
Accepted: 10 September 2024 / Published online: 28 October 2024
© The Author(s) 2024

Eduardo Cueto-Mendoza and John Kelleher contributed equally to this work.

	
 Eduardo Cueto-Mendoza
eduardo.cuetomendoza@tudublin.ie

John Kelleher
john.kelleher@tcd.ie

1	 School of Computer Science, TU Dublin, Grangegorman, Dublin 7 D07H6K8, Co. Dublin,
Ireland

2	 ADAPT Research Centre, School of Computer Science and Statistics, Trinity College Dublin,
Dublin 2, Co. Dublin, Ireland

A framework for measuring the training efficiency of a neural
architecture

Eduardo Cueto-Mendoza1,2 · John Kelleher2

Artificial Intelligence Review (2024) 57:349
https://doi.org/10.1007/s10462-024-10943-8

 Abstract
Measuring Efficiency in neural network system development is an open research problem.
This paper presents an experimental framework to measure the training efficiency of a
neural architecture. To demonstrate our approach, we analyze the training efficiency of
Convolutional Neural Networks and Bayesian equivalents on the MNIST and CIFAR-10
tasks. Our results show that training efficiency decays as training progresses and varies
across different stopping criteria for a given neural model and learning task. We also find a
non-linear relationship between training stopping criteria, training Efficiency, model size,
and training Efficiency. Furthermore, we illustrate the potential confounding effects of
overtraining on measuring the training efficiency of a neural architecture. Regarding rela-
tive training efficiency across different architectures, our results indicate that CNNs are
more efficient than BCNNs on both datasets. More generally, as a learning task becomes
more complex, the relative difference in training efficiency between different architectures
becomes more pronounced.

Keywords  Deep learning · Efficiency · Deep neural networks · Hyperparameters

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10462-024-10943-8&domain=pdf&date_stamp=2024-10-25

E. Cueto-Mendoza, J. Kelleher

1  Introduction

Artificial Intelligence is predicted to be a critical enabling technology for many of the 17
Sustainable Development Goals (SDGs). However, its current dependency on massive data-
sets and computer power means that it will also inhibit the attainment of some SDGs, par-
ticularly SDG7 (Affordable and Clean Energy) and SDG 13 (Climate action) (Vinuesa et al.
2020). Modern Artificial Intelligence (AI) uses data-driven methods like deep learning. It is
primarily driven by trends of ever larger datasets, larger models, and more powerful com-
puters with the sole concern of improving model accuracy (Kelleher 2019). This dynamic
resulted in a 300,000x increase between 2012 and 2018 in the computation required to train
a competitive DL model [3] (this trend far exceeds Moore’s Law). Indeed, it has recently
been estimated that training one AI model generated the CO2 emissions equivalent to driv-
ing 700,000 km (DeWeerdt 2020).

The environmental challenge posed by AI’s growing energy needs and associated carbon
emissions has been recognized in recent years. For example, researchers in AI Ethics have
highlighted this challenge (Bender et al. 2021) and have called for more research on “sus-
tainable methods of AI” (van Wynsberghe 2021). In response to these calls, there is a grow-
ing trend within AI research to move beyond systems evaluations solely based on accuracy.
Recent research tends to report hardware details and training time alongside accuracy, and
some papers report FLOPS. However, time and FLOPS are not sufficient to characterize
Efficiency. There is a growing body of work (e.g., Schwartz et al. 2020; Strubell et al. 2020;
Li et al. 2020; Sze et al. 2020; Li and John 2003) that shows that more data is required to
understand the energy and resource trade-off of deep neural networks. Consequently, a criti-
cal step in developing sustainable AI is the development of measures for Efficiency that can
be integrated into the development process of an AI system.

This paper directly addresses the need for a measure to characterize the Efficiency of a
neural network architecture on a specific hardware and learning task. A natural efficiency
ratio of interest for a neural architecture is the ratio between the accuracy of a neural model
and the energy consumed to achieve this accuracy. Accuracy is usually measured using
an appropriate measure for the task and dataset distribution (e.g., F1, AUC-ROC, etc.).
However, several recent results highlight a non-linear relationship between the accuracy
of a neural model and the size of the model (Nakkiran et al. 2021). This suggests that there
is likely a non-linear relationship between the training efficiency of an architecture and
the size of the model instantiating the architecture. At the same time, there is a gap in the
research literature in terms of how the training efficiency of a neural architecture varies
across training. Understanding the dynamics of training efficiency is crucial as it informs
decisions relating to the stopping criterion for training. Consequently, in this work, we set
out an experimental methodology for comparing the relative Efficiency of different neural
architectures in terms of their efficiency dynamics as training progresses and the changes in
Efficiency as the size of the models instantiating the architectures vary. This experimental
methodology includes both a measure of Efficiency and an experimental framework for
capturing the necessary data for the efficiency measure.

In order to test and demonstrate the usefulness of our efficiency measure, we use our
experimental framework to analyze the relative Efficiency of two different neural archi-
tectures, a CNN network (LeNet) and a Bayesian Convolutional Network (BCNN), on the
MNIST and CIFAR-10 tasks. BCNNs are an interesting case study because, although they

1 3

349  Page 2 of 33

A framework for measuring the training efficiency of a neural…

have produced better results than LeNet on MNIST and CIFAR-10 (Gal and Ghahramani
2015), their Efficiency relative to standard frequentist networks has yet to be assessed. Fur-
thermore, given that the outcomes obtained by training a frequentist LeNet architecture with
backpropagation and its BCNN counterpart trained using approximate variational infer-
ence—implemented via dropout—are very different (training the frequentist LeNet results
in a point estimate in parameter space, whereas training the BCNN returns a probability
distribution over a parameter space), it is likely that there will be differences in terms of
Efficiency between these two architectures.

In summary, the key contributions of this research are: (1) we propose a measure of
the training efficiency of a neural architecture on a given task; (2) we present a case study
analyzing the efficiency dynamics of CNNs and BCNNs on multiple tasks across training;
and (3) we analyze the overall Efficiency of CNN versus BCNN architectures. Our results
indicate that CNNs are more efficient than BCNNs for training. Also, the Efficiency of both
architectures varies across training. For both architectures, there is a non-linear relationship
between training efficiency stopping criteria and between training efficiency and model size.
Furthermore, we highlight and illustrate the confounding effect that overtraining can have
on measuring the Efficiency of a neural architecture. Finally, as the learning task becomes
more complex, the relative difference in training efficiency between different architectures
becomes more pronounced.

2  Related work

Research on Efficiency in AI can broadly be categorized into four research streams: archi-
tectures, compression, training regimes, and metrics. The first of these streams focuses on
developing more computationally efficient neural architectures. For example, improving
the Efficiency of the attention mechanism in transformer models (Vaswani et al. 2017) has
frequently been a target for this type of research. This is due to the popularity of transformer
models and the high complexity in time and space O(n2)—of the standard attention mecha-
nism. Within this category of work, the Reformer (Kitaev et al. 2020) proposes an efficiency
improvement (in terms of computation and memory) to the standard transformer that replaces
the regular dot-product attention mechanism with one that uses locality-sensitive hashing,
and the Linformer Wang et al. (2020) replaces the transformer attention mechanism and
approximates it by a low-rank matrix which reduces the complexity of the attention layer to
O(n). A recent survey of work on improving efficiency in transformers is presented in Tay
et al. (2020). Also, although research on neural architecture search has traditionally focused
on optimizing for a single objective (such as accuracy), recently, there has been a growing
interest in multi-objective neural architecture search which considers Efficiency (frequently
hardware efficiency to enable edge deployment) as part of the optimization problem (see
e.g., Zeng et al. 2020; White et al. 2023; Chen et al. 2023; Lu et al. 2024).

A second stream of research has focused on improving Efficiency by reducing model
size. Some of this work trades extra computation during initial model training for smaller,
more efficient models at inference. For example, the EfficientNet (Tan and Le 2019) and
EfficientNet v2 (Tan and Le 2021) papers propose model scaling methods that seek to maxi-
mize model efficiency during inference (by attempting to minimize the final model depth,
width, and resolution) while preserving accuracy at the cost of extra computation during

1 3

Page 3 of 33  349

E. Cueto-Mendoza, J. Kelleher

training. Similarly, the training methodology proposed in Cai et al. (2019) uses pruning dur-
ing training to reduce model depth, width, kernel size, and resolution. Another example of
this type of work is the Lottery Ticket Hypothesis (Frankle and Carbin 2018) methodology,
which focuses on finding small subnetworks that can fit into different hardware platforms
and generalize better. Some research focused on reducing model size is designed to work
on pre-trained models. For example, NetAdapt uses empirical measures to reduce several
hyperparameters in order to fulfill a certain resource budget (Yang et al. 2018), and Distil-
BERT uses model distillation techniques to generate smaller models from a complete BERT
transformer (Sanh et al. 2019). Zhou and Quan (2023) provides a recent review of work on
compressing deep neural networks that cover the four main approaches found in the litera-
ture (pruning, quantization, factorization, and distillation) and conclude that optimization
approaches that combine these different compression approaches are an emerging area of
research.

The third stream of research focuses on improving the training regime’s Efficiency. Work
in this stream generally focuses on modifying one or more of the following components
of the training regime: the ordering of (i.e., curriculum learning) or the selection of the
training data presented to the model (Jiang et al. 2019; Mindermann et al. 2022; Xie et al.
2023; Wang et al. 2023; Yang et al. 2023; Wang et al. 2024); dynamically modifying the
architecture of the model as part of the training process (Gong et al. 2019; Zhang and He
2020; Pan et al. 2023; Ding et al. 2023); modifying the objective function (Anil et al. 2020;
Goldfarb et al. 2020; Eschenhagen et al. 2023); and improving the optimization algorithm
(Liu et al. 2023; Chen et al. 2023).1 (Kaddour et al. 2023) reports a recent empirical study of
the effectiveness of several of these efficient training approaches against a baseline training
regime that used the Adam optimizer with a fully decayed learning rate. These experiments
used a fixed computation budget based on wall time (calculated by multiplying the number
of iterations of training by the time per iteration for that architecture and training regime on
a reference hardware system) as the criterion for stopping training. Three budgets were used
for each experiment: 6 hours, 12 hours, and 24 hours. The results indicate that the tested
training modifications did not statistically outperform the baseline in most experiments.
When they did, this improvement was reduced as the computing budget increased.

The fourth stream of research is focused on developing measures and methodologies
for assessing the performance or Efficiency of an AI solution for a given problem. One
focus within this stream of research has been on hardware efficiency, see, e.g., Davis et al.
(2009); Sze et al. (2020). Another focus for this stream of research is on performance or
Efficiency during inference. Frequently, this work focuses on pruning models during train-
ing to improve Efficiency at inference, see, e.g., Liu et al. (2017) and Han et al. (2015),
which both use the reduction in floating point operations per inference as a measure of how
their pruning approaches improve network efficiency. Examples of work in this area that
are relevant to this work include Canziani et al. Canziani et al. (2016), and Jurj et al. Jurj et
al. (2020). Both of these works propose measures of Efficiency during inference, and what
is particularly relevant for this work is that they use a direct measure of energy consumed
(rather than FLOPs) as a measure of resource usage (work done) when calculating Effi-

1 We note that within the research on improving optimization algorithms the concept of training efficiency is
often framed in terms of the convergence rate achieved by the algorithm for a fixed architecture on a learning
task (see e.g. Kingma and Ba 2014; Ying et al. 2024). By contrast, in this work, we are focused on measuring
the training efficiency of a neural architecture (rather than an optimization algorithm) on the task.

