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Abstract

Objective Improving prognostication to direct personalised therapy remains an unmet need. This study prospectively
investigated promising CT, genetic, and immunohistochemical markers to improve the prediction of colorectal cancer
recurrence.

Material and methods This multicentre trial (ISRCTN 95037515) recruited patients with primary colorectal cancer
undergoing CT staging from 13 hospitals. Follow-up identified cancer recurrence and death. A baseline model for cancer
recurrence at 3 years was developed from pre-specified clinicopathological variables (age, sex, tumour-node stage, tumour size,
location, extramural venous invasion, and treatment). Then, CT perfusion (blood flow, blood volume, transit time and
permeability), genetic (RAS, RAF, and DNA mismatch repair), and immunohistochemical markers of angiogenesis and hypoxia
(CD105, vascular endothelial growth factor, glucose transporter protein, and hypoxia-inducible factor) were added to assess
whether prediction improved over tumour-node staging alone as the main outcome measure.

Results Three hundred twenty-six of 448 participants formed the final cohort (226 male; mean 66 ± 10 years. 227 (70%) had
≥ T3 stage cancers; 151 (46%) were node-positive; 81 (25%) developed subsequent recurrence. The sensitivity and specificity of
staging alone for recurrence were 0.56 [95% CI: 0.44, 0.67] and 0.58 [0.51, 0.64], respectively. The baseline clinicopathologic
model improved specificity (0.74 [0.68, 0.79], with equivalent sensitivity of 0.57 [0.45, 0.68] for high vs medium/low-risk
participants. The addition of prespecified CT perfusion, genetic, and immunohistochemical markers did not improve prediction
over and above the clinicopathologic model (sensitivity, 0.58–0.68; specificity, 0.75–0.76).

Conclusion Amultivariable clinicopathological model outperformed staging in identifying patients at high risk of recurrence.
Promising CT, genetic, and immunohistochemical markers investigated did not further improve prognostication in rigorous
prospective evaluation.

Clinical relevance statement A prognostic model based on clinicopathological variables including age, sex, tumour-node
stage, size, location, and extramural venous invasion better identifies colorectal cancer patients at high risk of recurrence for
neoadjuvant/adjuvant therapy than stage alone.
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Key Points
● Identification of colorectal cancer patients at high risk of recurrence is an unmet need for treatment personalisation.
● This model for recurrence, incorporating many patient variables, had higher specificity than staging alone.
● Continued optimisation of risk stratification schema will help individualise treatment plans and follow-up schedules.

Keywords Prognostic model, Neoplasms/primary, Large bowel, Angiogenesis, CT-perfusion

Introduction
Up to 50% of patients with colorectal cancer ultimately
die from metastatic disease, occult at diagnosis [1].
Adjuvant chemotherapy following surgery aims to eradi-
cate micrometastases but offering this indiscriminately
may be overtreatment. Streamlining patients who should
receive adjuvant therapy turns on prognosis, based largely
on pathological tumour and nodal stage [2, 3]. However,
patients with identical stage tumours can experience
widely divergent survival outcomes: 5-year survival varies
between 63–87% for American Joint Committee on
Cancer (AJCC, tumour-node-metastasis (TNM) stage
grouping) stage II; and stage IIIA survival may exceed
stage IIB/IIC [4, 5]. Also, the shift towards neoadjuvant
therapy for colon as well as rectal cancer has highlighted a
need for better preoperative identification of high-risk
patients [6, 7].
Multivariable prognostic models combine multiple

factors to estimate the risk of future outcome(s). While
models predicting colorectal cancer outcomes are avail-
able in different clinical settings [8, 9], they are not used
widely. A criticism has been that they do not include
promising predictors despite recent research around
imaging, genetic, and immunohistochemical biomarkers.
It was hypothesised that a baseline multivariable model to
predict the recurrence of colorectal cancer could be
improved by the addition of more novel, promising ima-
ging, genetic, and pathological markers of angiogenesis
and hypoxia. To achieve this, a prospective multicentre
trial was designed specifically to develop a prognostic
model of disease-free survival. The aim was to investigate
promising CT perfusion imaging and genetic and immu-
nohistochemical markers to improve the prediction of
colorectal cancer recurrence.

