accuracy of the trained model on the test set. In experiments 
where we use a k cross-fold validation methodology, Acc is the mean accuracy across the k 
validation folds.

Figure 2 illustrates the relationship between these measures. As seen above, in this figure, 
the arrows represent efficiency calculation where the arrow points from the denominator to 
the numerator. The dashed arrow highlights the overall efficiency calculation we wish to 
calculate, Acc /W , the average amount of task accuracy obtained per unit of energy (Watt) 
expended in training.

2 To demonstrate the applicability of our methodology across different hardware platforms, we replicate the 
experiments reported in the main body of the paper on different hardware, more details on these experiments 
are found in A.
3 https://01.org/powertop
4 measured in terms of Joules per second (Watts)
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3.2  Allowing for hyperparameter variations: model size

To experimentally control for the effect of model size5 we propose to run each experiment 
multiple times for each neural architecture using a different size model in each run, and for 
each model size, record both the total energy consumed during training 

∑
samples[W ]  and 

the accuracy obtained by the model. We then calculate the Efficiency for each model on an 
experimental task as the ratio of accuracy to the total energy consumed to train it. Finally, 
we calculate the Efficiency of a neural architecture on an experimental task as the mean 
Efficiency of the models implementing that architecture on the task. Figure 3 illustrates how 
model size is included in the experimental design, and Equation 3 defines how we integrate 
model size into the calculation of the training efficiency of a network architecture.

	
Eff (arch, j = size) =

j

E
n=1

[ Eff (Acc,W, i = epoch)j]� (3)

3.3  Training regime variations: convergence criteria

The training efficiency of a network (accuracy/energy) is likely to vary as training pro-
gresses; in other words, the gain in model accuracy per unit of energy expended is likely to 
change between the early epochs of training and the later epochs of training. At the same 
time, the amount of time a network is trained for will vary depending on the convergence 
criteria used to stop training. To control for this, we define four different convergence cri-
teria and run each experiment with each of these criteria (in combination with our N model 
size variations, we will run each experiment N times for each of the four convergence cri-
teria). We then calculate the overall training efficiency of network architecture on a task by 
first calculating the network efficiency for each convergence criterion using Equation 3 and 
then calculating the expected value across these efficiency scores.

The four convergence criteria we define are: 

1.	 train for a preset number of epochs, in our experiments, we set Epochs==50
2.	 train until the model achieves a preset accuracy on a validation set; in our experiments, 

we set the accuracy target to Accuracy==99
3.	 use early stopping as the training convergence method, i.e., we track model accuracy 

on the validation set across consecutive training epochs. Training stops if accuracy does 
not increase across a preset number of epochs (known as the patience parameter). In 
our experiments, we used a level of patience of 3.

4.	 stop training after a preset energy (W) budget has been consumed, for our experiments, 
we set the energy budget to be Energy==100kWFigure 4 illustrates how these conver-
gence criteria are integrated into the experimental setup, and Equation 4 defines how we 
calculate an overall mean training efficiency for a network architecture that accounts for 
both model size and convergence criteria.

	
Eff (arch, k = convergence) = E

k
[ Eff (arch, j = size)k] � (4)

5 We use the term model to denote a particular instantiation of a neural architecture.
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where in the case of Equation 4, Eff (arch, size)k  is computed as in Equation 3.

4  Case study: convolutional and bayesian convolutional architectures

In this case study, we demonstrate the use of our efficiency framework by comparing the 
Efficiency of a CNN network (LeNet) with that of a Bayesian Convolutional Network 
(BCNN). The BCNN network is trained using approximate variational inference, which 
is implemented via dropout. Similar to the experiments reported in the original BCNN 
paper (Gal and Ghahramani 2015), we use the LeNet-5 architecture from Lecun et al. (1998) 

Fig. 4  Visualisation of how 
convergence criteria are inte-
grated into the experimental 
methodology

 

Fig. 3  Visualisation of how 
model size is integrated into the 
experimental methodology

 

Fig. 2  Visualisation of relationships between 
variables tracked in the experiments
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as the baseline architecture for our experiments. Following (Gal and Ghahramani 2015), the 
corresponding Bayesian version of the LeNet baseline was created by applying a dropout 
with a probability of 0.5 after all convolution and weight layers (i.e., this is the model called 
“lenet-all” in Gal and Ghahramani (2015)). Tables 1 and 2 report the hyperparameters used 
to train the LeNet and BCNN models (note: we use the same hyper-parameter settings as 
reported for experiments performed by Gal and Ghahramani (2015)).

The two models described above are baseline versions of the models used in our experi-
ments. However, in each of our experiments, we vary the model size and different conver-
gence criteria to explore and contrast the efficiency trade-offs for each architecture between 
size and accuracy and size and Efficiency. In the Bayesian case, two ways of approximating 
the posterior probability distribution exist: Variational Inference (VI) and Markov Chain 
Monte Carlo (MCMC). In most cases, (VI) performs excellently but is not a great estimator. 
While MCMC can be computationally expensive but is an excellent estimator (Charnock 
et al. 2020), in our experiments, we estimate the posterior using Variational Inference. The 
best strategy (depth versus width) for scaling a model is an open research challenge. How-
ever, because both architectures we consider here are convolutional networks, we decided 

Architecture LeNet-5
(Bayesian filters)

epochs 50
learning rate 0.001
num workers 4
batch size 256
activation soft plus
loss cross-entropy
optimiser ADAM
sample size 10−25

train ensemble 1
test ensemble 1
β 0.1

prior µ 0.0
prior σ 0.1
posterior µinit (0,0.1),

(mean, std)
posterior ρinit (-5,0.1),

Table 2  BCNN hyperparameters 

Architecture LeNet-5
epochs 50
learning rate 0.001
num workers 4
batch size 256
activation soft plus
loss cross-entropy
optimiser ADAM
initialization Normal (mean:0,

variance:1)

Table 1  LeNet hyperparameters 
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to scale the models by increasing the filters used in each layer. In other words, we scaled 
the width of the models, and we did this by multiplying the number of filters in each layer 
by multiples from ×1 up to ×5 the original baseline size. This means that in our experi-
ments, we test five versions of the LeNet architecture: LeNet-1, the baseline architecture is 
the same as reported in Lecun et al. (1998), LeNet-2 has twice the number of filters in each 
layer as LeNet-1, LeNet-3 has three times the number of filters, and so on up to LeNet-5 
with five times the number of filters. Similarly, BCNN-1 is the baseline Bayesian archi-
tecture from Gal and Ghahramani (2015) and has the same size as LeNet-1, and BCNN-2 
through BCNN-5 are scaled to match their corresponding LeNet-X counterparts in size and 
structure.