1 3

349  Page 4 of 33

A framework for measuring the training efficiency of a neural…

ciency. Similarly, Desislavov et al. (2021) examines the trends in computational and energy
costs associated with deep learning model inference and assesses whether the exponential
growth in model parameters translates into a proportional increase in energy consumption.
Their analysis considers algorithmic improvements and hardware advancements to under-
stand their impact on energy consumption. We conclude that algorithmic advancements and
hardware specialization have significantly improved the energy efficiency of DNNs.

The work most relevant to this research is focused on Efficiency during model train-
ing. As noted in Schwartz et al. (2020), in the research model, training occurs much more
frequently than post-deployment inference, so understanding Efficiency during training is
in and of itself an important topic. Indeed, Schwartz et al. (2020) reviews several different
measures for Efficiency or work done during training (including, carbon emissions, electric-
ity usage, elapsed real time, number of parameters, and floating point operations (FLOPS))
and argue that FLOPS is the fairest measure to use to compare different approaches. They
attribute two properties to FLOPS in support of this argument: (a) FLOPS directly measures
the work done when running a specific instance of a model and, therefore, is related to the
energy consumed, and (b) it is agnostic to the hardware on which the model is run. However,
metrics based on counts of operations performed by a neural network require hardware pro-
filing, and this is computationally expensive to perform (Mills et al. 2021). Consequently,
developing a metric for training efficiency that does not require hardware profiling is desir-
able. Bartoldson et al. (2023) presents a recent review of the most commonly used metrics
in efficiency research, including training time, FLOPs, number of model parameters, elec-
tricity usage, carbon emissions, and operand sizes. Overall, they found that all these metrics
have significant limitations in either not directly measuring the factors of interest or being
dependent on confounding factors such as hardware, time, etc. Finally, we note that all of
the metrics discussed above (be it FLOPs, CO2 emissions (Strubell et al. 2020) or using
wall time as a measure (Li et al. 2020)) do not consider model accuracy on a task and so do
not measure efficiency per se but rather are an estimate of work done. We propose a novel
efficiency metric considering the relationship between accuracy and work/resource usage.

However, we looked for alternative energy consumption and Efficiency measures dur-
ing training to avoid the hardware profiling challenges associated with FLOPS measures.
Li et al. Li et al. (2016) explore the power behavior and energy consumption of several
CNN architectures on both CPUs and GPUs, with a particular focus on characterizing the
energy consumption of different layer types (convolution, pooling, ReLU, and so on) during
training. Similar to Li et al. Li et al. (2016) (and Canziani et al.’s work on inference effi-
ciency (Canziani et al. 2016), and Strubell et al.’s work on predicting CO2 emissions (Stru-
bell et al. 2020)), we propose using energy consumed rather than FLOPS as our measure of
work done/resource usage. Also, like Canziani et al. Canziani et al. (2016), we are interested
in measuring Efficiency, that is, the relationship between performance (e.g., accuracy) and
resource usage (e.g., energy consumed). However, we are focused on the training phase
rather than on inference. Furthermore, like Strubell et al. Strubell et al. (2020) and Li et
al. Li et al. (2016), we focus on the training phase. However, we go beyond measuring the
energy consumed in training a specific model and propose a measure of the relative Effi-
ciency of a neural architecture (distinct from a specific model) on a given task. We compare
the LeNet CNN architecture against a Bayesian Convolutional Network (BCNN) as a test
case for our efficiency measure. We chose this comparison because BCNNs are not trained

1 3

Page 5 of 33  349

E. Cueto-Mendoza, J. Kelleher

with backpropagation, and we conjecture that this comparison may reveal exciting interac-
tions between training regimes and model efficiency.

3  Defining an efficiency measure for deep neural networks

The concept of Efficiency is fundamental to this work:

Definition 1  Efficiency measures a system’s capacity to achieve a goal (measured by a met-
ric) with a given amount of resources.

When considering the training efficiency of a neural network on a learning task, it is natural
to consider how the accuracy of the network architecture varies as the energy consumed for
training changes. This is the efficiency ratio that equation 1 defines and that Figure 1 illus-
trates (in this figure, the arrow represents an efficiency calculation—in the form of Equation
1—where the arrow points from the denominator to the numerator).

	
Efficiency ∝ Accuracy

Energy
� (1)

However, it is difficult to directly calculate a general estimate of the ratio of energy to accu-
racy for a given neural architecture on a task because the ratio is dependent on measures
used to measure energy and accuracy and is sensitive to hyperparameter decisions (e.g., net-
work size), and training regime decisions (e.g., convergence criteria). Consequently, in this
section, we set out a methodology for calculating this efficiency ratio by averaging across
a sequence of experiments that allow for hyperparameters and training regime variations.
Then, we used these results to compute our final measure.

3.1  Metrics for Energy and Accuracy

Deciding what system components to report energy consumption over is not trivial. For
example, although the CPU, GPU, and memory are natural system components to consider
when tracking energy consumption during the training of a network, other parts of the sys-
tem, such as fans, buses, and transistors, also consume energy related to training (Huang et
al. 2019; Li and John 2003). However, due to the difficulties in measuring the energy con-
sumption of these secondary or satellite components, we have decided to focus our analysis
on the energy consumed during our experiments from the GPU, CPU, and RAM.

We could use several different measures to measure these components’ energy usage.
For example, one family of energy measures often used for neural network research is those
based on counting the number of computational operations; for example, Schwartz et al.

Fig. 1  Network training efficiency visualized as
the ratio of accuracy to energy

1 3

349  Page 6 of 33

A framework for measuring the training efficiency of a neural…

suggest using the number of FLOPS (Schwartz et al. 2020). FLOPS, however, is one of
many types of operation that can be considered. Data movement operations can be much
more expensive regarding energy consumption (Horowitz 2014; Sze et al. 2020). However,
one of the challenges with tracking energy consumption by counting operations is that the
energy consumed by an operation is affected by the sparsity of the data being processed and
the data representation being used (Zheng and Mazumder 2019). For example, switching
from 32 to 16-bit floating point reduces the energy cost of FLOP operations (and in some
cases, this can be done with negligible impact of model accuracy (Micikevicius et al. 2017))
and also reduces energy consumption by reducing data movement (i.e., reduced memory
bandwidth) and reduced energy per memory access (due to smaller memories).

In our experiments2 the hardware used was a Tesla T4 with 15109 MiB memory, from
Google Colab (driver version 470.63 and CUDA version: 11.2) and energy collection for
the GPU was done using NVIDIA System Management Interface version 460.39 and for
recording the energy consumed by the CPU and RAM during training we use the powertop3
system interface which is a Unix native system tool. We used these tools in each experiment
to repeatedly sample and record the energy consumption rate by the GPU, CPU, and RAM
access components as each network is being trained. We then calculate the Efficiency of
the trained model as the ratio between the performance obtained by the model and the total
energy consumed 4 to train the model, as follows:

	
Eff (Acc,W, i = epoch) =

Acci∑i
n=0[Wn]

� (2)

where Acci is the accuracy obtained on that epoch of training of the model, ∑
[Wn] is the sum of the energy samples obtained up to that epoch of training, and

Wn = WGPU
n

⊕
WCPU

n

⊕
WRAM

n ,
⊕

 is the concatenation operation.
The selection of the appropriate measure for model performance depends on the task type

(e.g., classification, regression, segmentation, and so on) and factors such as the distribu-
tion of class labels within the data (Kelleher et al. 2020). In the experiments we report in
this paper, the tasks are classification tasks with balanced label distributions, so we have
chosen to use simple accuracy for the task. Specifically, we report a model’s accuracy (Acc)
on the test set after training has converged. In experiments where we use a hold-out test set
methodology, Acc is simply the accuracy of the trained model on the test set. In experiments
where we use a k cross-fold validation methodology, Acc is the mean accuracy across the k
validation folds.

Figure 2 illustrates the relationship between these measures. As seen above, in this figure,
the arrows represent efficiency calculation where the arrow points from the denominator to
the numerator. The dashed arrow highlights the overall efficiency calculation we wish to
calculate, Acc /W , the average amount of task accuracy obtained per unit of energy (Watt)
expended in training.

2 To demonstrate the applicability of our methodology across different hardware platforms, we replicate the
experiments reported in the main body of the paper on different hardware, more details on these experiments
are found in A.
3 https://01.org/powertop
4 measured in terms of Joules per second (Watts)

1 3

Page 7 of 33  349

E. Cueto-Mendoza, J. Kelleher

3.2  Allowing for hyperparameter variations: model size

To experimentally control for the effect of model size5 we propose to run each experiment
multiple times for each neural architecture using a different size model in each run, and for
each model size, record both the total energy consumed during training

∑
samples[W] and

the accuracy obtained by the model. We then calculate the Efficiency for each model on an
experimental task as the ratio of accuracy to the total energy consumed to train it. Finally,
we calculate the Efficiency of a neural architecture on an experimental task as the mean
Efficiency of the models implementing that architecture on the task. Figure 3 illustrates how
model size is included in the experimental design, and Equation 3 defines how we integrate
model size into the calculation of the training efficiency of a network architecture.

	
Eff (arch, j = size) =

j

E
n=1

[Eff (Acc,W, i = epoch)j]� (3)

3.3  Training regime variations: convergence criteria

The training efficiency of a network (accuracy/energy) is likely to vary as training pro-
gresses; in other words, the gain in model accuracy per unit of energy expended is likely to
change between the early epochs of training and the later epochs of training. At the same
time, the amount of time a network is trained for will vary depending on the convergence
criteria used to stop training. To control for this, we define four different convergence cri-
teria and run each experiment with each of these criteria (in combination with our N model
size variations, we will run each experiment N times for each of the four convergence cri-
teria). We then calculate the overall training efficiency of network architecture on a task by
first calculating the network efficiency for each convergence criterion using Equation 3 and
then calculating the expected value across these efficiency scores.

The four convergence criteria we define are:

1.	 train for a preset number of epochs, in our experiments, we set Epochs==50
2.	 train until the model achieves a preset accuracy on a validation set; in our experiments,

we set the accuracy target to Accuracy==99
3.	 use early stopping as the training convergence method, i.e., we track model accuracy

on the validation set across consecutive training epochs. Training stops if accuracy does
not increase across a preset number of epochs (known as the patience parameter). In
our experiments, we used a level of patience of 3.

4.	 stop training after a preset energy (W) budget has been consumed, for our experiments,
we set the energy budget to be Energy==100kWFigure 4 illustrates how these conver-
gence criteria are integrated into the experimental setup, and Equation 4 defines how we
calculate an overall mean training efficiency for a network architecture that accounts for
both model size and convergence criteria.

	
Eff (arch, k = convergence) = E

k
[Eff (arch, j = size)k] � (4)

5 We use the term model to denote a particular instantiation of a neural architecture.

1 3

349  Page 8 of 33

A framework for measuring the training efficiency of a neural…

where in the case of Equation 4, Eff (arch, size)k is computed as in Equation 3.

4  Case study: convolutional and bayesian convolutional architectures

In this case study, we demonstrate the use of our efficiency framework by comparing the
Efficiency of a CNN network (LeNet) with that of a Bayesian Convolutional Network
(BCNN). The BCNN network is trained using approximate variational inference, which
is implemented via dropout. Similar to the experiments reported in the original BCNN
paper (Gal and Ghahramani 2015), we use the LeNet-5 architecture from Lecun et al. (1998)

Fig. 4  Visualisation of how
convergence criteria are inte-
grated into the experimental
methodology

Fig. 3  Visualisation of how
model size is integrated into the
experimental methodology

Fig. 2  Visualisation of relationships between
variables tracked in the experiments

1 3

Page 9 of 33  349

E. Cueto-Mendoza, J. Kelleher

as the baseline architecture for our experiments. Following (Gal and Ghahramani 2015), the
corresponding Bayesian version of the LeNet baseline was created by applying a dropout
with a probability of 0.5 after all convolution and weight layers (i.e., this is the model called
“lenet-all” in Gal and Ghahramani (2015)). Tables 1 and 2 report the hyperparameters used
to train the LeNet and BCNN models (note: we use the same hyper-parameter settings as
reported for experiments performed by Gal and Ghahramani (2015)).