Methods
Study design and participants
PROSPeCT (Improving PRediction Of metaStatic disease
in Primary coloreCTal cancer) was a prospective, multi-
centre, cohort trial (ISRCTN: 95037515; REC: 10/H0713/
84), conducted according to the principles of good clinical
practice, and run by a clinical trials unit. Independent
oversight was provided by the Data Monitoring and Trial
Steering Committees. Research is reported according to

transparent reporting of a multivariable prediction model
for individual prognosis or diagnosis guidelines [10].
Consecutive adult participants were recruited from 13

university and community hospitals between November
2011 and 2016. Eligible patients had histologically proven
or suspected (endoscopy and/or imaging) primary color-
ectal cancer. Participants were identified via outpatient
clinics, imaging requests, endoscopy lists, and tumour
board meetings. Exclusions were polyp cancers; metas-
tases at staging; contraindication to intravenous contrast
agent; an invisible tumour on CT; pregnancy; concurrent
cancer, and a final non-cancer diagnosis. All participants
provided written informed consent.

CT imaging procedures
Participating centres underwent training and quality
control for data acquisition [11]. In addition to a staging
CT, participants underwent CT perfusion of the primary
tumour. This was performed on the same occasion. The
CT perfusion dynamic acquisition commenced 5 s fol-
lowing intravenous contrast injection (> 300mg/mL
iodine; 50 mLs at 5 mL/s followed by a saline chaser), with
images at 1.5-s intervals for 45 s, then at 15-s intervals for
75 s. This was followed by the contrast-enhanced staging
CT which was performed according to the institutional
standard protocol (Supplementary Table 1, CT acquisi-
tion parameters).
CT perfusion scans were analysed by 25 designated local

radiologists (with ≥ 5 years of subspecialty experience),
after central training for software familiarisation and
analysis. All had a subspecialty interest in gastrointestinal
imaging. Radiologists used commercially available soft-
ware provided by their CT vendor. Kinetic models
included the distributed parameter model; Patlak analysis;
deconvolution; and maximum slope.
Using the corresponding software, radiologists defined

the arterial input function; defined when the contrast the
first pass had ended; and outlined the tumour contour.
This was achieved by placing a fixed-size (10 mm2) cir-
cular region-of-interest (ROI) in the largest visualised
artery; marking the time-point on the displayed
attenuation-time curve when the lower inflection point of
the curve was reached; and outlining the tumour contour
using a free-hand ROI, encompassing the largest tumour
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area possible but taking care to avoid non-tumoural tissue
(area ranging from 9.5 mm2 to 2981 mm2).
This generated the following vascular parameters:

regional blood flow, blood volume, mean transit time, or
permeability surface area product (dependent on vendor
software). Perfusion variables were recorded on a case
report form that also detailed tumour dimensions and
location. CT TNM stage was also determined. Following
imaging data transfer, CT analysis was repeated centrally
by three radiologists with 5–18 years of experience in CT
perfusion, using the same software used locally, unaware
of prior measurements and outcomes.

Pathology procedures
For patients undergoing surgery, pathological staging
was performed by pathologists at the participating
institutions. Tumour staging was based on the fifth
edition of the AJCC TNM staging classification as
defined in the trial protocol and recorded on a case
report form. Formalin-fixed paraffin-embedded blocks
were also transferred centrally for additional analysis by
two subspecialty pathologists who assessed: DNA mis-
match repair (MMR) protein status (via expression of
MLH1, MSH2, MSH6, and PMS2); CD105 microvessel
density; vascular endothelial growth factor (VEGF)
expression; glucose transporter protein (GLUT-1)
expression; hypoxia-inducible factor-α (HIF-1α)
expression. Tissue sections were batch-stained (Bond-
Rxm, Leica Biosystems; Bond Polymer Refine Detection),
scanned at ×20 magnification (Hamamatsu Nanozoomer
2.0 RS), and displayed on an LCD monitor with stan-
dardised contrast, focus, saturation, and white balance
standardisation. VEGF, Glut-1, and HIF-1α were scored
on staining intensity and proportion of positive cells
according to previously published systems: VEGF and
Glut-1 expression was calculated by combining staining
intensity (0–3) with the percentage of positive cells
(0–4), and HIF-1α expression on combined cytoplasmic
and nuclear staining (range, 0–6). Visiopharm software
evaluated CD105 staining. DNA was extracted for
somatic mutation analysis (KRAS, BRAF, PIK3CA,
pTEN, APC, and HRAS), and quality and quantification
were assessed (Agilent Tapestation 2200). Preparation
and sequencing used Life Technologies Ion Torrent, and
analysed using Integrative Genomics Viewer.

