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BACH1 as a key driver in rheumatoid arthritis fibroblast-
like synoviocytes identified through gene network
analysis
Aurelien Pelissier1,2,*, Teresina Laragione3,*, Carolyn Harris3, Marı́a Rodrı́guez Martı́nez1,† , Percio S Gulko3,†

RNA-sequencing and differential gene expression studies have
significantly advanced our understanding of pathogenic path-
ways underlying rheumatoid arthritis (RA). Yet, little is known
about cell-specific regulatory networks and their contributions to
disease. In this study, we focused on fibroblast-like synoviocytes
(FLS), a cell type central to disease pathogenesis and joint
damage in RA. We used a strategy that computed sample-specific
gene regulatory networks to compare network properties be-
tween RA and osteoarthritis FLS. We identified 28 transcription
factors (TFs) as key regulators central to the signatures of RA FLS.
Six of these TFs are new and have not been previously implicated
in RA through ex vivo or in vivo studies, and included BACH1, HLX,
and TGIF1. Several of these TFs were found to be co-regulated,
and BACH1 emerged as the most significant TF and regulator. The
main BACH1 targets included those implicated in fatty acid
metabolism and ferroptosis. The discovery of BACH1 was vali-
dated in experiments with RA FLS. Knockdown of BACH1 in RA FLS
significantly affected the gene expression signatures, reduced
cell adhesion and mobility, interfered with the formation of thick
actin fibers, and prevented the polarized formation of lamelli-
podia, all required for the RA destructive behavior of FLS. This
study establishes BACH1 as a central regulator of RA FLS phe-
notypes and suggests its potential as a therapeutic target to
selectively modulate RA FLS.
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Introduction

Rheumatoid arthritis (RA) is a common systemic autoimmune and
inflammatory disorder characterized by synovial inflammation and
hyperplasia that may lead to joint destruction (1, 2, 3). New biologic

disease-modifying anti-rheumatic drugs (bDMARDs) and JAK in-
hibitors that target various inflammatory pathways have signifi-
cantly improved disease control and outcomes (4, 5). Yet, a
considerable number of RA patients still have only partial or no
response to therapy, and sustained remission remains uncommon
(6). The development and progression of RA involves dynamic
interactions between multiple genetic and environmental factors,
and therefore, understanding the heterogeneous pathophysio-
logical processes in RA patients remains a major challenge (7).
Among the cell types found in synovial tissues, fibroblast-like
synoviocytes (FLS) (8, 9) are centrally relevant in the RA patho-
genesis (8, 10, 11). In RA, FLS become activated producing increased
levels of inflammatorymediators that contribute to driving the local
inflammatory response and joint damage (12). FLS also have in-
creased invasive properties that together with their increased
production of proteases contribute to cartilage and bone damage
(8). Although past studies have linked the invasiveness of FLS with
the severity of joint damage, both in RA patients (13) and in rodent
models (14), the underlying mechanisms of those processes remain
incompletely understood.

Genome-wide association studies and differential gene ex-
pression (DEG) studies have significantly improved our under-
standing of the disease’s genetic underpinnings (15, 16). Yet, those
studies did not differentiate the contribution of individual cell
types to disease. In this context, mapping the identified tran-
scriptional and immune signatures specific to FLS could sub-
stantially expand our understanding of RA disease processes (17).
Identifying transcription factors (TFs) and their associated regu-
latory signatures is of particular interest, as TFs play a pivotal role in
regulating gene expression (18). Moreover, with an estimated count
of 1,000 TFs in humans (19), identifying those that govern the
phenotypic traits of FLS in RA may open new possibilities for novel
therapeutic target discovery. Recently, single-cell RNA-sequencing
studies are offering valuable insights into understanding diseases
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at a cell-specific level (20, 21). Still, using these datasets presents
several challenges because of limited patient numbers, batch ef-
fects, and sparse data (22). Consequently, inferring networks based
on these datasets has proven to be particularly difficult (23, 24, 25).