The two models described above are baseline versions of the models used in our experi-
ments. However, in each of our experiments, we vary the model size and different conver-
gence criteria to explore and contrast the efficiency trade-offs for each architecture between
size and accuracy and size and Efficiency. In the Bayesian case, two ways of approximating
the posterior probability distribution exist: Variational Inference (VI) and Markov Chain
Monte Carlo (MCMC). In most cases, (VI) performs excellently but is not a great estimator.
While MCMC can be computationally expensive but is an excellent estimator (Charnock
et al. 2020), in our experiments, we estimate the posterior using Variational Inference. The
best strategy (depth versus width) for scaling a model is an open research challenge. How-
ever, because both architectures we consider here are convolutional networks, we decided

Architecture LeNet-5
(Bayesian filters)

epochs 50
learning rate 0.001
num workers 4
batch size 256
activation soft plus
loss cross-entropy
optimiser ADAM
sample size 10−25

train ensemble 1
test ensemble 1
β 0.1

prior µ 0.0
prior σ 0.1
posterior µinit (0,0.1),

(mean, std)
posterior ρinit (-5,0.1),

Table 2  BCNN hyperparameters

Architecture LeNet-5
epochs 50
learning rate 0.001
num workers 4
batch size 256
activation soft plus
loss cross-entropy
optimiser ADAM
initialization Normal (mean:0,

variance:1)

Table 1  LeNet hyperparameters

1 3

349  Page 10 of 33

A framework for measuring the training efficiency of a neural…

to scale the models by increasing the filters used in each layer. In other words, we scaled
the width of the models, and we did this by multiplying the number of filters in each layer
by multiples from ×1 up to ×5 the original baseline size. This means that in our experi-
ments, we test five versions of the LeNet architecture: LeNet-1, the baseline architecture is
the same as reported in Lecun et al. (1998), LeNet-2 has twice the number of filters in each
layer as LeNet-1, LeNet-3 has three times the number of filters, and so on up to LeNet-5
with five times the number of filters. Similarly, BCNN-1 is the baseline Bayesian archi-
tecture from Gal and Ghahramani (2015) and has the same size as LeNet-1, and BCNN-2
through BCNN-5 are scaled to match their corresponding LeNet-X counterparts in size and
structure.

All four efficiency experiments were performed on the MNIST [64] and CIFAR-10 [65]
datasets. The same hyperparameters were used for the architectures on both the MNIST and
CIFAR-10 datasets6. Both of these datasets are based on the task of handwritten numeric
digit recognition images, with each image containing a single handwritten digit between 0
and 9. The MNIST dataset contains 10,000 images across ten classes (0-9), each being a
28× 28 pixel gray-scale image. The CIFAR-10 also has ten classes with 6000 images per
class, each color image being 32× 32 pixels. The original experiments with MNIST and
CIFAR-10 used different experimental methods: MNIST used a single training and test split,
whereas CIFAR-10 used a six-fold cross-validation methodology. In our experiments, we
follow the same experimental methodology for each dataset as was reported in the original
experiments. Consequently, for the MNIST dataset, a simple split was performed with the
training set consisting of 60,000 handwritten digits and our test set of 10,000, and the label
distributions in both the training and test sets are balanced across all ten digits. So, in all
of our experiments, when we report an accuracy on the MNIST data, this is the accuracy
obtained by the model on the single hold-out test set. By contrast, for the CIFAR-10 dataset,
we use a 6-fold cross-validation methodology in each experiment, where each fold contains
exactly 1000 randomly selected images from each class, and the reported accuracy is the
average accuracy of an architecture across these folds.

4.1  Results from the case study

This section presents the results for the 50 epoch, early-stopping, energy-bound, and accu-
racy-bound experiments. For each experiment, dataset, and neural architecture, we present
a table showing the efficiency calculation across model size for each architecture under the
convergence criteria specified in that experiment (using Equation 3). Note that in supple-
mentary material we present, for each experiment, plots of the training and test accuracy by
training epoch for each model.7

4.1.1  50 epoch experiment

In this first experiment, the stopping criterion for training was set at 50 epochs. For each
architecture (LeNet and BCNN), the experiment is run a total of 10 times per architecture:
once for each of the 5 model sizes (LeNet-1 to LeNet-5, and BCNN-1 to BCNN-5) on

6 https://unix-talk.com/TastyPancakes/bayesiancnn.git, has all the author’s code for the experiments.
7 All data in the tables from Section 4, and Section 5, is released at: Open Science Foundation

1 3

Page 11 of 33  349

https://osf.io/qw7rj/?view_only=56f77a9e6a8245048b2531c9d3a076b0
https://osf.io/qw7rj/?view_only=56f77a9e6a8245048b2531c9d3a076b0
https://osf.io/2jd85/?view_only=9abd36ef80b6467eabaaed3bcb983031

E. Cueto-Mendoza, J. Kelleher

both the datasets (MNIST and CIFAR). During each run of the experiment, we repeatedly
recorded the energy being consumed and the amount of memory (GPU and RAM) being
used (recorded as model size (MiB) size in RAM and GPU memory).

Table 3 and Table 4 show the efficiency calculation using a convergence criterion of 50
epochs. Note that for the CIFAR dataset, we use a six-fold cross-validation methodology.
So for this dataset, the accuracy reported for each model size i (Acci) in Table 4 is the aver-
age accuracy for that model size across the six validation sets after training has converged.

4.1.2  Early-stopping experiment

This experiment has the same design as the 50 epoch experiment presented above, with a
single change in the convergence criteria used for training; in this experiment, we use early-
stopping criteria for accuracy.

For the MNIST dataset, Table 5 lists the efficiency calculation using Equation 3. For
CIFAR Table 6 presents the efficiency calculation using Equation 3.

Table 3  MNIST compute for the 50 epochs experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 50 0.97× 10−1 2.08× 105 4.67× 10−6 2.59× 10−6

BCNN-2 50 9.78× 10−1 4.18× 105 2.34× 10−6

BCNN-3 50 9.77× 10−1 4.64× 105 2.11× 10−6

BCNN-4 50 9.77× 10−1 5.00× 105 1.95× 10−6

BCNN-5 50 9.76× 10−1 5.14× 105 1.90× 10−6

LeNet-1 50 9.91× 10−1 0.97× 105 10.15× 10−6 8.09× 10−6

LeNet-2 50 9.93× 10−1 0.90× 105 11.02× 10−6

LeNet-3 50 9.94× 10−1 1.45× 105 6.83× 10−6

LeNet-4 50 9.95× 10−1 1.52× 105 6.52× 10−6

LeNet-5 50 9.94× 10−1 1.67× 105 5.94× 10−6

Table 4  CIFAR compute for the 50 epochs experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 50 4.35× 10−1 2.87× 105 1.51× 10−6 1.54× 10−6

BCNN-2 50 4.93× 10−1 3.09× 105 1.59× 10−6

BCNN-3 50 5.12× 10−1 3.29× 105 1.55× 10−6

BCNN-4 50 5.24× 10−1 3.41× 105 1.54× 10−6

BCNN-5 50 5.24× 10−1 3.44× 105 1.52× 10−6

LeNet-1 50 6.35× 10−1 0.78× 105 8.13× 10−6 7.78× 10−6

LeNet-2 50 7.18× 10−1 0.84× 105 8.47× 10−6

LeNet-3 50 7.71× 10−1 0.89× 105 8.66× 10−6

LeNet-4 50 7.88× 10−1 0.99× 105 7.91× 10−6

LeNet-5 50 7.96× 10−1 1.39× 105 5.72× 10−6

1 3

349  Page 12 of 33

A framework for measuring the training efficiency of a neural…

4.1.3  Energy bound experiment

In this experiment, the convergence criterion used to stop training was when the energy
samples recorded for a training run on an architecture cumulatively summed up to 100,000
W. Apart from this, the design of the experiment is the same as those reported in the previ-
ous two sections.

Mirroring the results from the previous experiments, for the MNIST dataset, Table 7
lists the efficiency calculation using Equation 3. Similarly, for CIFAR, Table 8 presents the
efficiency calculation using Equation 3. Note that some of the values for total energy listed
in the results for this experiment are above the training convergence criterion of 100,000W.
These values are correct values from the experiment. The reason for these values is that
although we sample throughout the training process (the average sampling rate for energy
was 973 per second for the NVIDIA system and 1052 samples per second for the AMD sys-
tem), we perform the check of the cumulative amount of energy consumed during training
at the end of each epoch. Consequently, the energy consumed during a training run exceeds
the stropping threshold if the process crosses that threshold during an epoch.

Table 5  MNIST compute for the early-stopping experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 65 9.67× 10−1 9.19× 105 1.05× 10−6 1.00× 10−6

BCNN-2 21 9.42× 10−1 6.31× 105 1.49× 10−6

BCNN-3 37 9.61× 10−1 9.26× 105 1.04× 10−6

BCNN-4 53 9.64× 10−1 12.21× 105 0.79× 10−6

BCNN-5 65 9.67× 10−1 15.40× 105 0.63× 10−6

LeNet-1 16 9.75× 10−1 0.75× 105 12.83× 10−6 8.77× 10−6

LeNet-2 12 9.79× 10−1 0.59× 105 16.40× 10−6

LeNet-3 56 9.93× 10−1 2.69× 105 3.68× 10−6

LeNet-4 28 9.91× 10−1 2.12× 105 4.65× 10−6

LeNet-5 20 9.90× 10−1 1.58× 105 6.26× 10−6

Table 6  CIFAR compute for the early-stopping experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 61 4.39× 10−1 3.58× 105 1.23× 10−6 1.02× 10−6

BCNN-2 41 4.23× 10−1 3.68× 105 1.15× 10−6

BCNN-3 41 4.40× 10−1 4.66× 105 0.94× 10−6

BCNN-4 21 3.86× 10−1 2.94× 105 1.31× 10−6

BCNN-5 81 4.92× 10−1 1.068× 105 0.46× 10−6

LeNet-1 56 5.93× 10−1 1.64× 105 3.60× 10−6 4.93× 10−6

LeNet-2 40 6.53× 10−1 1.67× 105 3.90× 10−6

LeNet-3 24 6.45× 10−1 0.92× 105 6.96× 10−6

LeNet-4 24 6.65× 10−1 1.18× 105 5.63× 10−6

LeNet-5 28 7.18× 10−1 1.57× 105 4.56× 10−6

1 3

Page 13 of 33  349

E. Cueto-Mendoza, J. Kelleher

4.1.4  Accuracy bound experiment

The convergence criteria used in these experiments was to stop training when a model
obtained a specified accuracy threshold. For the MNIST dataset this accuracy threshold
was set at 99% on the training set, and on the CIFAR dataset (where we used a six-fold
cross-validation methodology) for each fold the training was stopped when the model had
obtained an accuracy threshold of 50% on the training data for that fold8. Our reason for
using a lower accuracy threshold for CIFAR was that an accuracy threshold > 50% required
training to proceed for more time than our Collab account allowed, and if this time threshold
was exceeded, then the training was interrupted, and results were lost.

For MNIST Table 9 lists the efficiency calculation using Equation 3. Similarly, for
CIFAR, Table 10 presents the efficiency calculation using Equation 3.