Clinical management decisions and follow-up
Standard clinical, radiological, and pathological investi-
gations were interpreted and discussed at the tumour
board meeting at each participating institution and
treatment decisions were undertaken as per usual clinical
practice. For the primary outcome, participants were
followed for 36 months (or death if sooner) and findings

from outpatient visits, surveillance and/or symptomatic
CT, carcinoembryonic antigen, and any other relevant
investigations were recorded.

Data collation and outcomes
The clinical trials unit collated and entered data into a
bespoke database, and missing fields or possible inac-
curacies were queried. Baseline data included participant
demographics, date and results of staging investigations,
and stage and planned management determined at the
tumour board meeting. The date of any recurrence or
death was recorded. Recurrence was considered alongside
histology from any further resections or biopsies.
Assessment of recurrence was blinded to genetic and
immunochemistry results, and to principal component
weighting (PCA) for CT perfusion variables.

Statistical analysis
The primary outcome was to improve the prediction of
recurrence or death by developing a model of disease-
free survival, superior to current practice. A recurrence
event was defined as metastasis, local recurrence/new
primary, and/or any death (recorded as the primary
event in patients with other simultaneous events). Out-
comes were based on Nelson-Aalen cumulative hazard
estimates of pre-specified risk groups at 3 years, using
time-to-event models. Predictions by risk group were
compared via (i) differences in sensitivity and specificity
and (ii) a hypothetical population of 1000 participants
diagnosed with colorectal cancer, to compare different
models.
Modelling strategy: a best “baseline” model (Model A)

was developed from prespecified standard clinical and
pathological variables, namely TN stage, age, sex, tumour
location and size, EMVI, and planned treatment. Uni-
variable significance was not used to select variables. In
order to determine the benefit (if any) of promising bio-
markers, these were added to the standard model to
create new models as follows: Model B (local CT perfu-
sion variables via composite principal components ana-
lysis (PCA) score); Model D (simplest single local CT
perfusion variable); Model E (central CT perfusion vari-
ables via PCA score); and Model F (pathology variables:
immunohistochemical angiogenesis and hypoxia markers
plus somatic mutations).
Prediction of all models was compared to standard TN

staging (rule C; “clinical rule”), with “high risk” patients
defined by stage III AJCC stage grouping and “low risk”
patients defined by stage I/II [12]. In order to mirror
model usage in clinical practice, imaging staging was used
in the standard model for patients receiving neoadjuvant
therapy or in whom surgery was not planned; ima-
ging staging is deemed accurate when compared with
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pathological staging [13]. The pathological stage was used
in patients having surgery first.
Model methods: The standard model was a Wiebull

parametric (STATA “stpm2”). Risk groups were pre-
specified based on tertile groups for each model; i.e. high
risk= top tertile; medium risk=mid tertile; low risk=
bottom tertile. Model performance was presented using
Kaplan–Meier plots of risk groups (high vs medium/low

risk, and high/medium vs low), with 95% confidence
intervals (CI) and risk tables. Standard measures of dis-
crimination and calibration were also calculated, includ-
ing c-index and calibration slope. Internal validation using
bootstrapping (100 repeats) was used to assess over-
optimism. Additional details regarding sample size, pow-
ering, and prognostic modelling are presented in the
Supplementary material.

Fig. 1 Flowchart showing participant flow through the trial. n, number; ne, not evaluable. *Note: neoadjuvant therapy included chemoradiotherapy,
radiotherapy alone and chemotherapy alone
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Results
Participants
The participant flowchart is shown in Fig. 1. Baseline par-
ticipant and tumour characteristics are shown in Table 1.
Of 448 participants who were recruited, 122 (27%) were
withdrawn, leaving 326 participants in the final cohort (226
male, 100 female; mean ± SD age 66 ± 10.7 years. 143/326
(44%) had colon and 183/326 (56%) rectal cancer (including
rectal cancers extending into the rectosigmoid region).
Surgery was performed ultimately in 308/326 (94%), of
whom 92/308 (30%) had adjuvant therapy, and 67/308
(22%) had neoadjuvant therapy. Following neoadjuvant
treatment, there were 12/183 (7%) rectal cancer complete
responders; 5/12 received no further treatment. There was
no therapy information for two participants.
Imaging staging was used in 83 (26%) and pathological