All four efficiency experiments were performed on the MNIST [64] and CIFAR-10 [65] 
datasets. The same hyperparameters were used for the architectures on both the MNIST and 
CIFAR-10 datasets6. Both of these datasets are based on the task of handwritten numeric 
digit recognition images, with each image containing a single handwritten digit between 0 
and 9. The MNIST dataset contains 10,000 images across ten classes (0-9), each being a 
28× 28 pixel gray-scale image. The CIFAR-10 also has ten classes with 6000 images per 
class, each color image being 32× 32 pixels. The original experiments with MNIST and 
CIFAR-10 used different experimental methods: MNIST used a single training and test split, 
whereas CIFAR-10 used a six-fold cross-validation methodology. In our experiments, we 
follow the same experimental methodology for each dataset as was reported in the original 
experiments. Consequently, for the MNIST dataset, a simple split was performed with the 
training set consisting of 60,000 handwritten digits and our test set of 10,000, and the label 
distributions in both the training and test sets are balanced across all ten digits. So, in all 
of our experiments, when we report an accuracy on the MNIST data, this is the accuracy 
obtained by the model on the single hold-out test set. By contrast, for the CIFAR-10 dataset, 
we use a 6-fold cross-validation methodology in each experiment, where each fold contains 
exactly 1000 randomly selected images from each class, and the reported accuracy is the 
average accuracy of an architecture across these folds.

4.1  Results from the case study

This section presents the results for the 50 epoch, early-stopping, energy-bound, and accu-
racy-bound experiments. For each experiment, dataset, and neural architecture, we present 
a table showing the efficiency calculation across model size for each architecture under the 
convergence criteria specified in that experiment (using Equation 3). Note that in supple-
mentary material we present, for each experiment, plots of the training and test accuracy by 
training epoch for each model.7

4.1.1  50 epoch experiment

In this first experiment, the stopping criterion for training was set at 50 epochs. For each 
architecture (LeNet and BCNN), the experiment is run a total of 10 times per architecture: 
once for each of the 5 model sizes (LeNet-1 to LeNet-5, and BCNN-1 to BCNN-5) on 

6 https://unix-talk.com/TastyPancakes/bayesiancnn.git, has all the author’s code for the experiments.
7 All data in the tables from Section 4, and Section 5, is released at: Open Science Foundation
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both the datasets (MNIST and CIFAR). During each run of the experiment, we repeatedly 
recorded the energy being consumed and the amount of memory (GPU and RAM) being 
used (recorded as model size (MiB) size in RAM and GPU memory).

Table 3 and Table 4 show the efficiency calculation using a convergence criterion of 50 
epochs. Note that for the CIFAR dataset, we use a six-fold cross-validation methodology. 
So for this dataset, the accuracy reported for each model size i (Acci ) in Table 4 is the aver-
age accuracy for that model size across the six validation sets after training has converged.

4.1.2  Early-stopping experiment

This experiment has the same design as the 50 epoch experiment presented above, with a 
single change in the convergence criteria used for training; in this experiment, we use early-
stopping criteria for accuracy.

For the MNIST dataset, Table 5 lists the efficiency calculation using Equation 3. For 
CIFAR Table 6 presents the efficiency calculation using Equation 3.

Table 3  MNIST compute for the 50 epochs experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 50 0.97× 10−1 2.08× 105 4.67× 10−6 2.59× 10−6

BCNN-2 50 9.78× 10−1 4.18× 105 2.34× 10−6

BCNN-3 50 9.77× 10−1 4.64× 105 2.11× 10−6

BCNN-4 50 9.77× 10−1 5.00× 105 1.95× 10−6

BCNN-5 50 9.76× 10−1 5.14× 105 1.90× 10−6

LeNet-1 50 9.91× 10−1 0.97× 105 10.15× 10−6 8.09× 10−6

LeNet-2 50 9.93× 10−1 0.90× 105 11.02× 10−6

LeNet-3 50 9.94× 10−1 1.45× 105 6.83× 10−6

LeNet-4 50 9.95× 10−1 1.52× 105 6.52× 10−6

LeNet-5 50 9.94× 10−1 1.67× 105 5.94× 10−6

Table 4  CIFAR compute for the 50 epochs experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 50 4.35× 10−1 2.87× 105 1.51× 10−6 1.54× 10−6

BCNN-2 50 4.93× 10−1 3.09× 105 1.59× 10−6

BCNN-3 50 5.12× 10−1 3.29× 105 1.55× 10−6

BCNN-4 50 5.24× 10−1 3.41× 105 1.54× 10−6

BCNN-5 50 5.24× 10−1 3.44× 105 1.52× 10−6

LeNet-1 50 6.35× 10−1 0.78× 105 8.13× 10−6 7.78× 10−6

LeNet-2 50 7.18× 10−1 0.84× 105 8.47× 10−6

LeNet-3 50 7.71× 10−1 0.89× 105 8.66× 10−6

LeNet-4 50 7.88× 10−1 0.99× 105 7.91× 10−6

LeNet-5 50 7.96× 10−1 1.39× 105 5.72× 10−6
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4.1.3  Energy bound experiment

In this experiment, the convergence criterion used to stop training was when the energy 
samples recorded for a training run on an architecture cumulatively summed up to 100,000 
W. Apart from this, the design of the experiment is the same as those reported in the previ-
ous two sections.