8 See the final paragraph of Section 4 for details of the training and test split used for MNIST and the six-fold
cross-validation methodology used for CIFAR.

Table 7  MNIST compute for the energy bound experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 19 9.44× 10−1 1.46× 105 6.43× 10−6 6.18× 10−6

BCNN-2 13 9.33× 10−1 1.62× 105 5.73× 10−6

BCNN-3 10 9.19× 10−1 1.57× 105 5.83× 10−6

BCNN-4 08 9.06× 10−1 1.43× 105 6.32× 10−6

BCNN-5 06 8.83× 10−1 1.33× 105 6.60× 10−6

LeNet-1 43 9.87× 10−1 1.16× 105 8.47× 10−6 8.48× 10−6

LeNet-2 39 9.90× 10−1 1.16× 105 8.46× 10−6

LeNet-3 27 9.89× 10−1 1.15× 105 8.58× 10−6

LeNet-4 23 9.89× 10−1 1.15× 105 8.60× 10−6

LeNet-5 21 9.89× 10−1 1.19× 105 8.29× 10−6

Table 8  CIFAR compute for the energy bound experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 19 1.40× 10−1 1.49× 105 0.94× 10−6 2.21× 10−6

BCNN-2 14 3.59× 10−1 1.36× 105 2.64× 10−6

BCNN-3 11 3.25× 10−1 1.14× 105 2.85× 10−6

BCNN-4 09 3.07× 10−1 1.31× 105 2.33× 10−6

BCNN-5 07 2.71× 10−1 1.19× 105 2.28× 10−6

LeNet-1 39 5.72× 10−1 1.18× 105 4.83× 10−6 5.17× 10−6

LeNet-2 36 6.44× 10−1 1.15× 105 5.59× 10−6

LeNet-3 32 6.77× 10−1 1.16× 105 5.83× 10−6

LeNet-4 25 6.80× 10−1 1.17× 105 5.77× 10−6

LeNet-5 21 6.71× 10−1 1.75× 105 3.83× 10−6

1 3

349  Page 14 of 33

A framework for measuring the training efficiency of a neural…

5  Analysis of experimental data

This section presents the analysis of the data obtained from our experiments regarding how
Efficiency behaves as training progresses, the relationship between model size and Effi-
ciency, and the relative overall Efficiency of the LeNet and BCNN architectures.

5.1  Efficiency as training progresses

Figure 5 and Figure 6 plot for each of the models trained (LeNet sizes 1–5, and BCNN sizes
1–5) how the Efficiency of the model changes across epochs as training progresses. We base
this analysis solely on the results from the 50 epoch experiment because, in this experiment,
we have collected the same number of epochs for all sizes and both architectures. As a
result, the x-axis, which records the training epochs, goes from 0 to 50 in both figures. The
y-axis in the graph plots the Efficiency of a model at a given epoch as defined by Equation 2.
This definition of Efficiency is the ratio of a model’s performance on a validation set after
epoch i of training to the cumulative energy expended in training the model up to that point
in training.

Table 9  MNIST compute for the accuracy bound experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 72 9.70× 10−1 13.32× 105 0.73× 10−6 1.74× 10−6

BCNN-2 69 9.71× 10−1 14.05× 105 0.69× 10−6

BCNN-3 69 9.70× 10−1 14.81× 105 0.66× 10−6

BCNN-4 77 9.72× 10−1 1.60× 105 6.06× 10−6

BCNN-5 80 9.72× 10−1 17.06× 105 0.57× 10−6

LeNet-1 12 9.70× 10−1 0.57× 105 16.86× 10−6 26.10× 10−6

LeNet-2 08 9.73× 10−1 0.44× 105 22.02× 10−6

LeNet-3 06 9.74× 10−1 0.36× 105 26.73× 10−6

LeNet-4 06 9.75× 10−1 0.36× 105 26.47× 10−6

LeNet-5 04 9.75× 10−1 0.25× 105 38.44× 10−6

Table 10  CIFAR compute for the accuracy bound experiment
Model Epochs Acci

∑
samples[W] Eff (Acc,W, epoch) Eff (arch, size)

BCNN-1 51 4.24× 10−1 5.78× 105 0.73× 10−6 0.68× 10−6

BCNN-2 37 4.17× 10−1 4.98× 105 0.84× 10−6

BCNN-3 30 4.14× 10−1 5.32× 105 0.78× 10−6

BCNN-4 36 4.21× 10−1 8.07× 105 0.52× 10−6

BCNN-5 33 4.24× 10−1 8.32× 105 0.51× 10−6

LeNet-1 7 4.22× 10−1 0.60× 105 7.00× 10−6 10.35× 10−6

LeNet-2 4 4.29× 10−1 0.37× 105 11.55× 10−6

LeNet-3 4 4.63× 10−1 0.43× 105 10.65× 10−6

LeNet-4 3 4.42× 10−1 0.33× 105 13.24× 10−6

LeNet-5 3 4.68× 10−1 0.50× 105 9.30× 10−6

1 3

Page 15 of 33  349

E. Cueto-Mendoza, J. Kelleher

For these results, we observe that Efficiency decreases as time progresses. These plots
show that although we would expect the performance of a model to improve as training
progresses, the rate of improvement tends to decrease as training progresses. After a cer-
tain amount of training (epochs), performance plateaus and further training result in energy

Fig. 6  Efficiency per epoch (CIFAR dataset) of the 50 epoch experiment

Fig. 5  Efficiency per epoch (MNIST dataset) of the 50 epoch experiment

1 3

349  Page 16 of 33

A framework for measuring the training efficiency of a neural…

being expended. Notice that the plots in Figure 5 drop more steeply than those in Figure 6.
This reflects the fact that on the more straightforward MNIST dataset, model performance
saturates very early on, whereas, on the more complex CIFAR dataset, it takes more epochs
for the models to reach this performance saturation point.

The relative difficulty of the two datasets is also reflected in the differences in the y-axis
scales between Figure 5 and Figure 6. The maximum Efficiency recorded for any models
at any epoch on MNIST is above 0.02, whereas on CIFAR, it is below 0.01. The primary
driver of this difference is that on MNIST, the models achieved accuracies of 0.97–0.99 (see
Table 3), whereas on CIFAR, the range of accuracies of the BCNN models is 0.43–0.53 and
the LeNet models 0.66–0.80 (see Table 4).

Finally, comparing Figure 5 with Figure 6, it is apparent that the gap between the plots
for the LeNet models and the BCNN models is more significant in Figure 6. This sug-
gests that as a learning task becomes more complex, differences in Efficiency become more
pronounced.

5.2  Relationship between stopping criteria and efficiency, and model size and
efficiency

The results presented in Tables 3– 10 reveal significant variation in architecture efficiency
across different stopping criteria. Note that this analysis considers the variation in Efficiency
by model size. This variation is particularly noticeable in the MNIST dataset. Table 11 sum-
marises (from Tables 3, 5, 7 and 9) the efficiency results for both architectures across the
four stopping criteria on the MNIST dataset. Examining the results for LeNet, the maximum
Efficiency (0.00002610) is obtained using an accuracy bound stopping criterion, and the
minimum Efficiency (0.00000809) is recorded using the 50 epoch criterion. This means that
LeNet is, averaging across model sizes, approximately 3.22 times more efficient on MNIST
when the accuracy bound criterion is applied compared to the 50 epoch criterion. A similar
variation in Efficiency across stopping criteria is observable for the BCNN architecture.
However, the criteria that result in the maximum and minimum values differ. For the BCNN
architecture on MNIST, using an energy bound stopping criterion gives the maximum Effi-
ciency of 0.00000618 compared to the minimum Efficiency of 0.00000100 using early
stopping, a variation in Efficiency of 6.18 times. More generally, we observe a complex
non-linear interaction across architectures and convergence criteria, as shown in Figure 7,
which plots the LeNet versus BCNN efficiency scores by convergence criteria. The within-
architecture efficiency variation across stopping criteria and the complex interactions across
architectures and stopping criteria highlight the need to include multiple stopping criteria
within the efficiency framework.

Analyzing the relationship between stopping criteria and Efficiency in more detail, Fig-
ure 8 and Figure 9 visually summarizes the efficiency analysis results from across the 50

Table 11  MNIST mean efficiency scores for LeNet and BCNN by stopping criteria
LeNet BCNN

50 Epoch 8.09× 10−6 2.59× 10−6

Early Stopping 8.77× 10−6 1.00× 10−6

Energy Bounded 8.48× 10−6 6.18× 10−6

Acc. Bounded 26.10× 10−6 1.74× 10−6

1 3

Page 17 of 33  349

E. Cueto-Mendoza, J. Kelleher

epoch (50), early stopping (est), energy bound (wat), and accuracy bound (acc) experiments.
In these figures, the x-axis indicates the stopping criteria of the models being assessed, the
y-axis is the efficiency results per model size obtained from Equation 3, there are five model
sizes for each architecture in each experiment, and so each box plot contains five efficiency
results, and one box plot per stopping criteria.

Both Figure 8 and Figure 9 show that different stopping criteria profoundly influence Effi-
ciency. Variations in stopping criteria affect both the width of the distributions of efficiencies
for each architecture and also the distance between these distributions. For example, stop-
ping criteria that bound energy—the energy bound (wat) and the 50 epoch experiments—

Fig. 8  Efficiency for the 4 experiments (MNIST dataset)

Fig. 7  LeNet versus BCNN efficiency on MNIST by stopping criteria

1 3

349  Page 18 of 33

A framework for measuring the training efficiency of a neural…

appear to squash the distributions of the model efficiencies of each architecture, whereas
stopping criteria based on accuracy bounds—the early stopping (est) and accuracy bound
(acc) experiments—the efficiency distributions are wider, particularly for the LeNet model.
This energy bound versus accuracy bound categorization of stopping criteria is also predic-

Fig. 10  Efficiency for the 4 experiments (MNIST dataset)

Fig. 9  Efficiency for the 4 experiments (CIFAR dataset)

1 3

Page 19 of 33  349

E. Cueto-Mendoza, J. Kelleher

tive in terms of the gap between the LeNet and BCNN distributions, with accuracy bound
experiments (est and acc) exhibiting a more significant gap between the distributions for the
architectures as compared with the energy bound (wat and 50 epoch) experiments.

This suggests a trade-off between these two categories of stopping criteria for measuring
architecture efficiency. Energy-bound experiments generate narrow efficiency distributions
across model sizes, resulting in narrow confidence intervals around the mean Efficiency
for a given architecture based on these experiments. However, this relatively more robust
confidence is offset by the smaller gap between the efficiency distribution for each architec-
ture. By contrast, the accuracy-bound experiments are more sensitive to differences between
architectures in terms of Efficiency. However, the broader distribution per architecture
results in wider confidence intervals around the mean Efficiency. In order to balance this
trade-off, we suggest using both types of stopping criteria when measuring Efficiency (as
done by Equation 4).

The squashing of the distributions when energy-bound stopping criteria are used sug-
gests that for each architecture, a fixed amount of energy per unit of accuracy is obtained
independent of model size. In other words, when the stopping criteria are bound to energy,
varying model size will not impact the overall architecture efficiency on a learning task.
However, when the stopping criteria are based on accuracy, varying the model size will
significantly impact the overall architecture efficiency of a learning task.

Figure 10 and Figure 11 show how different model sizes compare to each other. The Effi-
ciency of the LeNet architecture is particularly sensitive to size. However, there is no clear
trend between size and Efficiency. The Efficiency of the BCNN architecture is less sensitive
to size variation, so the visualizations are less helpful for this architecture. However, exam-
ining efficiency results reported in Tables 3, 5, 7, 9, and Tables 4, 6, 8, 10 reveals that there
is no apparent trend between model size and Efficiency.