In this study, we provide a comprehensive analysis of gene
regulation in RA FLS. We used a cell type–specific bulk RNA-seq
dataset of FLS from patients with RA (n = 18) and OA controls (n = 13)
(20) to construct sample-specific gene regulatory networks (GRNs)
for both RA and control samples, generating 18 RA and 12 OA FLS
networks. Employing sample-specific GRNs is essential for cap-
turing the heterogeneity of RA, as it tailors the networks to each
individual sample. This contrasts with previous studies, which fo-
cused on cohort-specific GRNs (7, 26, 27), allowing us to preserve
intersample variability. Through differential analysis of the network
edges, we identified key transcription factors driving FLS-specific
expression differences, offering new insights into RA. Among the
most prominent and specific regulators in FLS were BTB and CNC
Homology 1 (BACH1) and H2.0-like homeobox (HLX). To validate our
discovery strategy, we conducted experiments silencing BACH1 in
FLS cell lines from RA patients, demonstrating its influence on FLS
migration, adhesion, and lamellipodium formation. Our study is an
important step toward the development of novel RA treatments
with FLS-specific pathway targeting.

Results

Differentially expressed genes and pathways in RA versus OA

We used cell type–specific RNA-seq data from FLS (20) to obtain
gene expression profiles for 18 RA and 12 OA biopsies. Like in most
RA FLS studies, OA samples were used as controls given the lack of
available normal biopsies. Next, we computed the differential gene
expression in each dataset (t test) between RA and OA samples. This
means that for each gene, we obtain a differential expression score
(denoted tdiff-expr) from which we can extract a set of DEGs (Table
S1). The genes with themost significant difference included the long
intergenic non-protein coding RNA 1600 (LINC01600), the solute
carrier family 25 member 26 (SLC25A26), GPR4, and monocyte-to-

macrophage differentiation–associated (MMD; Fig 1A). Pathway
analyses were done including 1,093 genes with a tdiff-expr > 2, and
revealed an overrepresentation of “negative regulation of low-
density lipoprotein receptor activity,” followed by others such as
axon guidance and carnitine shuttle (Fig 1B, Table S2).

Key TF regulators and pathways driving regulatory differences
between RA and OA FLS

Gene expression phenotypes are more effectively interpreted
through the identification of the TFs that regulate them. Therefore,
we next identified the TFs regulating RA phenotypes by inferring
sample-specific GRNs and identifying differential regulatory
patterns between RA and OA. We aimed to get insight into the
regulatory relationships between DEGs, and whether they involved TF-
mediated inhibition or activation, and co-regulations. To explore this
question, we constructed 18 RA and 12 OA FLS-specific GRNs by in-
tegrating RA gene expression datasets (20) with prior knowledge about
TF binding motifs (from the Catalog of Inferred Sequence Binding
Preferences, CIS-BP (31)) and about protein–protein interactions (from
StringDB (32)). Briefly, we leveraged LIONESS (33) to compute individual
GRNs for each biopsy sample (see the GRNs in FLS section, Fig 2A).
These networks incorporate edge weights to quantify the likelihood of
regulatory interactions between TFs and their target genes (TGs). We
then compared these edge weights between RA andOA samples using
a t test and obtained a score tdiff-edge for each edge TF-TG. From these
edge-specific differential analyses, we generated a novel network, the
differential GRN (dGRN), which illustrates the differential regulation
between RA and OA (Fig 2B). To quantify TFs’ regulatory function, we
calculated a TF regulatory score (treg). This score is calculated based on
the average absolute differential weight of the regulatory edges be-
tween each TF and its associated TGs, that is, the average of |tdiff-edge|
between a TF and its targets (see the Analysis of TF RA regulatory
activity in GRNs section).

We identified 185 TF signatures in RA FLS, and show the top 20
ranked by their regulatory scores (Table 1, with Z-statistics of each TF in
parentheses). The Z-statistic quantifies the number of standard de-
viations by which the score of a given TF deviates from themean score
across all TFs. For additional insight into the important pathways