Mirroring the results from the previous experiments, for the MNIST dataset, Table 7 
lists the efficiency calculation using Equation 3. Similarly, for CIFAR, Table 8 presents the 
efficiency calculation using Equation 3. Note that some of the values for total energy listed 
in the results for this experiment are above the training convergence criterion of 100,000W. 
These values are correct values from the experiment. The reason for these values is that 
although we sample throughout the training process (the average sampling rate for energy 
was 973 per second for the NVIDIA system and 1052 samples per second for the AMD sys-
tem), we perform the check of the cumulative amount of energy consumed during training 
at the end of each epoch. Consequently, the energy consumed during a training run exceeds 
the stropping threshold if the process crosses that threshold during an epoch.

Table 5  MNIST compute for the early-stopping experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 65 9.67× 10−1 9.19× 105 1.05× 10−6 1.00× 10−6

BCNN-2 21 9.42× 10−1 6.31× 105 1.49× 10−6

BCNN-3 37 9.61× 10−1 9.26× 105 1.04× 10−6

BCNN-4 53 9.64× 10−1 12.21× 105 0.79× 10−6

BCNN-5 65 9.67× 10−1 15.40× 105 0.63× 10−6

LeNet-1 16 9.75× 10−1 0.75× 105 12.83× 10−6 8.77× 10−6

LeNet-2 12 9.79× 10−1 0.59× 105 16.40× 10−6

LeNet-3 56 9.93× 10−1 2.69× 105 3.68× 10−6

LeNet-4 28 9.91× 10−1 2.12× 105 4.65× 10−6

LeNet-5 20 9.90× 10−1 1.58× 105 6.26× 10−6

Table 6  CIFAR compute for the early-stopping experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 61 4.39× 10−1 3.58× 105 1.23× 10−6 1.02× 10−6

BCNN-2 41 4.23× 10−1 3.68× 105 1.15× 10−6

BCNN-3 41 4.40× 10−1 4.66× 105 0.94× 10−6

BCNN-4 21 3.86× 10−1 2.94× 105 1.31× 10−6

BCNN-5 81 4.92× 10−1 1.068× 105 0.46× 10−6

LeNet-1 56 5.93× 10−1 1.64× 105 3.60× 10−6 4.93× 10−6

LeNet-2 40 6.53× 10−1 1.67× 105 3.90× 10−6

LeNet-3 24 6.45× 10−1 0.92× 105 6.96× 10−6

LeNet-4 24 6.65× 10−1 1.18× 105 5.63× 10−6

LeNet-5 28 7.18× 10−1 1.57× 105 4.56× 10−6
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4.1.4  Accuracy bound experiment

The convergence criteria used in these experiments was to stop training when a model 
obtained a specified accuracy threshold. For the MNIST dataset this accuracy threshold 
was set at 99% on the training set, and on the CIFAR dataset (where we used a six-fold 
cross-validation methodology) for each fold the training was stopped when the model had 
obtained an accuracy threshold of 50% on the training data for that fold8. Our reason for 
using a lower accuracy threshold for CIFAR was that an accuracy threshold > 50% required 
training to proceed for more time than our Collab account allowed, and if this time threshold 
was exceeded, then the training was interrupted, and results were lost.

For MNIST Table 9 lists the efficiency calculation using Equation 3. Similarly, for 
CIFAR, Table 10 presents the efficiency calculation using Equation 3.

8 See the final paragraph of Section 4 for details of the training and test split used for MNIST and the six-fold 
cross-validation methodology used for CIFAR.

Table 7  MNIST compute for the energy bound experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 19 9.44× 10−1 1.46× 105 6.43× 10−6 6.18× 10−6

BCNN-2 13 9.33× 10−1 1.62× 105 5.73× 10−6

BCNN-3 10 9.19× 10−1 1.57× 105 5.83× 10−6

BCNN-4 08 9.06× 10−1 1.43× 105 6.32× 10−6

BCNN-5 06 8.83× 10−1 1.33× 105 6.60× 10−6

LeNet-1 43 9.87× 10−1 1.16× 105 8.47× 10−6 8.48× 10−6

LeNet-2 39 9.90× 10−1 1.16× 105 8.46× 10−6

LeNet-3 27 9.89× 10−1 1.15× 105 8.58× 10−6

LeNet-4 23 9.89× 10−1 1.15× 105 8.60× 10−6

LeNet-5 21 9.89× 10−1 1.19× 105 8.29× 10−6

Table 8  CIFAR compute for the energy bound experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 19 1.40× 10−1 1.49× 105 0.94× 10−6 2.21× 10−6

BCNN-2 14 3.59× 10−1 1.36× 105 2.64× 10−6

BCNN-3 11 3.25× 10−1 1.14× 105 2.85× 10−6

BCNN-4 09 3.07× 10−1 1.31× 105 2.33× 10−6

BCNN-5 07 2.71× 10−1 1.19× 105 2.28× 10−6

LeNet-1 39 5.72× 10−1 1.18× 105 4.83× 10−6 5.17× 10−6

LeNet-2 36 6.44× 10−1 1.15× 105 5.59× 10−6

LeNet-3 32 6.77× 10−1 1.16× 105 5.83× 10−6

LeNet-4 25 6.80× 10−1 1.17× 105 5.77× 10−6

LeNet-5 21 6.71× 10−1 1.75× 105 3.83× 10−6
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5  Analysis of experimental data

This section presents the analysis of the data obtained from our experiments regarding how 
Efficiency behaves as training progresses, the relationship between model size and Effi-
ciency, and the relative overall Efficiency of the LeNet and BCNN architectures.