Fig. 11  Efficiency for the 4 experiments (CIFAR dataset)

1 3

349  Page 20 of 33

A framework for measuring the training efficiency of a neural…

5.3  Efficiency of the LeNet architecture against BCNN architecture

Table 12 presents the overall efficiency calculations for the LeNet and BCNN architectures
on the MNIST and CIFAR datasets. These efficiencies are the mean Efficiency of architec-
ture on a dataset across the multiple model sizes and convergence criteria (see Equation 4).
On both datasets, LeNet is more efficient than the BCNN architecture.

Comparing the Efficiency of each architecture across the datasets, we can see that both
architectures are more efficient on MNIST than on CIFAR. This is due to the relative com-
plexity of CIFAR versus MNIST. In order to check how the Efficiency of an architecture
varies across datasets, we take the ratio between the Efficiency of an architecture on one
dataset to its Efficiency on another. In this calculation, we take Efficiency on MNIST as
the numerator because this is the dataset on which both architectures have the highest Effi-
ciency. For LeNet, this calculation is 12.86/7.06 = 1.822, i.e., the LeNet architecture is
1.822 times more efficient on MNIST than on CIFAR. For BCNN, this calculation gives
us 2.88/1.36 = 2.116, i.e., the BCNN architecture is 2.116 times more efficient on MNIST
than CIFAR. These two ratios are close. However, the ratio for LeNet is smaller than for
BCNN 1.822 < 2.116, indicating that the LeNet architecture has a smaller decrease in Effi-
ciency between MNIST and CIFAR than BCNN. Another perspective on these results is to
take the ratio between the two architectures on each dataset. In this case, we use the Effi-
ciency of the LeNet architecture as the numerator because this architecture has the highest
Efficiency on both datasets. For MNIST, this calculation is 12.86/2.88 = 4.466, and for
CIFAR, this calculation is 7.06/1.36 = 5.185. These calculations indicate that on MNIST,
LeNet is 4.466 times more efficient than BCNN, whereas on CIFAR, LeNet is 5.185 times
more efficient than BCNN. In other words, as the dataset becomes more complex (moving
from MNIST to CIFAR), the difference in Efficiency between LeNet and BCNN becomes
larger (5.185 > 4.466).

To summarise, the CIFAR dataset is the more complex dataset, LeNet is the more effi-
cient architecture on both datasets, and when the learning task switches to a more complex
dataset, the relative differences in Efficiency between the architectures become more exten-
sive (the less efficient architecture has a more considerable relative drop in Efficiency, and
the ratio between the efficiencies of the architectures increases as the task becomes more
difficult). This observation relating the difficulty of the task and changes in the Efficiency
of an architecture aligns with what can be observed in Figure 5 and Figure 6 where there is
a more significant gap between the LeNet and BCNN plots lines on CIFAR as compared to
the plot lines on MNIST.

This comparison of Bayesian Convolutional Neural Networks (BCNNs) and Convolu-
tional Neural Networks (CNNs) highlights a trade-off in training efficiency. BCNNs seek to
enhance generalizability by learning a distribution over models rather than fitting a single
model to the data (thereby reducing the risk of overfitting) (MacKay 1995). However, learn-

Table 12  Efficiency (Eff (arch, convergence)) of BCNN and LeNet architectures on the MNIST and
CIFAR datasets

MNIST CIFAR MNIST/CIFAR
LeNet 12.86× 10−6 7.06× 10−6 1.82
BCNN 2.88× 10−6 1.36× 10−6 2.11
LeNet/BCNN 4.46 5.18

1 3

Page 21 of 33  349

E. Cueto-Mendoza, J. Kelleher

ing this distribution requires the repeated sampling of weights during training, which incurs
an extra cost in terms of energy. For BCNNs to achieve greater Efficiency than CNNs,
their generalization improvement must outweigh the increased energy costs incurred during
training. Our findings indicate that, for the tasks we have examined, this trade-off results in
BCNNs being less efficient than CNNs in terms of accuracy versus energy.

5.4  On the risks of over-training (over-fitting)

As discussed in Section 5.1, the Efficiency of a neural architecture tends to decay as train-
ing progresses; this trend is evident in Figure 5 and Figure 6 where for both architectures
on both datasets efficiency consistently reduces as training progresses. This trend reflects
that as training progresses, model performance saturates after a certain point, and further
training expends more energy with no gain in performance. An implication of this is that if a
neural model is trained for an extreme number of epochs, then the training efficiency of that
architecture will tend to zero, and furthermore, in such a scenario, comparing the Efficiency
of different neural architectures is no longer sensible because all architectures will have an
efficiency of zero. Put another way, the measurement of the training efficiency for a neural
architecture only makes sense when models are not overtrained.

The most direct definition of overtraining is epochs of training that do not improve model
performance. Another complementary way of identifying when overtraining has occurred
is through the concept of over-fitting. Overfitting occurs when a model learns to perform
well on the training data but fails to generalize to unseen data, compromising its Efficiency.
Overfitting can be checked for by comparing the divergence between a model’s perfor-
mance on training data versus non-training data. To illustrate both overfitting and the impact
of overtraining training efficiency, we extend our 50-epoch experiment to 100 epochs. We
then perform two levels of analysis. First, we check whether the models trained for 100
epochs exhibit overtraining (compared to those trained for 50 epochs). Then, we calculate
the Efficiency of both architectures using the results from the 100-epoch experiment in order
to understand how overtraining can affect training efficiency.

We examine two measures to check whether extending training from 50 to 100 results in
overtraining a model. First, we check whether the extra training resulted in an appreciable
increase in model performance on the test set; if there is no increase in test set performance
between the 50th and 100th epoch, then we deem the 100 epoch model to be overtrained.
Second, suppose a model exhibits an increase in test set performance between the 50th
and 100th epochs. We check for overfitting by comparing the model’s performance on the
training data and the test set. The intuition behind this analysis is that the more significant
the drop in the performance between the training data and a test set, the more likely the
model will be overfitted (and hence overtrained). In more detail, we calculate the difference
between a model’s training and test performance after 50 epochs of training and after 100
epochs of training and then calculate the delta between these differences. This delta in the
differences reveals the extent of divergence between training and test performance caused
by the extra 50 epochs of training. Using this delta metric, we deem a model to be over-
trained if the delta is of a comparable scale to the increase in the test set performance of the
model between the 50th and 100th epochs.

Table 13 presents the performance results used in this analysis. For the 50 and 100 epoch
results, the table presents the model performance on the training set, the test set, and the

1 3

349  Page 22 of 33

A framework for measuring the training efficiency of a neural…

difference between these results. The rightmost two columns of the table (columns A and
B) list the difference in test performance between 50 and 100 epochs (calculated as test
performance at 100 epochs minus test performance at 50 epochs) and the delta in the dif-
ferences between training and test performance between 50 and 100 epochs (calculated as
the difference between training and test performance at 100 epochs minus the difference
between training and test performance at 50 epochs). In order to highlight meaningful dif-
ferences in columns A and B, we round the results in these columns to two decimal places.
If we examine column A, we see that on the MNIST dataset, none of the LeNet models
obtain a meaningful increase in test performance between the 50th and 100th epochs. As a
result, we consider the LeNet 100 epoch models to be overtrained. The BCNN models on
MNIST exhibit a slight increase (≈ 0.01 for all models) in test set performance between
the 50th and 100th epoch. However, this is accompanied by a comparable increase in the
divergence between training and test set performance, so we also deem these BCNN models
to be overtrained. Switching focus to the CIFAR dataset, all of the LeNet models exhibit an
increase in test performance between the 50th and 100th epoch. However, this is accom-
panied by a comparable (and in 4 out of 5 cases more prominent) increase in divergence
between training and test performance, so we deem these 100 epoch LeNet CIFAR models
to be overtrained. Finally, the BCNN models on the CIFAR dataset all exhibit a relatively
significant increase in test performance between the 50th and 100th epoch, accompanied by
a comparably slight increase in divergence between training and test performance, so we

Table 13  An analysis of model over-fitting after 100 epochs. Column A lists the per-model increase in test
set performance between 50 and 100 epochs (Test accuracy after 100 epochs minus Test accuracy after 50
epochs). Column B lists the per model delta in the training and test difference between 50 and 100 epochs
(Difference at 100 minus Difference at 50)

50 epoch 100 epoch
MNIST Train Test Difference Train Test Difference A B
LeNet-1 0.99071102 0.98506103 0.00564999 0.99524102 0.98694648 0.00829454 0.00 0.00
LeNet-2 0.99438373 0.98787305 0.00651068 0.99708797 0.98906119 0.00802678 0.00 0.00
LeNet-3 0.99525017 0.99059342 0.00465675 0.99761469 0.99154647 0.00606822 0.00 0.00
LeNet-4 0.99565284 0.99153448 0.00411836 0.99782642 0.99276667 0.00505975 0.00 0.00
LeNet-5 0.99629737 0.99057988 0.00571749 0.99814869 0.99128859 0.00686010 0.00 0.00
BCNN-1 0.95748047 0.96715924 -0.00967877 0.97338431 0.97560624 -0.00222193 0.01 0.01
BCNN-2 0.96626704 0.97242924 -0.0061622 0.97819731 0.97928500 -0.00108769 0.01 0.01
BCNN-3 0.96513256 0.97038611 -0.00525355 0.97763173 0.97727584 0.00035589 0.01 0.01
BCNN-4 0.96491689 0.96950655 -0.00458966 0.97758249 0.97698637 0.00059612 0.01 0.01
BCNN-5 0.96142537 0.96888013 -0.00745476 0.97537774 0.97666603 -0.00128829 0.01 0.01
CIFAR Training Testing Difference Training Testing Difference
LeNet-1 0.59485669 0.57332227 0.02153442 0.65716212 0.61330469 0.04385743 0.04 0.02
LeNet-2 0.70195860 0.64035352 0.06160508 0.76755101 0.66876953 0.09878148 0.03 0.04
LeNet-3 0.76978155 0.68373047 0.08605108 0.83391819 0.70827051 0.12564768 0.02 0.04
LeNet-4 0.80343700 0.69496875 0.10846825 0.86194093 0.71430078 0.14764015 0.02 0.04
LeNet-5 0.82096686 0.69295508 0.12801178 0.88013734 0.71263281 0.16750453 0.02 0.04
BCNN-1 0.33502488 0.33920898 -0.0041841 0.43809589 0.43243262 0.00566327 0.09 0.01
BCNN-2 0.44060957 0.43411328 0.00649629 0.50035355 0.48572559 0.01462796 0.05 0.01
BCNN-3 0.45429289 0.44414062 0.01015227 0.52243183 0.50286328 0.01956855 0.06 0.01
BCNN-4 0.45937550 0.45482617 0.00454933 0.53284086 0.51709375 0.01574711 0.06 0.01
BCNN-5 0.46070014 0.45722070 0.00347944 0.53233031 0.51748633 0.01484398 0.06 0.01

1 3

Page 23 of 33  349

E. Cueto-Mendoza, J. Kelleher

deem these models not to be overtrained. In summary, our analysis of overtraining after 100
epochs categorized all the LeNet and BCNN MNIST models, the LeNet CIFAR models as
overtrained, and the BCNN CIFAR models as not overtrained.