Figure 1. Differentially expressed genes in RA versus OA FLS.
(A) Volcano plot of the computed log2 fold change and P-values for all the expressed genes in RA versus OA fibroblast-like synoviocytes (t test), where the six genes with
the highest P-values were marked. Genes were labeled as down-regulated in RA, up-regulated in RA, or non-significant (NS). (B) Most enriched pathways of the
differentially expressed genes in RA versus OA fibroblast-like synoviocytes (1,093 genes with tdiff-expr > 2), combined from GO (28), KEGG (29), and Reactome (30), ranked by
adjusted P-values.
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involved in RA FLS, we selected the 185 TFs with a Z-statistic above 0.5
(Table S3). This collection constitutes our set of key TF drivers in RA FLS.
Using this set, we performed a pathway enrichment analysis using the
Gene Ontology (GO) (28), KEGG (29), and Reactome (30) databases (Fig
S1). Given that all TFs are DNA-binding proteins, we removed any terms
associated with RNA and DNA transcription, as these processes are
ubiquitous and therefore not likely to be specific to RA. After this
filtering, 77 significantly enriched (adjusted P < 0.05) pathways were
identified. The 20 most significant pathways included HOX gene ac-
tivation, regulation of myeloid cell differentiation, and TNF signaling,
among others (Fig 2C, Table S4).

In addition to evaluating the TF regulation of RA, we also in-
vestigated TGs that were differentially targeted bymore than one of

the key TF drivers we identified (185 TFs with Z-statistics above 0.5).
Interestingly, we found that some TGs were differentially targeted
(tdiff-edge > 1) by more than 30% of these TFs (the top targeted genes
were ALDH1A2, SYNE2, and NF1). We provide the top 100 targeted
genes in Table S5. A pathway enrichment analysis of the 211 TGs
targeted by more than 20% of the key TF drivers in RA highlighted
the pathways “positive regulation of GTPase activity,” “Cell–
substrate junction assembly,” and “negative regulation of che-
motaxis,” among others (Fig 2D, Table S6).

An independent approach increases the confidence in the
identified regulators

Relying on the predictions of a single computational method might
lack the robustness required to identify promising therapeutic
targets. To increase our confidence in the identified RA regulators,
we augmented our study by incorporating a selection of pre-
existing literature-derived networks, which also included edge
weights as a metric for assessing the confidence of the interactions
between nodes. These include RIMBANET (34), StringDB (32), and
GIANT (35), a collection of networks that accurately capture tissue-
specific and cell type–specific functional interactions. As RA is an
autoimmune disease, we selected networks computed from
immune-related tissues and cell types (including lymph nodes,

Figure 2. Differential gene regulatory network of RA FLS.
(A) 18 RA and 12 OA fibroblast-like synoviocyte (FLS) networks were inferred from FLS gene expression profiles (20). Networks incorporate edge weights representing the
probability of regulatory interactions between transcription factors (TFs) and their target genes (TGs). The differential analysis of the edge weights between RA and OA
resulted in the assembly of a differential GRN (dGRN) specific to RA FLS. (B) t-SNE representation of the dGRN of RA FLS. For visual clarity, only TGs with a differential
expression score in FLS above 2 (tdiff-expr > 2), and only edges with a differential edge weight score above 2 (tdiff-edge > 2), are shown. TF node sizes are proportional to the
node degree and colored according to their regulatory score in the network. Gene nodes are colored according to their differential expression score in FLS. The top 10 TFs
ranked by their regulatory scores are labeled. (C) Top 10 enriched pathways of the major TFs involved in RA FLS, compiled from GO (28), KEGG (29), and Reactome (30), and
ranked by their adjusted P-values. (D) Top 10 enriched pathways of the major TGs involved in RA FLS, ranked by adjusted P-values.

Table 1. Top 20 ranked TF regulators in fibroblast-like synoviocytes with
their Z-statistics provided in parentheses.

Ranks 1–5 Ranks 6–10 Ranks 11–15 Ranks 15–20

RORC (3.39) SIX5 (2.61) CBFB (2.16) ETV3 (2.04)

NKX2-1 (3.37) ELF5 (2.46) BBX (2.16) TLX3 (1.97)

HOXA1 (3.20) ZBTB1 (2.42) TAL1 (2.13) HOXB3 (1.95)

ETV2 (2.67) FOXC2 (2.27) ZBTB3 (2.11) PKNOX1 (1.95)

MITF (2.64) TBX4 (2.23) RARG (2.09) MECOM (1.94)
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spleen, tonsils, and blood). In summary, 14 additional networks
were collected for our analysis, as detailed in the Table S7.