staging in 241 cases (74%) for modelling. Most cancers
were locally advanced (227/326 ≥T3, 70%); 151/326 (46%)
were node-positive (≥N1 stage, Table 1). 93/326 (29%)
had a venous invasion. The resection margin was positive
in 15 (6%) of 252 with recorded data. Ultimately, there
were 81 events over 3 years: 31 (39%) in year 1; 29 (36%)
in year 2; and 21 (25%) in year 3. Fifty-two (64%) devel-
oped metastasis. Twelve (14%) developed new primaries.
Seventeen (22%) died. There was venous invasion in a
higher proportion of participants with recurrence (36/81,
44%) than without (57/245, 23%), with a significant rela-
tionship in both univariable and multivariable analysis
with standard clinical variables (Supplementary material).

CT perfusion analysis
CT perfusion measurements from participating sites
showed no apparent difference for participants with and
without recurrence at local and central review (Supple-
mentary Table 2).

Immunohistochemical and somatic mutation analysis
Immunohistochemical and somatic mutation analysis
split by participants with and without recurrence are
shown in Supplementary Tables 3 and 4. Distributions of
HIF-1 α, VEGF, and GLUT-1 scores were similar across
both groups (Supplementary Table 3). Participants with
KRAS wild type had the largest difference in the pro-
portion of participants with recurrence (34/62, 55%) than
without (96/208, 46%) (Supplementary Table 4). Uni-
variable and multivariable hazard ratios showed that
genetic and immunohistochemistry variables were not
associated with recurrence for all variables included in
modelling (Supplementary Tables 5–8).

Prognostic modelling
Sensitivity and specificity for standard AJCC TNM staging
for predicting recurrence were 0.56 (95% CI: 0.44, 0.67)

and 0.58 (95% CI: 0.51,0.64), respectively (Fig. 2). The
equation for the best model of clinicopathological vari-
ables (TN stage, sex, age, tumour location and size, EMVI,
and treatment; Model A) is presented in Supplementary
material. This model was used at two operating points: at
“high” vs “medium/low” risk, specificity improved over
staging alone to 0.74 (95% CI: 0.68, 0.79) but with
equivalent sensitivity of 0.57 (95% CI: 0.45, 0.68). At
“high/medium” vs “low” risk, sensitivity over staging
improved to 0.89 (95% CI: 0.80, 0.95) but with diminished
specificity of 0.40 (95% CI: 0.31, 0.47).
The addition of CT perfusion to the baseline clin-

icopathological model (Model A) did not improve
prediction substantially over and above this model
alone (Fig. 2, Model B–E). For example, for Model B
(i.e. Model A+ local CT perfusion variables) sensitivity
and specificity at the “high” vs “medium/low” risk
threshold was 0.58 (95% CI: 0.46, 0.70) and specificity
0.75 (95% CI: 0.68, 0.81).
The addition of genetic and immunohistochemical mar-

kers to the baseline clinicopathological model (Model A)

Table 1 Baseline characteristics of final participant cohort
(n= 326)

Variable Recurrence No recurrence Total

Gender Female 25 (31) 75 (31) 100 (31)

Male 56 (69) 170 (69) 226 (69)

Age (years) Mean ± SD 70 ± 10 65 ± 11 66 ± 11

Tumour

location

Right colon 24 (27) 55 (23) 79 (24)

Left colon 22 (24) 52 (21) 74 (20)

Rectum 45 (49) 138 (56) 183 (56)

Tumour size

(mm)

Median [IQR]

Min, max

40 [30, 50]

18, 75

40 [30, 50]

10, 150

40 [30, 50]

10,150

T stage T1 1 (1) 11 (5) 12 (4)

T2 12 (15) 75 (31) 87 (27)

T3 45 (56) 138 (55) 183 (55)

T4 23 (28) 21 (9) 44 (14)

N stage N0 38 (47) 137 (56) 175 (54)

N1 25 (32) 73 (30) 98 (30)

N2 18 (21) 35 (14) 53 (16)

Venous

invasion

Present 36 (44) 57 (23) 93 (28)