To analyze how overtraining can affect the measurement of training efficiency, we used
Equation 3 to calculate the Efficiency of both architectures on both datasets based solely on
the results of the 100 epoch experiment. The results of these calculations are presented in
Table 14. We are comparing these results with those listed in Table 12; a consistent find-
ing across both sets of results is that LeNet is more efficient than BCNN on both datasets.
Also, for three out of the four categories of models (LeNet and BCNN on MNIST, and
LeNet on CIFAR), the training efficiency drops as compared with Table 12, this is in line
with what would be expected from the trends exhibited in Figure 5 and Figure 6 discussed
in Section 5.1. The one exception to this trend is the BCNN architecture on CIFAR, which
slightly increases Efficiency. This exception aligns with the findings of our overtraining
analysis presented above. It suggests that if we were to use the efficiency scores presented
in Table 14 to compare the efficiency scores of LeNet and BCNN, we would be compar-
ing overtrained LeNet models against BCNN models, some of which are overtrained (i.e.,
BCNN MNIST) and some of which are not (i.e., BCNN CIFAR). If we run this (incorrect)
comparison through to see how overtraining can affect the overall analysis, we get very
different conclusions from those we reached from analyzing Table 12. For example, let
us compare the efficiency ratio for each architecture across the two datasets (i.e., MNIST/
CIFAR). We see that in Table 14 for LeNet, this ratio (1.042) is greater than the BCNN ratio
(0.367). Similarly, if we compare the efficiency ratio between the two architectures on each
dataset (LeNet/BCNN), we see that this ratio is more significant for MNIST (3.108) than for
CIFAR (1.095). In both cases, the relative size of these ratios has flipped as compared with
the results reported in Table 12. Taking the ratios in Table 14 at face value, we would (erro-
neously) conclude that as the learning task becomes more complex (MNIST→CIFAR),
the more efficient architecture (LeNet) has a more significant drop in Efficiency and that
the difference in Efficiency between the two architectures becomes smaller. However, the
underlying phenomenon driving these results is overtraining. Consequently, when assess-
ing the training efficiency of neural architecture, it is essential to consider overtraining as a
factor in the analysis and to be cognizant that overtraining can occur at different points in
training for different models on a given training task. One strategy to mitigate the risk of
overtraining impacting efficiency analysis is to average over multiple convergence criteria,
as we have done in this work.

Table 14  Efficiency (Eff (arch, convergence)) of BCNN and LeNet architectures on the MNIST and
CIFAR datasets for models trained for 100 epochs

MNIST CIFAR MNIST/CIFAR
LeNet 2.05× 10−6 1.97× 10−6 1.04
BCNN 0.66× 10−6 1.80× 10−6 0.36
LeNet/BCNN 3.10 1.09

1 3

349  Page 24 of 33

A framework for measuring the training efficiency of a neural…

6  Conclusions

We present a framework for measuring the training efficiency of a neural architecture on a
learning task. This framework involves running multiple experiments but does not require
hardware profiling. Moreover, the framework enables a multifaceted analysis of the training
efficiency of a neural architecture, including the analysis of how the Efficiency of a model
varies across training epochs (Equation 2), how the Efficiency of a neural architecture varies
with model size (Equation 3) and the overall Efficiency of a neural architecture on a learning
task taking into account variations in model size and stopping criteria (Equation 4). Further-
more, the ability to calculate an overall efficiency for a neural architecture on a learning task
enables the analysis of the relative Efficiency of different neural architectures on a learning
task and how the relative Efficiency of neural architectures varies across learning tasks.

Applying the framework to the case study comparing CNNs with BCNNs on MNIST
and CIFAR, we find that the Efficiency of both architectures on both learning tasks changes
substantially as training progresses (see Section 5.1), with all models exhibiting a drop
in Efficiency across epochs. The analysis in Section 5.2 reveals a non-linear relationship
between stopping criteria and training Efficiency and model size and training Efficiency. We
observed significant variation in training efficiency across different stopping criteria for both
architectures. This variation across stopping criteria illustrates the need for multiple stop-
ping criteria within the efficiency framework. Moreover, including multiple convergence
criteria within the framework mitigates the risk of overtraining affecting the analysis of
the training efficiency of neural architectures (see Section 5.4). More generally, we believe
that the potential confounding effect of overtraining on neural training efficiency research
is not given sufficient attention in the literature. To take a recent example, Kaddour et al.
(2023) report, as a key finding, that the efficiency improvements obtained by several train-
ing regime modifications vanished when the compute budget allowed for training increases.
However, in their analysis, the authors did not consider that this finding may result from
overtraining occurring at different points under different training regimes. Indeed, the more
efficient a training regime is, the earlier in the training process overtraining will begin, in
which case, using a fixed compute budget as a convergence criterion is likely to result in
more efficient training regimes overtraining for longer. So, the extra overtraining will negate
the efficiency benefits of these regimes. This example illustrates how neglecting the impact
of overtraining can directly undermine conclusions drawn from an experiment focused on
training efficiency. Regarding the relationship between model size and training Efficiency,
we find that intermediate-size models have the best Efficiency for both architectures and
learning tasks. This variation in Efficiency with respect to model size highlights the need to
include model size within the efficiency frameworks.

In terms of overall neural architecture training efficiency on a learning task, we find
that CNNs are more efficient than BCNNs on both MNIST and CIFAR and that the differ-
ence in Efficiency becomes more prominent as the learning task becomes more complex
(see Section 5.3). To test for interactions with hardware, we replicated our experiments and
analysis on a second hardware setup. The description of the hardware and the results are
presented in A. The same trends are evident in the results obtained from these other experi-
ments. Overall, we argue that to measure the training efficiency of neural architectures, it
is important to consider efficiency variation across model size, the stopping criterion used,
and the learning task. In future work, we will explore the application of the framework to

1 3

Page 25 of 33  349

E. Cueto-Mendoza, J. Kelleher

other neural architectures and training paradigms. For example, there is a growing body
of work exploring parameter-efficient fine-tuning, and applying this framework to these
methods could reveal important interactions between the neural architecture and the training
regimen. Another potential area of future work emerges from our findings that training effi-
ciency and model size have a non-linear relationship. Given this finding, it may be helpful
to consider how Efficiency, model size, and model compression methods interact9.

9 Supplementary material is available at the Open Science Foundation.

AlmaLinux 9.2 (Turquoise Kodkod) x86_64
Kernel: 5.14.0284.11.1.el9_2.x86_64
CPU: AMD Ryzen 9 5900HX with Radeon Graphics (16) @
3.300GHz
GPU: AMD ATI Radeon Vega Series / Radeon Vega Mobile Series
GPU: AMD ATI Radeon RX 6700/6700 XT/6750
XT/6800M/6850M XT
Memory: 3251 MiB / 31496 MiB
Driver version: 6.1.5
ROCm version: 5.4.2
Python version: 3.9.16
Pytorch version: 2.0.1
powerstat version: 0.03.03
radeontop version: 1.00

Table 15  Hardware
characteristics

1 3

349  Page 26 of 33

https://osf.io/qw7rj/?view_only=56f77a9e6a8245048b2531c9d3a076b0

A framework for measuring the training efficiency of a neural…

Fig. 13  Box plot for Efficiency per size four experiments (CIFAR dataset)

Fig. 12  Box plot for Efficiency per size four experiments (MNIST dataset)

1 3

Page 27 of 33  349

E. Cueto-Mendoza, J. Kelleher

Fig. 15  Scatter plot for the Efficiency 4 experiments (CIFAR dataset)

Fig. 14  Scatter plot for the Efficiency 4 experiments (MNIST dataset)

1 3

349  Page 28 of 33

A framework for measuring the training efficiency of a neural…

Appendix

Hardware comparison

We replicated our experiments on a second hardware setup to demonstrate our framework’s
generalizability and findings. Table 15 shows the characteristics of this second (AMD) hard-
ware platform. Due to the smaller capabilities of this hardware platform, the training regime
was modified for the CIFAR dataset; instead of using six-fold validation, we used a single
70-30 split on the data. This modification allows the training to be completed on this AMD
hardware without any memory overflow. Apart from this modification, the same training
regimen, architectures, and hyperparameters as described in Section 4 were used in these
experiments.

The experimental data was processed in the same manner as in Section 4.1, obtaining
the following results:

The results from the data collected are similar to the ones presented in Section 5.

Table 16 shows that our results over the MNIST dataset and CIFAR dataset, for both
neural architectures, across both hardware manufacturers seem consistent, i.e., they follow
a similar trend and clearly show that the LeNet architecture is more efficient overall than the
BCNN architecture, similar to Section 5.3.

Figures 12 and Figure 13 follow along the analysis presented in Section 5.2, with Fig-
ure 14 and Figure 15, following a similar trend. These results validate that the Efficiency
reported and the analysis presented are consistent across hardware platforms.

Acknowledgements  This work was conducted with the financial support of the Science Foundation Ireland
Centre for Research Training in Digitally-Enhanced Reality (d-real) under Grant No. 18/CRT/6224.

Declarations

Competing interests  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

Table 16  Efficiency (Eff (arch, convergence)) of BCNN and LeNet architectures on the MNIST and
CIFAR datasets, with AMD hardware

MNIST CIFAR MNIST/CIFAR
LeNet 8.91× 10−6 19.30× 10−6 0.46
BCNN 2.66× 10−6 1.18× 10−6 2.25
LeNet/BCNN 3.35 16.41

1 3

Page 29 of 33  349

E. Cueto-Mendoza, J. Kelleher

licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

AI O AI and compute. https://openai.com/index/ai-and-compute/
Anil R, Gupta V, Koren T, Regan K, Singer Y. (2020) Scalable Second Order Optimization for Deep

Learning. arXiv. Version Number: 2 https://doi.org/10.48550/ARXIV.2002.09018 . https://arxiv.org/
abs/2002.09018

Bartoldson BR, Kailkhura B, Blalock D (2023) Compute-efficient deep learning: algorithmic trends and
opportunities. J Mach Learn Res 24(122):1–77

Bender EM, Gebru T, McMillan-Major A, Shmitchell S (2021) On the Dangers of Stochastic Parrots: Can Lan-
guage Models Be Too Big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pp. 610–623. ACM, Virtual Event Canada https://doi.org/10.1145/3442188.3445922

Cai H, Gan C, Wang T, Zhang Z, Han S (2019) Once-for-All: Train One Network and Specialize it for
Efficient Deployment. arXiv. Version Number: 5 https://doi.org/10.48550/ARXIV.1908.09791 . https://
arxiv.org/abs/1908.09791

Canziani A, Paszke A, Culurciello E (2016) An Analysis of Deep Neural Network Models for Practical
Applications. arXiv. Version Number: 4 https://doi.org/10.48550/ARXIV.1605.07678 . https://arxiv.
org/abs/1605.07678

Charnock T, Perreault-Levasseur L, Lanusse F (2020) Bayesian Neural Networks. In: Arti-
ficial Intelligence for High Energy Physics, pp. 663–713. WORLD SCIENTIFIC, ???
. https://doi.org/10.1142/9789811234033_0018 . https://www.worldscientific.com/doi/
abs/10.1142/9789811234033_0018

Chen A, Dohan D, So D (2023) EvoPrompting: Language Models for Code-Level Neural Architecture
Search. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in
Neural Information Processing Systems, vol. 36, pp. 7787–7817. Curran Associates, Inc., ??? https://
proceedings.neurips.cc/paper_files/paper/2023/file/184c1e18d00d7752805324da48ad25be-Paper-Con-
ference.pdf

Chen X, Liang C, Huang D, Real E, Wang K, Pham H, Dong X, Luong T, Hsieh C-J, Lu Y, Le QV (2023)
Symbolic Discovery of Optimization Algorithms. In: Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems, vol. 36, pp. 49205–
49233. Curran Associates, Inc., ??? https://proceedings.neurips.cc/paper_files/paper/2023/file/9a39b49
25e35cf447ccba8757137d84f-Paper-Conference.pdf