5.1  Efficiency as training progresses

Figure 5 and Figure 6 plot for each of the models trained (LeNet sizes 1–5, and BCNN sizes 
1–5) how the Efficiency of the model changes across epochs as training progresses. We base 
this analysis solely on the results from the 50 epoch experiment because, in this experiment, 
we have collected the same number of epochs for all sizes and both architectures. As a 
result, the x-axis, which records the training epochs, goes from 0 to 50 in both figures. The 
y-axis in the graph plots the Efficiency of a model at a given epoch as defined by Equation 2. 
This definition of Efficiency is the ratio of a model’s performance on a validation set after 
epoch i of training to the cumulative energy expended in training the model up to that point 
in training.

Table 9  MNIST compute for the accuracy bound experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 72 9.70× 10−1 13.32× 105 0.73× 10−6 1.74× 10−6

BCNN-2 69 9.71× 10−1 14.05× 105 0.69× 10−6

BCNN-3 69 9.70× 10−1 14.81× 105 0.66× 10−6

BCNN-4 77 9.72× 10−1 1.60× 105 6.06× 10−6

BCNN-5 80 9.72× 10−1 17.06× 105 0.57× 10−6

LeNet-1 12 9.70× 10−1 0.57× 105 16.86× 10−6 26.10× 10−6

LeNet-2 08 9.73× 10−1 0.44× 105 22.02× 10−6

LeNet-3 06 9.74× 10−1 0.36× 105 26.73× 10−6

LeNet-4 06 9.75× 10−1 0.36× 105 26.47× 10−6

LeNet-5 04 9.75× 10−1 0.25× 105 38.44× 10−6

Table 10  CIFAR compute for the accuracy bound experiment
Model Epochs Acci

∑
samples[W ] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 51 4.24× 10−1 5.78× 105 0.73× 10−6 0.68× 10−6

BCNN-2 37 4.17× 10−1 4.98× 105 0.84× 10−6

BCNN-3 30 4.14× 10−1 5.32× 105 0.78× 10−6

BCNN-4 36 4.21× 10−1 8.07× 105 0.52× 10−6

BCNN-5 33 4.24× 10−1 8.32× 105 0.51× 10−6

LeNet-1 7 4.22× 10−1 0.60× 105 7.00× 10−6 10.35× 10−6

LeNet-2 4 4.29× 10−1 0.37× 105 11.55× 10−6

LeNet-3 4 4.63× 10−1 0.43× 105 10.65× 10−6

LeNet-4 3 4.42× 10−1 0.33× 105 13.24× 10−6

LeNet-5 3 4.68× 10−1 0.50× 105 9.30× 10−6

1 3

Page 15 of 33  349



E. Cueto-Mendoza, J. Kelleher

For these results, we observe that Efficiency decreases as time progresses. These plots 
show that although we would expect the performance of a model to improve as training 
progresses, the rate of improvement tends to decrease as training progresses. After a cer-
tain amount of training (epochs), performance plateaus and further training result in energy 

Fig. 6  Efficiency per epoch (CIFAR dataset) of the 50 epoch experiment

 

Fig. 5  Efficiency per epoch (MNIST dataset) of the 50 epoch experiment
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being expended. Notice that the plots in Figure 5 drop more steeply than those in Figure 6. 
This reflects the fact that on the more straightforward MNIST dataset, model performance 
saturates very early on, whereas, on the more complex CIFAR dataset, it takes more epochs 
for the models to reach this performance saturation point.

The relative difficulty of the two datasets is also reflected in the differences in the y-axis 
scales between Figure 5 and Figure 6. The maximum Efficiency recorded for any models 
at any epoch on MNIST is above 0.02, whereas on CIFAR, it is below 0.01. The primary 
driver of this difference is that on MNIST, the models achieved accuracies of 0.97–0.99 (see 
Table 3), whereas on CIFAR, the range of accuracies of the BCNN models is 0.43–0.53 and 
the LeNet models 0.66–0.80 (see Table 4).

Finally, comparing Figure 5 with Figure 6, it is apparent that the gap between the plots 
for the LeNet models and the BCNN models is more significant in Figure  6. This sug-
gests that as a learning task becomes more complex, differences in Efficiency become more 
pronounced.

5.2  Relationship between stopping criteria and efficiency, and model size and 
efficiency

The results presented in Tables  3– 10 reveal significant variation in architecture efficiency 
across different stopping criteria. Note that this analysis considers the variation in Efficiency 
by model size. This variation is particularly noticeable in the MNIST dataset. Table 11 sum-
marises (from Tables 3, 5, 7 and 9) the efficiency results for both architectures across the 
four stopping criteria on the MNIST dataset. Examining the results for LeNet, the maximum 
Efficiency (0.00002610) is obtained using an accuracy bound stopping criterion, and the 
minimum Efficiency (0.00000809) is recorded using the 50 epoch criterion. This means that 
LeNet is, averaging across model sizes, approximately 3.22 times more efficient on MNIST 
when the accuracy bound criterion is applied compared to the 50 epoch criterion. A similar 
variation in Efficiency across stopping criteria is observable for the BCNN architecture. 
However, the criteria that result in the maximum and minimum values differ. For the BCNN 
architecture on MNIST, using an energy bound stopping criterion gives the maximum Effi-
ciency of 0.00000618 compared to the minimum Efficiency of 0.00000100 using early 
stopping, a variation in Efficiency of 6.18 times. More generally, we observe a complex 
non-linear interaction across architectures and convergence criteria, as shown in Figure 7, 
which plots the LeNet versus BCNN efficiency scores by convergence criteria. The within-
architecture efficiency variation across stopping criteria and the complex interactions across 
architectures and stopping criteria highlight the need to include multiple stopping criteria 
within the efficiency framework.