Although these networks recapitulate general immune knowl-
edge derived from various data types, they are not specific to
synovial tissues. Therefore, they are unable to discern RA-specific
relationships between TFs and TGs as effectively as the PANDA
framework does. We hence designed a different approach based on
the key driver analysis (KDA) (36), a computational pipeline to
uncover major disease-associated regulators or causative hubs in a
biological network (see the KDA section). Briefly, genes exhibiting
more connections to RA-associated genes than expected by ran-
dom chance were considered potential drivers. KDA analysis re-
quires the definition of RA-associated signatures, that is, lists of
genes associated with the disease. Here, we compiled known RA-

associated genes from the literature, including genome-wide as-
sociation studies (16, 37, 38), knowledge-based datasets (39, 40, 41),
and known drug targets (42, 43), as well as prior meta-studies and
datasets (44, 45, 46, 47, 48) (see the KDA section). Using this list of
RA-associated signatures as a starting point, we obtained a list of
174 key TF drivers that were identified as a key driver gene in at least
one of the 14 networks (Table S8).

A final list of potential key TF regulators in FLS was generated by
combining our dGRN with the KDA approach (Table 2); namely, we
retained TFs (i) whose regulatory scores (treg) computed with the
dGRN network exceeded half an SD above the mean score of all TFs
(i.e., Z-statistics > 0.5), and (ii) that were identified as key driver
genes by the KDA approach described above. We identified 28 TFs
that met these two conditions. Among them, 7 were new TF

Table 2. 28 key TFs implicated in the regulation of fibroblast-like synoviocytes (FLS) in RA, as identified in our analyses, are ranked by Z-statistics.

TF Synovial cell typesa FLS score (dGRN Z-statistics) KDAb (Lit-DEG) References (in vivo/ex vivo studies)

MITF FLS, T cells 2.64 6–4 (50)

CBFB FLS 2.16 2–1 Asso. with RUNX1 (51)

IKZF1 FLS 1.93 6–6 (52 Preprint)

HLX FLS 1.90 5–5 None

BACH1 FLS 1.83 6–1 None

FOS FLS 1.72 8–3 (53)

ETV7 FLS, T cells 1.57 2–2 None

RFX5 FLS, monocytes, T cells 1.54 4–3 (54)

HIF1A FLS, monocytes 1.52 9–4 (55)

TGIF1 FLS, T cells 1.39 8–4 None

ELF4 FLS, T cells 1.34 9–7 (56)

RUNX1 FLS 1.27 8–4 (57, 58)

NFATC1 FLS 1.23 3–3 (59, 60)

IRF7 FLS, monocytes 1.18 7–4 (61)

CREM FLS, B cells, T cells 1.16 6–2 (62)

FOSL1 FLS, B cells, T cells 1.12 1–1 (63)

FLI1 FLS 1.09 9–8 (63)

ELF1 FLS, T cells 1.03 2–2 None

BHLHE40 FLS, B cells 0.98 8–1 (64)

STAT1 FLS 0.87 12–10 (65)

EGR2 FLS, B cells 0.83 6–5 (66)

NR4A1 FLS, T cells 0.75 3–1 (67)

FOSL2 FLS 0.71 9–3 (68)

JUNB FLS 0.68 9–8 (69)

HIVEP1 FLS, T cells 0.65 2–1 None

PLAGL1 FLS, B cells, T cells 0.62 1–1 None

ENO1 FLS 0.59 3–1 (70)

HOXB2 FLS 0.54 1–2 (71)

A higher Z-statistic indicates a greater regulatory implication in FLS signatures.
aSome of the key TFs in FLS were also found as key regulators in other synovial cell types (49).
bThe left and right numbers correspond to the number of networks, among 14, in which the TF was identified as a KDG using, respectively, the literature and DEG
list (49).
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regulators (HLX, BACH1, ETV7, TGIF1, ELF1, HIVEP1, and PLAGL1) not
previously implicated in RA. The remaining TFs had been previously
reported in RA studies, further validating our discovery strategy
(Table 2). By integrating our results with those from a parallel study
on other cell types (49), which employed a similar methodology, we
found that only BACH1 and HLX were specific to FLS, whereas the
other factors were also associated with T- and/or B-cell signatures.
Importantly, the TFs shown in Table 1 are quite different from those
in Table 2. Incorporating condition (ii) reduced our previous list
from 185 TFs to 28 TFs. With this strategy, we increased the con-
fidence in our results, as the chances of selecting false positives
were reduced by combining the two criteria.