Davis DM, Lucas RF, Wagenbreth G, Tran JJ, Agalsoff J, Gottschalk TD (2009) Flops per watt: Heteroge-
neous-computing’s approach to dod imperatives. In: the Proceedings of the Interservice/Industry Simu-
lation, Training and Education Conference, Orlando, Florida, USA, pp. 1–10

DeWeerdt S. (2020) The carbon footprint of artificial intelligence is growing https://www.anthropocenemag-
azine.org/2020/11/time-to-talk-about-carbon-footprint-artificial-intelligence

Desislavov R, Martínez-Plumed F, Herná¡ndez-Orallo J(2021) Compute and Energy Consumption Trends in
Deep Learning Inferencehttps://doi.org/10.48550/ARXIV.2109.05472 . Publisher: arXiv Version Num-
ber: 2

Ding N, Tang Y, Han K, Xu C, Wang Y (2023) Network Expansion for Practical Training Acceleration, pp.
20269–20279 https://openaccess.thecvf.com/content/CVPR2023/html/Ding_Network_Expansion_for_
Practical_Training_Acceleration_CVPR_202_paper.html

Eschenhagen R, Immer A, Turner R, Schneider F, Hennig P (2023) Kronecker-Factored Approximate Cur-
vature for Modern Neural Network Architectures. In: Oh, A., Naumann, T., Globerson, A., Saenko, K.,
Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems, vol. 36, pp. 33624–
33655. Curran Associates, Inc., ??? https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e
3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf

Frankle J, Carbin M (2018) The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks
https://doi.org/10.48550/ARXIV.1803.03635 . Publisher: arXiv Version Number: 5

Gal Y, Ghahramani Z (2015) Bayesian Convolutional Neural Networks with Bernoulli Approximate Varia-
tional Inference. arXiv. Version Number: 6 https://doi.org/10.48550/ARXIV.1506.02158 . https://arxiv.
org/abs/1506.02158

1 3

349  Page 30 of 33

http://creativecommons.org/licenses/by/4.0/
https://openai.com/index/ai-and-compute/
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2002.09018
https://arxiv.org/abs/2002.09018
https://arxiv.org/abs/2002.09018
https://doi.org/10.1145/3442188.3445922
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1908.09791
https://arxiv.org/abs/1908.09791
https://arxiv.org/abs/1908.09791
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1605.07678
https://arxiv.org/abs/1605.07678
https://arxiv.org/abs/1605.07678
https://doi.org/10.1142/9789811234033_0018
https://www.worldscientific.com/doi/abs/10.1142/9789811234033_0018
https://www.worldscientific.com/doi/abs/10.1142/9789811234033_0018
https://proceedings.neurips.cc/paper_files/paper/2023/file/184c1e18d00d7752805324da48ad25be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/184c1e18d00d7752805324da48ad25be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/184c1e18d00d7752805324da48ad25be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a39b4925e35cf447ccba8757137d84f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/9a39b4925e35cf447ccba8757137d84f-Paper-Conference.pdf
https://www.anthropocenemagazine.org/2020/11/time-to-talk-about-carbon-footprint-artificial-intelligence
https://www.anthropocenemagazine.org/2020/11/time-to-talk-about-carbon-footprint-artificial-intelligence
https://doi.org/10.48550/ARXIV.2109.05472
https://openaccess.thecvf.com/content/CVPR2023/html/Ding_Network_Expansion_for_Practical_Training_Acceleration_CVPR_202_paper.html
https://openaccess.thecvf.com/content/CVPR2023/html/Ding_Network_Expansion_for_Practical_Training_Acceleration_CVPR_202_paper.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6a6679e3d5b9f7d5f09cdb79a5fc3fd8-Paper-Conference.pdf
https://doi.org/10.48550/ARXIV.1803.03635
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1506.02158
https://arxiv.org/abs/1506.02158
https://arxiv.org/abs/1506.02158

A framework for measuring the training efficiency of a neural…

Goldfarb D, Ren Y, Bahamou A (2020) Practical Quasi-Newton Methods for Training Deep Neural Net-
works. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, pp. 2386–2396. Curran Associates, Inc., ??? https://proceed-
ings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf

Gong L, He D, Li Z, Qin T, Wang L, Liu T (2019) Efficient Training of BERT by Progressively Stacking. In:
Proceedings of the 36th International Conference on Machine Learning, pp. 2337–2346. PMLR, ???
ISSN: 2640-3498. https://proceedings.mlr.press/v97/gong19a.html

Han S, Pool J, Tran J, Dally W (2015) Learning both weights and connections for efficient neural network.
Advances in neural information processing systems 28

Horowitz M (2014) 1.1 Computing’s energy problem (and what we can do about it). In: 2014 IEEE Inter-
national Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14. IEEE, San
Francisco, CA, USA (2014). https://doi.org/10.1109/ISSCC.2014.6757323 . http://ieeexplore.ieee.org/
document/6757323/

Huang Y, Cheng Y, Bapna A, Firat O, Chen D, Chen M, Lee H, Ngiam J, Le QV, Wu Y, Chen z (2019) GPipe:
Efficient Training of Giant Neural Networks using Pipeline Parallelism. In: Wallach, H., Larochelle,
H., Beygelzimer, A., AlchÃ-Buc, F.d., Fox, E., Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 32. Curran Associates, Inc., ??? . https://proceedings.neurips.cc/paper_files/
paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf

Jiang AH, Wong DL-K, Zhou G, Andersen DG, Dean J, Ganger GR, Joshi G, Kaminksy M, Kozuch M, Lip-
ton ZC, Pillai P (2019) Accelerating Deep Learning by Focusing on the Biggest Losers. arXiv. Version
Number: 1 https://doi.org/10.48550/ARXIV.1910.00762 . https://arxiv.org/abs/1910.00762

Jurj SL, Opritoiu F, Vladutiu M (2020) Environmentally-Friendly Metrics for Evaluating the Perfor-
mance of Deep Learning Models and Systems. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T.,
Chan, J.H., King, I. (eds.) Neural Information Processing, pp. 232–244. Springer, Cham https://doi.
org/10.1007/978-3-030-63836-8_20

Kaddour J, Key O, Nawrot P, Minervini P, Kusner MJ (2023) No Train No Gain: Revisiting Efficient Train-
ing Algorithms For Transformer-based Language Models. In: Oh, A., Naumann, T., Globerson, A.,
Saenko, K., Hardt, M., Levine, S. (eds.) Advances in Neural Information Processing Systems, vol. 36,
pp. 25793–25818. Curran Associates, Inc., ??? https://proceedings.neurips.cc/paper_files/paper/2023/fil
e/51f3d6252706100325ddc435ba0ade0e-Paper-Conference.pdf

Kelleher JD (2019) Deep Learning. MIT Press, ??? Google-Books-ID: b06qDwAAQBAJ
Kelleher JD, Namee BM, D’Arcy, A (2020) Fundamentals of Machine Learning for Predictive Data Analyt-

ics, Second Edition: Algorithms, Worked Examples, and Case Studies. MIT Press, ??? . Google-Books-
ID: UM_tDwAAQBAJ

Kingma DP, Ba J (2014) Adam: A Method for Stochastic Optimization. arXiv. Version Number: 9 https://doi.
org/10.48550/ARXIV.1412.6980 . https://arxiv.org/abs/1412.6980

Kitaev N, Kaiser L, Levskaya A (2020) Reformer: The Efficient Transformer. arXiv. Version Number: 2
https://doi.org/10.48550/ARXIV.2001.04451 . https://arxiv.org/abs/2001.04451

Krizhevsky A. Learning Multiple Layers of Features from Tiny Images
LeCun Y, Cortes C, Burges C MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris

Burges. https://yann.lecun.com/exdb/mnist/
Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition.

Proceed IEEE 86(11):2278–2324
Li T, John LK (2003) Run-time modeling and estimation of operating system power consumption. In: Pro-

ceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 160–171. ACM, San Diego CA USA https://doi.org/10.1145/781027.781048

Li D, Chen X, Becchi M, Zong Z (2016) Evaluating the Energy Efficiency of Deep Convolutional Neural
Networks on CPUs and GPUs. In: 2016 IEEE International Conferences on Big Data and Cloud Com-
puting (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Com-
munications (SustainCom) (BDCloud-SocialCom-SustainCom), pp. 477–484 . https://doi.org/10.1109/
BDCloud-SocialCom-SustainCom.2016.76 . https://ieeexplore.ieee.org/abstract/document/7723730

Li Z, Wallace E, Shen S, Lin K, Keutzer K, Klein D, Gonzalez J (2020) Train Big, Then Compress: Rethink-
ing Model Size for Efficient Training and Inference of Transformers. In: Proceedings of the 37th Inter-
national Conference on Machine Learning, pp. 5958–5968. PMLR, ??? ISSN: 2640-3498. https://
proceedings.mlr.press/v119/li20m.html

Liu H, Li Z, Hall D, Liang P, Ma T (2023) Sophia: A Scalable Stochastic Second-order Optimizer for Lan-
guage Model Pre-training. arXiv. Version Number: 4 https://doi.org/10.48550/ARXIV.2305.14342 .
https://arxiv.org/abs/2305.14342

Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning Efficient Convolutional Networks Through
Network Slimming, pp. 2736–2744 https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learn-
ing_Efficient_Convolutional_ICCV_2017_paper.html

1 3

Page 31 of 33  349

https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/192fc044e74dffea144f9ac5dc9f3395-Paper.pdf
https://proceedings.mlr.press/v97/gong19a.html
https://doi.org/10.1109/ISSCC.2014.6757323
http://ieeexplore.ieee.org/document/6757323/
http://ieeexplore.ieee.org/document/6757323/
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/093f65e080a295f8076b1c5722a46aa2-Paper.pdf
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1910.00762
https://arxiv.org/abs/1910.00762
https://doi.org/10.1007/978-3-030-63836-8_20
https://doi.org/10.1007/978-3-030-63836-8_20
https://proceedings.neurips.cc/paper_files/paper/2023/file/51f3d6252706100325ddc435ba0ade0e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/51f3d6252706100325ddc435ba0ade0e-Paper-Conference.pdf
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2001.04451
https://arxiv.org/abs/2001.04451
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1145/781027.781048
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://doi.org/10.1109/BDCloud-SocialCom-SustainCom.2016.76
https://ieeexplore.ieee.org/abstract/document/7723730
https://proceedings.mlr.press/v119/li20m.html
https://proceedings.mlr.press/v119/li20m.html
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2305.14342
https://arxiv.org/abs/2305.14342
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html
https://openaccess.thecvf.com/content_iccv_2017/html/Liu_Learning_Efficient_Convolutional_ICCV_2017_paper.html

E. Cueto-Mendoza, J. Kelleher

Lu Z, Cheng R, Jin Y, Tan KC, Deb K (2024) Neural architecture search as multiobjective optimization
benchmarks: problem formulation and performance assessment. IEEE Trans Evol Comput 28(2):323–
337. https://doi.org/10.1109/TEVC.2022.3233364

MacKay DJC (1995) Bayesian neural networks and density networks. Nucl Inst Methods Phys Res Sect
A: Accel Spectrom Detect Assoc Equip 354(1):73–80. https://doi.org/10.1016/0168-9002(94)00931-7

Micikevicius P, Narang S, Alben J, Diamos G, Elsen E, Garcia D, Ginsburg B, Houston M, Kuchaiev O, Ven-
katesh G, Wu H (2017) Mixed Precision Training. arXiv. Version Number: 3 . https://doi.org/10.48550/
ARXIV.1710.03740