Analyzing the relationship between stopping criteria and Efficiency in more detail, Fig-
ure 8 and Figure 9 visually summarizes the efficiency analysis results from across the 50 

Table 11  MNIST mean efficiency scores for LeNet and BCNN by stopping criteria
LeNet BCNN

50 Epoch 8.09× 10−6 2.59× 10−6

Early Stopping 8.77× 10−6 1.00× 10−6

Energy Bounded 8.48× 10−6 6.18× 10−6

Acc. Bounded 26.10× 10−6 1.74× 10−6
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epoch (50), early stopping (est), energy bound (wat), and accuracy bound (acc) experiments. 
In these figures, the x-axis indicates the stopping criteria of the models being assessed, the 
y-axis is the efficiency results per model size obtained from Equation 3, there are five model 
sizes for each architecture in each experiment, and so each box plot contains five efficiency 
results, and one box plot per stopping criteria.

Both Figure 8 and Figure 9 show that different stopping criteria profoundly influence Effi-
ciency. Variations in stopping criteria affect both the width of the distributions of efficiencies 
for each architecture and also the distance between these distributions. For example, stop-
ping criteria that bound energy—the energy bound (wat) and the 50 epoch experiments—

Fig. 8  Efficiency for the 4 experiments (MNIST dataset)

 

Fig. 7  LeNet versus BCNN efficiency on MNIST by stopping criteria
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appear to squash the distributions of the model efficiencies of each architecture, whereas 
stopping criteria based on accuracy bounds—the early stopping (est) and accuracy bound 
(acc) experiments—the efficiency distributions are wider, particularly for the LeNet model. 
This energy bound versus accuracy bound categorization of stopping criteria is also predic-

Fig. 10  Efficiency for the 4 experiments (MNIST dataset)

 

Fig. 9  Efficiency for the 4 experiments (CIFAR dataset)
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tive in terms of the gap between the LeNet and BCNN distributions, with accuracy bound 
experiments (est and acc) exhibiting a more significant gap between the distributions for the 
architectures as compared with the energy bound (wat and 50 epoch) experiments.

This suggests a trade-off between these two categories of stopping criteria for measuring 
architecture efficiency. Energy-bound experiments generate narrow efficiency distributions 
across model sizes, resulting in narrow confidence intervals around the mean Efficiency 
for a given architecture based on these experiments. However, this relatively more robust 
confidence is offset by the smaller gap between the efficiency distribution for each architec-
ture. By contrast, the accuracy-bound experiments are more sensitive to differences between 
architectures in terms of Efficiency. However, the broader distribution per architecture 
results in wider confidence intervals around the mean Efficiency. In order to balance this 
trade-off, we suggest using both types of stopping criteria when measuring Efficiency (as 
done by Equation 4).

The squashing of the distributions when energy-bound stopping criteria are used sug-
gests that for each architecture, a fixed amount of energy per unit of accuracy is obtained 
independent of model size. In other words, when the stopping criteria are bound to energy, 
varying model size will not impact the overall architecture efficiency on a learning task. 
However, when the stopping criteria are based on accuracy, varying the model size will 
significantly impact the overall architecture efficiency of a learning task.

Figure 10 and Figure 11 show how different model sizes compare to each other. The Effi-
ciency of the LeNet architecture is particularly sensitive to size. However, there is no clear 
trend between size and Efficiency. The Efficiency of the BCNN architecture is less sensitive 
to size variation, so the visualizations are less helpful for this architecture. However, exam-
ining efficiency results reported in Tables 3, 5, 7, 9, and Tables 4, 6, 8, 10 reveals that there 
is no apparent trend between model size and Efficiency.

Fig. 11  Efficiency for the 4 experiments (CIFAR dataset)

 

1 3

349  Page 20 of 33



A framework for measuring the training efficiency of a neural…

5.3  Efficiency of the LeNet architecture against BCNN architecture

Table 12 presents the overall efficiency calculations for the LeNet and BCNN architectures 
on the MNIST and CIFAR datasets. These efficiencies are the mean Efficiency of architec-
ture on a dataset across the multiple model sizes and convergence criteria (see Equation 4). 
On both datasets, LeNet is more efficient than the BCNN architecture.

Comparing the Efficiency of each architecture across the datasets, we can see that both 
architectures are more efficient on MNIST than on CIFAR. This is due to the relative com-
plexity of CIFAR versus MNIST. In order to check how the Efficiency of an architecture 
varies across datasets, we take the ratio between the Efficiency of an architecture on one 
dataset to its Efficiency on another. In this calculation, we take Efficiency on MNIST as 
the numerator because this is the dataset on which both architectures have the highest Effi-
ciency. For LeNet, this calculation is 12.86/7.06 = 1.822, i.e., the LeNet architecture is 
1.822 times more efficient on MNIST than on CIFAR. For BCNN, this calculation gives 
us 2.88/1.36 = 2.116, i.e., the BCNN architecture is 2.116 times more efficient on MNIST 
than CIFAR. These two ratios are close. However, the ratio for LeNet is smaller than for 
BCNN 1.822 < 2.116, indicating that the LeNet architecture has a smaller decrease in Effi-
ciency between MNIST and CIFAR than BCNN. Another perspective on these results is to 
take the ratio between the two architectures on each dataset. In this case, we use the Effi-
ciency of the LeNet architecture as the numerator because this architecture has the highest 
Efficiency on both datasets. For MNIST, this calculation is 12.86/2.88 = 4.466, and for 
CIFAR, this calculation is 7.06/1.36 = 5.185. These calculations indicate that on MNIST, 
LeNet is 4.466 times more efficient than BCNN, whereas on CIFAR, LeNet is 5.185 times 
more efficient than BCNN. In other words, as the dataset becomes more complex (moving 
from MNIST to CIFAR), the difference in Efficiency between LeNet and BCNN becomes 
larger (5.185 > 4.466).