Absent 45 (56) 188 (77) 233 (72)

Resection

margin

Involved 3 (4) 12 (5) 15 (4)

Clear 54 (67) 183 (75) 237 (73)

Missing data 24 (29) 50 (20) 74 (23)

Data provided are number (%) unless stated otherwise. Percentages provided
are according to column data rather than row data. This allows comparison of
the variable proportions within the recurrence, or no recurrence or total groups
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also did not improve prediction substantially over and
above the standard model (Fig. 2, Models F1–F3). For
example, for Model F3 (i.e. Model A+ all pathology
variables), sensitivity and specificity at the “high” vs
“medium/low” risk threshold was 0.68 (95% CI: 0.53, 0.81)
and specificity 0.76 (95% CI: 0.68, 0.82).
Kaplan–Meier curves for the predictive performance of

the baseline model A and other selected models are
shown in Fig. 3. Kaplan–Meier curves for the predictive
performance of standard staging are shown in Supple-
mentary Fig. 1. Table 2 summarises prediction measures
of discrimination and calibration for all models. Ulti-
mately, the addition of the previously published promising
markers failed to improve the prediction of the clin-
icopathological model meaningfully.

Discussion
Prognostication in clinical practice is most commonly by
AJCC staging [12], which combines tumour, nodal, and
metastatic status. This is validated and widely accepted,
but ignores additional potentially useful prognostic
information [8]. Multivariable prognostic models in
healthcare combine multiple factors to estimate the risk of
future outcome(s), such as recurrence or death, and aim
to inform clinical decisions by facilitating personalised
management [14].
Models are typically developed using multivariable

regression, which combines weighted predictors in an
equation that estimates individual risk. Models previously

proposed for colorectal cancer include Numeracy by
Adjuvant! Online [15]. Novel markers promise to improve
prognostication and to personalise the treatment of can-
cer patients, but a challenge for biomarker research,
including imaging, immunohistochemical and genetic
biomarkers, is limited power, over-optimistic prediction,
and lack of generalisability of data from an investigation of
single markers, small samples, and lack of prospective
multicentre evaluation.
In this prospective multicentre trial, we verified that the

sensitivity and specificity of TNM staging alone for the pri-
mary outcome (recurrence/death by 3 years), were limited at
0.56 and 0.58, respectively. In comparison to TNM staging, a
clinicopathologic model including sex, age, tumour, and
nodal stage, tumour location and size, vascular invasion and
treatment improved specificity (0.74 vs 0.58) with equivalent
sensitivity (0.57 vs 0.56) when used to identify high vs
medium/low-risk participants. When used to identify high/
medium vs low-risk patients, sensitivity was higher (0.89 vs
0.56), but with diminished specificity (0.40 vs 0.58). While
this model was unable to simultaneously increase sensitivity
and specificity substantially, it promises clinical utility by
improving on prediction of recurrence compared to staging
alone. Patients’ perspectives will influence which threshold
to adopt; i.e. improved specificity to diminish overtreatment
risk or improved sensitivity to diminish the chance of
missing future recurrence.
In order to assess the prognostic utility of novel bio-

markers, statisticians advocate building a “baseline”

Fig. 2 Forest plot of sensitivity and specificity, and 95% CI, for disease recurrence for standard AJCC tumour-node staging (rule C) compared to the
baseline clinicopathological model (model A). Data are also shown for the various models incorporating CT perfusion imaging markers, or genetic/
immunohistochemical markers to the baseline clinicopathological model. AJCC, American Joint Committee on Cancer; PCT, CT perfusion; IHC,
immunohistochemistry
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Fig. 3 Kaplan–Meier (K–M) curves for Model A (baseline clinicopathological variables), Model B (baseline+ CT perfusion variables), and Model F
(baseline+ pathology variables). A K–M curve for standard clinicopathological variables (Model A) at three different risk groupings defined by the
prediction index. The graphs shown are respectively: high vs medium vs low risk and high vs medium/low risk. The high-risk group consisted the 33%
of participants with the highest prediction. B K–M curves for Model B (i.e. Model A plus CT perfusion variables assessed at local sites). The distribution
of risk groupings is similar to Model A alone, indicating that model prediction is not improved significantly by the addition of CT perfusion variables
derived by local site analysis. C K–M curves for Model F (i.e. Model A+ all novel immunohistochemical and genetic marker variables). The distribution
of risk groupings is similar to Model A alone, indicating that model prediction is not improved significantly by the addition of novel pathology
variables. Note: primary outcome: data beyond the 3-year time-point is sparse and should not be over-interpreted