TF-TF co-regulation network in FLS

Having identified 28 significant TFs associated with RA in FLS, we
next evaluated their co-regulatory activity, potentially revealing
distinct clusters of co-regulation. TF-TF co-regulation was quan-
tified using the Pearson correlation between the regulatory dif-
ferential activities of the TFs and their TGs, that is, corr(tdiff-edge(TFi),
tdiff-edge(TFj)), focusing only on the TGs that are common to both TFs
(see the TF-TF co-regulation network section). We used a hierar-
chical clustering algorithm to identify groups of co-regulatory TFs
using a correlation threshold of 0.5. This analysis identified 5 TF
clusters, with four small and one major group containing 17 TFs (Fig
3A). This suggests a major co-regulated hub in RA FLS, with BACH1,
HIF1A, TGIF1, and FOSL1 having a central key driving role (highest
Z-statistics among TFs in the largest cluster). Among these, BACH1
has the highest Z-statistics (Table S9, Fig 3A). These clusters were
not completely independent, as there was also co-regulatory ac-
tivity across TF belonging to different clusters (Fig 3B).

BACH1 regulatory network in RA FLS

BACH1 was among the strongest TF regulators identified in RA FLS.
To examine the regulatory effect of BACH1 on FLS, we constructed
the network of the BACH1 target genes that were also DEGs be-
tween RA and OA (Fig 4A). This network included other significant
TFs, such as PAX8, CBFB, NFE2L2, ETS1, RUNX1, and SMAD4, which
also contributed to the co-regulation of major BACH1 targets.
Interestingly, RUNX1 and CBFB were also identified as significant
TF drivers in RA FLS, but in a distinct co-regulatory cluster, with
only moderate correlations to BACH1 (0.31 and 0.16, respectively).
This suggests that although these two TFs are targets of BACH1,
they exert control over their respective targets independently of
BACH1 regulation.

Besides these TFs, this network also included 131 genes that
were differentially targeted by BACH1 (Table S10). A pathway
enrichment analysis of these genes showed an overrepresenta-
tion of the “fatty acid degradation” and “ferroptosis” pathways,
driven by genes HADHB, ACSL6, and CPT1C, among others (Fig 4B
and Table S11). These findings are in line with the literature, where
it has been reported that BACH1 promotes ferroptosis (72) and
suppresses fatty acid biosynthesis (73). These observations im-
plicate for the first time BACH1 in the regulation of RA FLS
metabolism and ferroptosis.

Effect of BACH1 knockdown on gene expression

To gain more direct insight into the role of BACH1 in regulating RA
FLS, we ranked the BACH1 regulatory weights (average likelihood of
TF-TG interaction across all constructed FLS networks in OA and RA)
to its TGs into four separate quartiles (Q1–Q4, Fig S2). We anticipated
that the expression of TGs with a high regulatory weight (Q4) would
be more significantly affected by a BACH1 knockdown than those
with a low regulatory weight (Q1). To investigate this hypothesis, we
used siRNA to knock down BACH1 in RA FLS cell lines developed
from RA patients and performed RNA sequencing to assess the
resulting changes in gene expressions (see the siRNA knockdown
section). We identified 24 up-regulated and 14 down-regulated
genes between the two groups (t test, P < 0.05 after the
Benjamini–Hochberg correction (74), Fig 5A, Table S12). Among
these, BACH1 exhibited significant down-regulation with a log2 fold
change of −2.5 (adjusted P-value of 5.12 × 10−6), confirming the
effectiveness of our knockdown. Interestingly, BACH1’s target genes
with the lowest edge weight (Q1) had a significantly lower measured
fold change compared to those with the highest weights (Q4) (0.3
versus 0.5, P = 3.46 × 10−7, t test), indicating a good agreement
between the measured gene expression fold changes with the
regulatory edge weights of the BACH1 FLS networks (Fig 5B), further
validating the RA FLS network we constructed.