To summarise, the CIFAR dataset is the more complex dataset, LeNet is the more effi-
cient architecture on both datasets, and when the learning task switches to a more complex 
dataset, the relative differences in Efficiency between the architectures become more exten-
sive (the less efficient architecture has a more considerable relative drop in Efficiency, and 
the ratio between the efficiencies of the architectures increases as the task becomes more 
difficult). This observation relating the difficulty of the task and changes in the Efficiency 
of an architecture aligns with what can be observed in Figure 5 and Figure 6 where there is 
a more significant gap between the LeNet and BCNN plots lines on CIFAR as compared to 
the plot lines on MNIST.

This comparison of Bayesian Convolutional Neural Networks (BCNNs) and Convolu-
tional Neural Networks (CNNs) highlights a trade-off in training efficiency. BCNNs seek to 
enhance generalizability by learning a distribution over models rather than fitting a single 
model to the data (thereby reducing the risk of overfitting) (MacKay 1995). However, learn-

Table 12  Efficiency (Eff (arch, convergence)) of BCNN and LeNet architectures on the MNIST and 
CIFAR datasets

MNIST CIFAR MNIST/CIFAR
LeNet 12.86× 10−6 7.06× 10−6 1.82
BCNN 2.88× 10−6 1.36× 10−6 2.11
LeNet/BCNN 4.46 5.18
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ing this distribution requires the repeated sampling of weights during training, which incurs 
an extra cost in terms of energy. For BCNNs to achieve greater Efficiency than CNNs, 
their generalization improvement must outweigh the increased energy costs incurred during 
training. Our findings indicate that, for the tasks we have examined, this trade-off results in 
BCNNs being less efficient than CNNs in terms of accuracy versus energy.

5.4  On the risks of over-training (over-fitting)

As discussed in Section 5.1, the Efficiency of a neural architecture tends to decay as train-
ing progresses; this trend is evident in Figure 5 and Figure 6 where for both architectures 
on both datasets efficiency consistently reduces as training progresses. This trend reflects 
that as training progresses, model performance saturates after a certain point, and further 
training expends more energy with no gain in performance. An implication of this is that if a 
neural model is trained for an extreme number of epochs, then the training efficiency of that 
architecture will tend to zero, and furthermore, in such a scenario, comparing the Efficiency 
of different neural architectures is no longer sensible because all architectures will have an 
efficiency of zero. Put another way, the measurement of the training efficiency for a neural 
architecture only makes sense when models are not overtrained.

The most direct definition of overtraining is epochs of training that do not improve model 
performance. Another complementary way of identifying when overtraining has occurred 
is through the concept of over-fitting. Overfitting occurs when a model learns to perform 
well on the training data but fails to generalize to unseen data, compromising its Efficiency. 
Overfitting can be checked for by comparing the divergence between a model’s perfor-
mance on training data versus non-training data. To illustrate both overfitting and the impact 
of overtraining training efficiency, we extend our 50-epoch experiment to 100 epochs. We 
then perform two levels of analysis. First, we check whether the models trained for 100 
epochs exhibit overtraining (compared to those trained for 50 epochs). Then, we calculate 
the Efficiency of both architectures using the results from the 100-epoch experiment in order 
to understand how overtraining can affect training efficiency.

We examine two measures to check whether extending training from 50 to 100 results in 
overtraining a model. First, we check whether the extra training resulted in an appreciable 
increase in model performance on the test set; if there is no increase in test set performance 
between the 50th and 100th epoch, then we deem the 100 epoch model to be overtrained. 
Second, suppose a model exhibits an increase in test set performance between the 50th 
and 100th epochs. We check for overfitting by comparing the model’s performance on the 
training data and the test set. The intuition behind this analysis is that the more significant 
the drop in the performance between the training data and a test set, the more likely the 
model will be overfitted (and hence overtrained). In more detail, we calculate the difference 
between a model’s training and test performance after 50 epochs of training and after 100 
epochs of training and then calculate the delta between these differences. This delta in the 
differences reveals the extent of divergence between training and test performance caused 
by the extra 50 epochs of training. Using this delta metric, we deem a model to be over-
trained if the delta is of a comparable scale to the increase in the test set performance of the 
model between the 50th and 100th epochs.

Table 13 presents the performance results used in this analysis. For the 50 and 100 epoch 
results, the table presents the model performance on the training set, the test set, and the 
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difference between these results. The rightmost two columns of the table (columns A and 
B) list the difference in test performance between 50 and 100 epochs (calculated as test 
performance at 100 epochs minus test performance at 50 epochs) and the delta in the dif-
ferences between training and test performance between 50 and 100 epochs (calculated as 
the difference between training and test performance at 100 epochs minus the difference 
between training and test performance at 50 epochs). In order to highlight meaningful dif-
ferences in columns A and B, we round the results in these columns to two decimal places. 
If we examine column A, we see that on the MNIST dataset, none of the LeNet models 
obtain a meaningful increase in test performance between the 50th and 100th epochs. As a 
result, we consider the LeNet 100 epoch models to be overtrained. The BCNN models on 
MNIST exhibit a slight increase (≈ 0.01 for all models) in test set performance between 
the 50th and 100th epoch. However, this is accompanied by a comparable increase in the 
divergence between training and test set performance, so we also deem these BCNN models 
to be overtrained. Switching focus to the CIFAR dataset, all of the LeNet models exhibit an 
increase in test performance between the 50th and 100th epoch. However, this is accom-
panied by a comparable (and in 4 out of 5 cases more prominent) increase in divergence 
between training and test performance, so we deem these 100 epoch LeNet CIFAR models 
to be overtrained. Finally, the BCNN models on the CIFAR dataset all exhibit a relatively 
significant increase in test performance between the 50th and 100th epoch, accompanied by 
a comparably slight increase in divergence between training and test performance, so we 