Goh et al. European Radiology (2024) 34:6992–7001 6998



standard model from predictors already considered
clinically useful [16], rather than selecting from the study
dataset by univariable significance (which encourages
overfitting) [17]. The benefit, if any, of promising bio-
markers is then determined by whether their addition to
the standard model improves prediction significantly,
instead of continually re-fitting the entire model (which
results in over-optimistic prediction) [18]. To avoid con-
straints imposed by retrospective datasets, we used a
prospective design to eliminate recruitment biases and
acquired sufficient events (namely patients developing
distant metastasis or death). Evaluating multiple pre-
specified predictors with adequate power necessitated a
time-consuming multicentre design but ensured data
represented were generalisable and represented up-to-
date clinical practice.
However, we found that the addition of the prespecified

promising CT perfusion imaging, genetic, and immuno-
histochemical markers to the clinicopathological model
failed to improve prediction substantially over and above
the baseline model. For example, when immunohisto-
chemical/genetic variables were included with the clin-
icopathological variables, sensitivity and specificity at the
high vs medium/low-risk threshold, were slightly higher
(sensitivity, 0.68 vs 0.57; and specificity, 0.76 vs 0.74) but
not to a clinically meaningful extent. For CT perfusion
variables, sensitivity and specificity at the high vs med-
ium/low-risk threshold were similar to the clin-
icopathological model (sensitivity, 0.58 vs 0.57; and
specificity, 0.75 vs 0.74).
The belief that individual tumour biology influences

prognosis, irrespective of stage, underpins recent exten-
sive ‘omic’ research. For example, evidence suggests pre-
operative CT perfusion measures might predict
subsequent recurrence by reflecting tumour angiogenesis
and hypoxia [19–21]. RAS mutational testing may predict
response to anti-epidermal growth factor receptor therapy
and microsatellite instability or immunohistochemistry
testing for MMR proteins to identify Lynch syndrome
[22]. Accordingly, we hoped that these promising bio-
markers of angiogenesis, hypoxia, and gene mutation
would improve prediction.
That none of these pre-specified biomarkers improved

prediction to a clinically relevant extent when added to
the baseline clinicopathological model highlights the
challenges for novel biomarker research. A recent article
highlighted that ‘omic’ research often ignores clinical data
and/or fails to develop models appropriately [23]. As
proof, they developed a model for breast cancer survival
that included stage, age, receptors, and grade. Adding
gene expression failed to improve prediction and only
became useful if clinical data were excluded altogether.
Ultimately, the authors argued that omics, “may not beTa
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much more than surrogates for clinical data” [23]. Simi-
larly, researchers found that predictors of cardiovascular
disease contributed little over and above basic clinical
measurements [24]. Expert opinion stipulated that our
standard model includes extramural vascular invasion
[25, 26], and we found extramural vascular invasion to be
statistically significant in both univariable and multi-
variable analyses. Further research and models should
consider including extramural vascular invasion, includ-
ing CT imaging-assessed invasion in the neoadjuvant
setting.
Our study has limitations. First, the number of partici-

pants developing distant metastasis or death was lower
than expected from historical data (likely due to neoad-
juvant therapy, improved surgery reducing resection
margin positivity, and screening programmes that detect
early-stage tumours), though target recruitment was
achieved. Second, participants undergoing additional
histopathological analysis were relatively small as our
study was powered primarily for the CT imaging markers.
Third, our findings should not be over-interpreted. While
the baseline standard model was superior to standard
current practice (AJCC staging), its clinical utility needs
confirmation in daily practice. Finally, we made no com-
parison with commercial models (e.g. immunoscore [27])
that are used alongside TN staging.
In summary, we found that a prognostic model based on

prospectively derived prespecified standard clin-
icopathological variables outperformed TN staging by
either improving specificity or sensitivity, the latter at the
cost of diminished specificity with promise for clinical
practice. The addition of previously published promising
imaging, immunohistochemical, and genetic biomarkers
in a robust multicentre prospective trial did not sub-
stantially improve prediction performance, highlighting
the potential of over-optimism of published prognostic
markers.
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