Among the genes with the most significant increase in mRNA
levels after siRNA BACH1 knockdown were HMOX1, RP11-863P13.3
and RP11-863P13.4 (two lincRNAs), ZNF469, and TRIB3, and among
those with reduced expression were SLC35A5 (a nucleoside-sugar
transporter), NUDT15, CBFB (a TF), and STRADB (involved in cell
polarity and energy-generating metabolism). Pathway analyses of
the identified DEGs increased the representation of genes impli-
cated in “intrinsic apoptotic signaling pathways in response to
endoplasmic reticulum (ER) stress,” “response to ER stress,” and
“response to EIF2AK1” (Fig 5C and Table S13). BACH1 is implicated in
oxidative stress (75), and oxidative stress may have a role in ER
stress.

Effect of BACH1 knockdown on FLS migration, adhesion,
lamellipodium formation, and cell morphology

We next examined the role of BACH1 in RA FLS behaviors relevant to
disease and joint damage (see the FLS assays section). siRNA
knockdown of BACH1 significantly reduced RA FLS adhesion by an
average of 50% (P = 0.021), and reduced FLS migration in the wound
healing (scratch) assay by ~40% (P = 0.0067, paired t test, Fig 6A). FLS
cell morphology was analyzed under immunofluorescence mi-
croscopy, showcasing actin fibers and lamellipodia, marked by
phalloidin and pFAK staining, respectively (see the Immunofluore-
scence microscopy section, Fig 6B and C). Images were obtained
from 20 cells per FLS cell line (a total of four different cell lines,
each from a different RA patient). Knockdown of BACH1 signifi-
cantly affected FLS morphology, reducing the number of cells
with thick and polarized actin fibers, as well as reducing the
number of cells with an elongated shape (Fig 6A and B).
Knockdown of BACH1 also significantly reduced the numbers
of pFAK-positive lamellipodia, which has a critical role in
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movement and adhesion (76). The FLS production of total or
activated matrix metalloproteinases (MMP2 and MMP3) and cell
invasion through Matrigel were not significantly affected by
BACH1 knockdown (see the Matrix metalloproteinase [MMP]
quantification in zymograms section, Figs 6A and S3).

Discussion

Sustained disease remission is still rarely achieved in RA (78).
Available treatments, including biologics and JAK inhibitors targeting
different aspects of the immune response, achieve similar rates of
response (4, 79). FLS have a central role in RA pathogenesis (8),
driving leukocyte chemotaxis into the synovial tissues, andmediating
bone and cartilage damage (8). The RA FLS have a highly invasive and
destructive behavior that correlates with joint damage (80). However,
the FLS subtypes, states of activation, and their characteristics are
only now beginning to be comprehended (11, 20, 21, 81), potentially
paving the way for the identification of novel targets for the de-
velopment of new treatments aiming to achieve sustained remission,
while minimizing the risk of immunosuppression in RA patients. The
recent availability of large transcriptomic studies and datasets has
also expanded our understanding of RA pathogenic processes. Yet,
the intricate molecular and cellular pathways, along with their
regulation and interactions, remain largely elusive. Gene regulatory
processes vary across cell types, and only a limitednumber of studies
have characterized RA drivers in cell types relevant to RA patho-
genesis, such as FLS (11, 18, 82, 83).

In this study, we leveraged FLS RNA gene expression data (20) to
infer FLS-specific GRNs, and created one for each synovial biopsy in
the datasets. Then, a differential analysis of these networks en-
abled a comparison between RA versus OA and revealed key

Figure 4. BACH1 regulatory network in RA FLS.
(A) Regulon of BACH1 includes many genes that are differentially expressed
in fibroblast-like synoviocytes. BACH1 also interacts with 6 TFs (green
squares), and in a tight cluster that contributes to the co-regulation of BACH1
target genes. Interactions between TFs are shown with a red edge, whereas
TF-TG interactions are shown with a gray edge. Edge thickness is proportional
to edge weights, node sizes are proportional to RA differential t-scores (tdiff-
edge), and target nodes are colored according to their RA differential
expression in fibroblast-like synoviocytes (tdiff-expr). (B) Top 5
overrepresented pathways identified among the BACH1 differentially
expressed target genes.