Table 13  An analysis of model over-fitting after 100 epochs. Column A lists the per-model increase in test 
set performance between 50 and 100 epochs (Test accuracy after 100 epochs minus Test accuracy after 50 
epochs). Column B lists the per model delta in the training and test difference between 50 and 100 epochs 
(Difference at 100 minus Difference at 50)

50 epoch 100 epoch
MNIST Train Test Difference Train Test Difference A B
LeNet-1 0.99071102 0.98506103 0.00564999 0.99524102 0.98694648 0.00829454 0.00 0.00
LeNet-2 0.99438373 0.98787305 0.00651068 0.99708797 0.98906119 0.00802678 0.00 0.00
LeNet-3 0.99525017 0.99059342 0.00465675 0.99761469 0.99154647 0.00606822 0.00 0.00
LeNet-4 0.99565284 0.99153448 0.00411836 0.99782642 0.99276667 0.00505975 0.00 0.00
LeNet-5 0.99629737 0.99057988 0.00571749 0.99814869 0.99128859 0.00686010 0.00 0.00
BCNN-1 0.95748047 0.96715924 -0.00967877 0.97338431 0.97560624 -0.00222193 0.01 0.01
BCNN-2 0.96626704 0.97242924 -0.0061622 0.97819731 0.97928500 -0.00108769 0.01 0.01
BCNN-3 0.96513256 0.97038611 -0.00525355 0.97763173 0.97727584 0.00035589 0.01 0.01
BCNN-4 0.96491689 0.96950655 -0.00458966 0.97758249 0.97698637 0.00059612 0.01 0.01
BCNN-5 0.96142537 0.96888013 -0.00745476 0.97537774 0.97666603 -0.00128829 0.01 0.01
CIFAR Training Testing Difference Training Testing Difference
LeNet-1 0.59485669 0.57332227 0.02153442 0.65716212 0.61330469 0.04385743 0.04 0.02
LeNet-2 0.70195860 0.64035352 0.06160508 0.76755101 0.66876953 0.09878148 0.03 0.04
LeNet-3 0.76978155 0.68373047 0.08605108 0.83391819 0.70827051 0.12564768 0.02 0.04
LeNet-4 0.80343700 0.69496875 0.10846825 0.86194093 0.71430078 0.14764015 0.02 0.04
LeNet-5 0.82096686 0.69295508 0.12801178 0.88013734 0.71263281 0.16750453 0.02 0.04
BCNN-1 0.33502488 0.33920898 -0.0041841 0.43809589 0.43243262 0.00566327 0.09 0.01
BCNN-2 0.44060957 0.43411328 0.00649629 0.50035355 0.48572559 0.01462796 0.05 0.01
BCNN-3 0.45429289 0.44414062 0.01015227 0.52243183 0.50286328 0.01956855 0.06 0.01
BCNN-4 0.45937550 0.45482617 0.00454933 0.53284086 0.51709375 0.01574711 0.06 0.01
BCNN-5 0.46070014 0.45722070 0.00347944 0.53233031 0.51748633 0.01484398 0.06 0.01
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deem these models not to be overtrained. In summary, our analysis of overtraining after 100 
epochs categorized all the LeNet and BCNN MNIST models, the LeNet CIFAR models as 
overtrained, and the BCNN CIFAR models as not overtrained.

To analyze how overtraining can affect the measurement of training efficiency, we used 
Equation 3 to calculate the Efficiency of both architectures on both datasets based solely on 
the results of the 100 epoch experiment. The results of these calculations are presented in 
Table 14. We are comparing these results with those listed in Table 12; a consistent find-
ing across both sets of results is that LeNet is more efficient than BCNN on both datasets. 
Also, for three out of the four categories of models (LeNet and BCNN on MNIST, and 
LeNet on CIFAR), the training efficiency drops as compared with Table 12, this is in line 
with what would be expected from the trends exhibited in Figure 5 and Figure 6 discussed 
in Section 5.1. The one exception to this trend is the BCNN architecture on CIFAR, which 
slightly increases Efficiency. This exception aligns with the findings of our overtraining 
analysis presented above. It suggests that if we were to use the efficiency scores presented 
in Table 14 to compare the efficiency scores of LeNet and BCNN, we would be compar-
ing overtrained LeNet models against BCNN models, some of which are overtrained (i.e., 
BCNN MNIST) and some of which are not (i.e., BCNN CIFAR). If we run this (incorrect) 
comparison through to see how overtraining can affect the overall analysis, we get very 
different conclusions from those we reached from analyzing Table  12. For example, let 
us compare the efficiency ratio for each architecture across the two datasets (i.e., MNIST/
CIFAR). We see that in Table 14 for LeNet, this ratio (1.042) is greater than the BCNN ratio 
(0.367). Similarly, if we compare the efficiency ratio between the two architectures on each 
dataset (LeNet/BCNN), we see that this ratio is more significant for MNIST (3.108) than for 
CIFAR (1.095). In both cases, the relative size of these ratios has flipped as compared with 
the results reported in Table 12. Taking the ratios in Table 14 at face value, we would (erro-
neously) conclude that as the learning task becomes more complex (MNIST→CIFAR), 
the more efficient architecture (LeNet) has a more significant drop in Efficiency and that 
the difference in Efficiency between the two architectures becomes smaller. However, the 
underlying phenomenon driving these results is overtraining. Consequently, when assess-
ing the training efficiency of neural architecture, it is essential to consider overtraining as a 
factor in the analysis and to be cognizant that overtraining can occur at different points in 
training for different models on a given training task. One strategy to mitigate the risk of 
overtraining impacting efficiency analysis is to average over multiple convergence criteria, 
as we have done in this work.