Mills KG, Han FX, Zhang J, Changiz Rezaei SS, Chudak F, Lu W, Lian S, Jui S, Niu D (2021) Profiling Neu-
ral Blocks and Design Spaces for Mobile Neural Architecture Search. In: Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. CIKM ’21, pp. 4026–4035. Asso-
ciation for Computing Machinery, New York, NY, USA . https://doi.org/10.1145/3459637.3481944

Mindermann S, Brauner JM, Razzak MT, Sharma M, Kirsch A, Xu W, Höltgen B, Gomez AN, Morisot A,
Farquhar S, Gal Y (2022) Prioritized Training on Points that are Learnable, Worth Learning, and not yet
Learnt. In: Proceedings of the 39th International Conference on Machine Learning, pp. 15630–15649.
PMLR, ??? ISSN: 2640-3498. https://proceedings.mlr.press/v162/mindermann22a.html

Nakkiran P, Kaplun G, Bansal Y, Yang T, Barak B (2021) Sutskever I (2021) deep double descent: where big-
ger models and more data hurt*. J Stat Mech Theory Exp 12:124003. https://doi.org/10.1088/1742-5468/
ac3a74

Pan Y, Yuan Y, Yin Y, Xu Z, Shang L, Jiang X, Liu Q (2023) Reusing Pretrained Models by Multi-linear
Operators for Efficient Training. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine,
S. (eds.) Advances in Neural Information Processing Systems, vol. 36, pp. 3248–3262. Curran Associ-
ates, Inc., ??? https://proceedings.neurips.cc/paper_files/paper/2023/file/09d9a13f7018110cfb439c06b
07940a2-Paper-Conference.pdf

Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter. arXiv. Version Number: 4 https://doi.org/10.48550/ARXIV.1910.01108 . https://
arxiv.org/abs/1910.01108

Schwartz R, Dodge J, Smith NA, Etzioni O (2020) Green AI. Commun ACM 63(12):54–63. https://doi.
org/10.1145/3381831

Strubell E, Ganesh A, McCallum A (2020) Energy and policy considerations for modern deep learn-
ing research. Proceed AAAI Conf Artif Intell 34(09):13693–13696. https://doi.org/10.1609/aaai.
v34i09.7123

Sze V, Chen Y-H, Yang T-J, Emer JS (2020) How to evaluate deep neural network processors: TOPS/W
(alone) considered harmful. IEEE Solid-State Circ Mag 12(3):28–41. https://doi.org/10.1109/
MSSC.2020.3002140

Sze V, Chen YH, Yang TJ, Emer JS (2020) Efficient processing of deep neural networks. Synths Lect Comput
Archit 15(2):1–341. https://doi.org/10.2200/S01004ED1V01Y202004CAC050

Tan M, Le QV (2019) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks https://
doi.org/10.48550/ARXIV.1905.11946 . Publisher: arXiv Version Number: 5

Tan M, Le Q (2021) EfficientNetV2: Smaller Models and Faster Training. In: Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 10096–10106. PMLR, ??? ISSN: 2640-3498. https://
proceedings.mlr.press/v139/tan21a.html

Tay Y, Dehghani M, Bahri D, Metzler D (2020) Efficient Transformers: A Survey. arXiv. Version Number: 3
https://doi.org/10.48550/ARXIV.2009.06732

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention
Is All You Need. arXiv. Version Number: 7 https://doi.org/10.48550/ARXIV.1706.03762

Vinuesa R, Azizpour H, Leite I, Balaam M, Dignum V, Domisch S, Felländer A, Langhans SD, Tegmark M,
Fuso Nerini F (2020) The role of artificial intelligence in achieving the sustainable development goals.
Nat Commun 11(1):233. https://doi.org/10.1038/s41467-019-14108-y

Wang S, Li BZ, Khabsa M, Fang H, Ma H (2020) Linformer: Self-Attention with Linear Complexity. arXiv.
Version Number: 3 https://doi.org/10.48550/ARXIV.2006.04768

Wang Y, Yue Y, Lu R, Liu T, Zhong Z, Song S, Huang G (2023) EfficientTrain: Exploring Generalized Curric-
ulum Learning for Training Visual Backbones, pp. 5852–5864 https://openaccess.thecvf.com/content/
ICCV2023/html/Wang_EfficientTrain_Exploring_Generalized_Curriculum_Learning_for_Training_
Visual_Backbones_ICCV_2023_paper.html

Wang Y, Yue Y, Lu R, Han Y, Song S, Huang G (2024) EfficientTrain++: Generalized Curriculum Learning
for Efficient Visual Backbone Training. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 1–18. https://doi.org/10.1109/TPAMI.2024.3401036

White C, Safari M, Sukthanker R, Ru B, Elsken T, Zela A, Dey D, Hutter F (2023) Neural Architecture Search:
Insights from 1000 Papers. arXiv. Version Number: 2 https://doi.org/10.48550/ARXIV.2301.08727 .
https://arxiv.org/abs/2301.08727

1 3

349  Page 32 of 33

https://doi.org/10.1109/TEVC.2022.3233364
https://doi.org/10.1016/0168-9002(94)00931-7
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1710.03740
https://doi.org/10.48550/ARXIV.1710.03740
https://doi.org/10.1145/3459637.3481944
https://proceedings.mlr.press/v162/mindermann22a.html
https://doi.org/10.1088/1742-5468/ac3a74
https://doi.org/10.1088/1742-5468/ac3a74
https://proceedings.neurips.cc/paper_files/paper/2023/file/09d9a13f7018110cfb439c06b07940a2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/09d9a13f7018110cfb439c06b07940a2-Paper-Conference.pdf
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.1145/3381831
https://doi.org/10.1145/3381831
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1609/aaai.v34i09.7123
https://doi.org/10.1109/MSSC.2020.3002140
https://doi.org/10.1109/MSSC.2020.3002140
https://doi.org/10.2200/S01004ED1V01Y202004CAC050
https://doi.org/10.48550/ARXIV.1905.11946
https://doi.org/10.48550/ARXIV.1905.11946
https://proceedings.mlr.press/v139/tan21a.html
https://proceedings.mlr.press/v139/tan21a.html
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2009.06732
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1038/s41467-019-14108-y
http://arxiv.org/abs/Version
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2006.04768
https://openaccess.thecvf.com/content/ICCV2023/html/Wang_EfficientTrain_Exploring_Generalized_Curriculum_Learning_for_Training_Visual_Backbones_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Wang_EfficientTrain_Exploring_Generalized_Curriculum_Learning_for_Training_Visual_Backbones_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Wang_EfficientTrain_Exploring_Generalized_Curriculum_Learning_for_Training_Visual_Backbones_ICCV_2023_paper.html
https://doi.org/10.1109/TPAMI.2024.3401036
http://arxiv.org/abs/Version
https://doi.org/10.48550/ARXIV.2301.08727
https://arxiv.org/abs/2301.08727

A framework for measuring the training efficiency of a neural…

Wynsberghe A (2021) Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics 1(3):213–
218. https://doi.org/10.1007/s43681-021-00043-6

Xie SM, Santurkar S, Ma T, Liang PS (2023) Data Selection for Language Models via Importance Resam-
pling. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances in
Neural Information Processing Systems, vol. 36, pp. 34201–34227. Curran Associates, Inc., ??? https://
proceedings.neurips.cc/paper_files/paper/2023/file/6b9aa8f418bde2840d5f4ab7a02f663b-Paper-Con-
ference.pdf

Yang T-J, Howard A, Chen B, Zhang X, Go A, Sandler M, Sze V, Adam H (2018) NetAdapt: Platform-Aware
Neural Network Adaptation for Mobile Applications, pp. 285–300 https://openaccess.thecvf.com/con-
tent_ECCV_2018/html/Tien-Ju_Yang_NetAdapt_Platform-Aware_Neural_ECCV_2018_paper.html

Yang Y, Kang H, Mirzasoleiman B (2023) Towards Sustainable Learning: Coresets for Data-efficient Deep
Learning. In: Proceedings of the 40th International Conference on Machine Learning, pp. 39314–39330.
PMLR, ??? ISSN: 2640-3498. https://proceedings.mlr.press/v202/yang23g.html

Ying H, Song M, Tang Y, Xiao S, Xiao Z (2024) Enhancing deep neural network training efficiency and per-
formance through linear prediction. Sci Rep 14(1):15197. https://doi.org/10.1038/s41598-024-65691-0

Zeng S, Sun H, Xing Y, Ning X, Shan Y, Chen X, Wang Y, Yang H (2020) Black Box Search Space Profil-
ing for Accelerator-Aware Neural Architecture Search. In: 2020 25th Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 518–523. IEEE, Beijing, China https://doi.org/10.1109/
ASP-DAC47756.2020.9045179

Zhang M, He Y (2020) Accelerating Training of Transformer-Based Language Models with Progressive
Layer Dropping. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in
Neural Information Processing Systems, vol. 33, pp. 14011–14023. Curran Associates, Inc., ??? https://
proceedings.neurips.cc/paper_files/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf

Zheng N, Mazumder P (2019) Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Archi-
tecture Co-Design. John Wiley & Sons, ??? . Google-Books-ID: IvC0DwAAQBAJ

Zhou R, Quan P (2023) Optimization ways in neural network compression. Procedia Comput Sci 221:1351–
1357. https://doi.org/10.1016/j.procs.2023.08.125

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

Page 33 of 33  349

https://doi.org/10.1007/s43681-021-00043-6
https://proceedings.neurips.cc/paper_files/paper/2023/file/6b9aa8f418bde2840d5f4ab7a02f663b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6b9aa8f418bde2840d5f4ab7a02f663b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6b9aa8f418bde2840d5f4ab7a02f663b-Paper-Conference.pdf
https://openaccess.thecvf.com/content_ECCV_2018/html/Tien-Ju_Yang_NetAdapt_Platform-Aware_Neural_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Tien-Ju_Yang_NetAdapt_Platform-Aware_Neural_ECCV_2018_paper.html
https://proceedings.mlr.press/v202/yang23g.html
https://doi.org/10.1038/s41598-024-65691-0
https://doi.org/10.1109/ASP-DAC47756.2020.9045179
https://doi.org/10.1109/ASP-DAC47756.2020.9045179
https://proceedings.neurips.cc/paper_files/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a1140a3d0df1c81e24ae954d935e8926-Paper.pdf
https://doi.org/10.1016/j.procs.2023.08.125

	﻿A framework for measuring the training efficiency of a neural architecture
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Related work
	﻿3﻿ ﻿Defining an efficiency measure for deep neural networks
	﻿3.1﻿ ﻿Metrics for Energy and Accuracy
	﻿3.2﻿ ﻿Allowing for hyperparameter variations: model size
	﻿3.3﻿ ﻿Training regime variations: convergence criteria

	﻿﻿4﻿ ﻿Case study: convolutional and bayesian convolutional architectures
	﻿﻿4.1﻿ ﻿Results from the case study
	﻿4.1.1﻿ ﻿50 epoch experiment
	﻿4.1.2﻿ ﻿Early-stopping experiment
	﻿4.1.3﻿ ﻿Energy bound experiment
	﻿4.1.4﻿ ﻿Accuracy bound experiment

	﻿﻿5﻿ ﻿Analysis of experimental data
	﻿﻿5.1﻿ ﻿Efficiency as training progresses
	﻿﻿5.2﻿ ﻿Relationship between stopping criteria and efficiency, and model size and efficiency
	﻿﻿5.3﻿ ﻿Efficiency of the LeNet architecture against BCNN architecture
	﻿﻿5.4﻿ ﻿On the risks of over-training (over-fitting)

	﻿6﻿ ﻿Conclusions
	﻿﻿Appendix
	﻿Hardware comparison

	﻿References