Figure 3. Co-regulatory activity of significant TFs in RA fibroblast-like synoviocytes.
(A) Pairwise TF-TF co-regulation heatmap, quantified in terms of the Pearson correlation between the differential edge weight tdiff-edge and their common TGs (see the
TF-TF co-regulation network section). A hierarchical clustering approach was used to group the TFs into clusters (depicted in blue square). (B)Network visualization of the
major TFs involved in fibroblast-like synoviocyte regulation in RA. Edges represent a correlation > 0.5, and node sizes are proportional to both the degree and the TF
regulatory scores (treg). Nodes are colored according to their cluster assignment.
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pathways and gene interactions associated with each condition.
Using sample-specific GRNs was crucial for capturing the hetero-
geneity of RA, as it allowed the networks to be tailored to each
individual sample, thus contrasting to previous studies on FLS, that
predominantly focused on cohort-specific GRNs (11, 18, 82, 83). In
addition, we directly analyzed FLS from human synovial tissue
biopsies, whereas these prior studies did not, potentially offering
new insights into RA mechanisms. Here, we highlighted potential
therapeutic targets and molecular markers that differentiate RA
from OA. For example, we identified an overrepresentation of GO
pathways involved in the regulation of GTPase activity in RA. In-
terestingly, GTPases such as Rac1 and RhoA have been implicated in
the regulation of RA FLS behaviors including adhesion, migration,
and invasion (84, 85, 86). As these networks contained regulatory
information between TFs and their TGs, our analysis allowed us to
rank the TFs according to their contribution to the observed dif-
ferential gene expression between RA and OA (Table 1).

We further refinedour findings using an alternative computational
methodology (49) to enhance robustness and reduce the number of
false positives. With this approach, we identified 28 candidate key
driver TFs in FLS (Table 2), including seven not previously implicated
in RA (BACH1, HLX, ETV7, TGIF1, ELF1, HIVEP1, and PLAGL1). Of those
seven, only BACH1 and HLX were specific to FLS, whereas the others
were also associated with T- and/or B-cell signatures (Table 2).
Interestingly, we identified significant TF-TF co-regulated networks
where BACH1 was the most significant driver. Among the genes
differentially targeted by BACH1 were genes involved in fatty acid
degradation and ferroptosis, an iron-dependent programmed cell
death. BACH1 promotes ferroptosis, in part by repressing genes that
interfere with iron-induced oxidative stress (72, 87). Ferroptosis has
been implicated in cancer cell behavior and metastasis, but its

potential role in RA remains uncharacterized. BACH1-induced fer-
roptosis has been recently demonstrated to inhibit fatty acid bio-
synthesis (72, 73), and fatty acids, essential for normal FLS
functioning, are not as crucial for RA FLS, which have reduced usage
and reduced fatty acid beta-oxidation (88). BACH1 also regulates
cancer cell metabolism beyond fatty acids, including the production
of lactate via hexokinase 2 (HK2) (89). HK2 is central to RA FLS be-
haviors and rodent arthritis (90). Thus, BACH1 emerges as a novel
regulator of both ferroptosis and metabolism in RA FLS.

Knockdown of BACH1 in RA FLS significantly increased mRNA
levels of HMOX1, a gene transcriptionally suppressed by BACH1.
Other genes expressed in increased levels in BACH1 knockdown FLS
included lincRNAs, the CBFB, and STRADB (involved in cell polarity
and energy-generating metabolism). Knockdown of BACH1 in-
creased the expression of “intrinsic apoptotic signaling pathways in
response to endoplasmic reticulum (ER) stress” and “response to
ER stress” pathways. Moreover, cell ER stress has been linked to
driving synovial inflammation (91). We examined the effect of siRNA
knockdown on RA FLS phenotypes and observed that in the ab-
sence of BACH1, RA FLS were not able to take an elongated shape,
and did not form thick actin fibers or lamellipodia. Without these
morphological changes, FLS are unable to move, which is crucial for
invasion. Indeed, BACH1 knockdown cells had a reduced ability to
adhere and reduced mobility. Furthermore, BACH1’s role in
osteoclastogenesis (92), combined with the critical function of
osteoclasts in RA-induced bone damage, underscores the potential
advantage of BACH1 inhibition in RA therapy.