Table 14  Efficiency (Eff (arch, convergence)) of BCNN and LeNet architectures on the MNIST and 
CIFAR datasets for models trained for 100 epochs

MNIST CIFAR MNIST/CIFAR
LeNet 2.05× 10−6 1.97× 10−6 1.04
BCNN 0.66× 10−6 1.80× 10−6 0.36
LeNet/BCNN 3.10 1.09
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6  Conclusions

We present a framework for measuring the training efficiency of a neural architecture on a 
learning task. This framework involves running multiple experiments but does not require 
hardware profiling. Moreover, the framework enables a multifaceted analysis of the training 
efficiency of a neural architecture, including the analysis of how the Efficiency of a model 
varies across training epochs (Equation 2), how the Efficiency of a neural architecture varies 
with model size (Equation 3) and the overall Efficiency of a neural architecture on a learning 
task taking into account variations in model size and stopping criteria (Equation 4). Further-
more, the ability to calculate an overall efficiency for a neural architecture on a learning task 
enables the analysis of the relative Efficiency of different neural architectures on a learning 
task and how the relative Efficiency of neural architectures varies across learning tasks.

Applying the framework to the case study comparing CNNs with BCNNs on MNIST 
and CIFAR, we find that the Efficiency of both architectures on both learning tasks changes 
substantially as training progresses (see Section  5.1), with all models exhibiting a drop 
in Efficiency across epochs. The analysis in Section 5.2 reveals a non-linear relationship 
between stopping criteria and training Efficiency and model size and training Efficiency. We 
observed significant variation in training efficiency across different stopping criteria for both 
architectures. This variation across stopping criteria illustrates the need for multiple stop-
ping criteria within the efficiency framework. Moreover, including multiple convergence 
criteria within the framework mitigates the risk of overtraining affecting the analysis of 
the training efficiency of neural architectures (see Section 5.4). More generally, we believe 
that the potential confounding effect of overtraining on neural training efficiency research 
is not given sufficient attention in the literature. To take a recent example, Kaddour et al. 
(2023) report, as a key finding, that the efficiency improvements obtained by several train-
ing regime modifications vanished when the compute budget allowed for training increases. 
However, in their analysis, the authors did not consider that this finding may result from 
overtraining occurring at different points under different training regimes. Indeed, the more 
efficient a training regime is, the earlier in the training process overtraining will begin, in 
which case, using a fixed compute budget as a convergence criterion is likely to result in 
more efficient training regimes overtraining for longer. So, the extra overtraining will negate 
the efficiency benefits of these regimes. This example illustrates how neglecting the impact 
of overtraining can directly undermine conclusions drawn from an experiment focused on 
training efficiency. Regarding the relationship between model size and training Efficiency, 
we find that intermediate-size models have the best Efficiency for both architectures and 
learning tasks. This variation in Efficiency with respect to model size highlights the need to 
include model size within the efficiency frameworks.

In terms of overall neural architecture training efficiency on a learning task, we find 
that CNNs are more efficient than BCNNs on both MNIST and CIFAR and that the differ-
ence in Efficiency becomes more prominent as the learning task becomes more complex 
(see Section 5.3). To test for interactions with hardware, we replicated our experiments and 
analysis on a second hardware setup. The description of the hardware and the results are 
presented in A. The same trends are evident in the results obtained from these other experi-
ments. Overall, we argue that to measure the training efficiency of neural architectures, it 
is important to consider efficiency variation across model size, the stopping criterion used, 
and the learning task. In future work, we will explore the application of the framework to 
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other neural architectures and training paradigms. For example, there is a growing body 
of work exploring parameter-efficient fine-tuning, and applying this framework to these 
methods could reveal important interactions between the neural architecture and the training 
regimen. Another potential area of future work emerges from our findings that training effi-
ciency and model size have a non-linear relationship. Given this finding, it may be helpful 
to consider how Efficiency, model size, and model compression methods interact9.

9 Supplementary material is available at the Open Science Foundation.

AlmaLinux 9.2 (Turquoise Kodkod) x86_64
Kernel: 5.14.0284.11.1.el9_2.x86_64
CPU: AMD Ryzen 9 5900HX with Radeon Graphics (16) @ 
3.300GHz
GPU: AMD ATI Radeon Vega Series / Radeon Vega Mobile Series
GPU: AMD ATI Radeon RX 6700/6700 XT/6750 
XT/6800M/6850M XT
Memory: 3251 MiB / 31496 MiB
Driver version: 6.1.5
ROCm version: 5.4.2
Python version: 3.9.16
Pytorch version: 2.0.1
powerstat version: 0.03.03
radeontop version: 1.00

Table 15  Hardware 
characteristics
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Fig. 13  Box plot for Efficiency per size four experiments (CIFAR dataset)

 

Fig. 12  Box plot for Efficiency per size four experiments (MNIST dataset)
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Fig. 15  Scatter plot for the Efficiency 4 experiments (CIFAR dataset)

 

Fig. 14  Scatter plot for the Efficiency 4 experiments (MNIST dataset)
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Appendix

Hardware comparison

We replicated our experiments on a second hardware setup to demonstrate our framework’s 
generalizability and findings. Table 15 shows the characteristics of this second (AMD) hard-
ware platform. Due to the smaller capabilities of this hardware platform, the training regime 
was modified for the CIFAR dataset; instead of using six-fold validation, we used a single 
70-30 split on the data. This modification allows the training to be completed on this AMD 
hardware without any memory overflow. Apart from this modification, the same training 
regimen, architectures, and hyperparameters as described in Section 4 were used in these 
experiments.

The experimental data was processed in the same manner as in Section 4.1, obtaining 
the following results:

The results from the data collected are similar to the ones presented in Section 5.

Table 16 shows that our results over the MNIST dataset and CIFAR dataset, for both 
neural architectures, across both hardware manufacturers seem consistent, i.e., they follow 
a similar trend and clearly show that the LeNet architecture is more efficient overall than the 
BCNN architecture, similar to Section 5.3.

Figures 12 and Figure 13 follow along the analysis presented in Section 5.2, with Fig-
ure 14 and Figure 15, following a similar trend. These results validate that the Efficiency 
reported and the analysis presented are consistent across hardware platforms.
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