In addition to the BACH1 discovery, the highest ranked TFs in RA
FLS included two homeobox genes (NKX2-1 and HOXA1, Table 1) not
previously implicated in arthritis. Our integrated strategy identified
additional key TFs driving the gene expression signatures in FLS,

Figure 5. Effect of BACH1 knockdown on gene
expression in RA FLS.
(A) Volcano plot of the measured log2 fold change
and P-values for all the expressed genes without
and with BACH1 knockdown (paired t test),
where the genes with a P-value below 0.001 were
annotated. Genes were labeled as down-
regulated, up-regulated, or non-significant
(NS). (B) Measured log2 fold change of gene
expression between the siBACH1 and siCTL group,
averaged over BACH1 target genes grouped by
the four quartiles Q1–Q4. Errors bars represent
the 95% confidence interval, defined as std/Qn.
(C) Top 10 overrepresented pathways identified
among the differentially expressed genes with
and without BACH1 knockdown.
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and potentially new targets for functional studies including HLX,
MITF, FOSL1, and ETV7, among others. Importantly, although our
methodology differs significantly from previous studies on RA FLS
(11, 18, 82, 83), in terms of both methods and datasets, many of the
key drivers we identified were also highlighted in those works.
Reference 11, which used epigenetic data and generated their own
FLS cell line datasets, identified BACH1, FOSL1, and ETV7, con-
sistent with our results. Reference 83 derived their network from
scRNA-seq data on mice and mapped it to human data, with
RUNX1 and BACH1 emerging as shared drivers. Reference 18 fo-
cused on DEGs from RA versus OA synovial tissues, though this
approach is limited by the known cellular composition differences
between these conditions (49). Nevertheless, they identified STAT1
and IRF4, two prominent RA transcription factors, which we also
found. Lastly, reference 82 constructed a qualitative Boolean
network based on prior RA FLS knowledge and, like us, identified
HIF1. By integrating our findings with these studies, we can
confidently assert that transcription factors such as BACH1, FOSL1,
ETV7, RUNX1, STAT1, IRF4, and HIF1 represent promising thera-
peutic targets. Notably, our work provides a more in-depth
analysis of BACH1, whereas the other studies only briefly men-
tion it as a potential driver.

Finally, an intriguing aspect that we did not address in this article
is the heterogeneous pathophysiological background of RA (7, 11).

There is considerable evidence of synovial tissue heterogeneity in
RA, potentially contributing to the difference in therapeutic re-
sponse to bDMARD therapy across patients (93). We could leverage
our method to infer sample-specific GRNs to distinguish between
the GRNs of different FLS subgroups. As FLS have emerged as a
leading contender for the source of this RA heterogeneity (10, 94),
such an approach might provide crucial insights into the regulation
behind the observed heterogeneity of therapeutic responses in RA
patients.

In conclusion, this work presents a novel and integrated meth-
odology for analyzing RA FLS transcriptomic data. Our methodology
led to the identification of new genes and pathways for further
investigation and potential therapeutic targeting. We identified
BACH1 as a new key TF driving the gene expression and phenotypic
characteristics of RA FLS. Although BACH1 emerged as the primary
driver in our analyses, our findings pave the way for additional in-
vestigations into the roles of various TFs in RA FLS and their co-
regulation, and whether targeting one of them is enough to affect
disease as BACH1 analyses suggest. In a broader context, the com-
putational approach described in this article, with the use of sta-
tistical techniques to compare network properties across samples
and phenotypic groups, has the potential to also effectively be used
to analyze other synovial cell types, such as T cells, B cells, and
monocytes (49), or be adapted to the study of other diseases.

Figure 6. BACH1 silencing and changes in RA
fibroblast-like synoviocytes (FLS).
(A) BACH1 silencing reduced RA FLS adhesion
and migration (wound healing assay), and
affected cell morphology, including key
characteristics required for movement and
invasion such as thick and linear visible actin
filaments (77), elongated shape, and the
unidirectional formation of lamellipodia
(bars represent the mean of each phenotype
in each group; *P < 0.05, paired t test).
Phenotype scores on the y-axis were
quantified either by the % of cells with the
described attribute, or by dividing the score
by the highest measured value and
multiplying by 100 (indicated as normalized).
(B, C) Representative immunofluorescence
microscopy images of RA FLS (magnification
500x), showing actin fibers and lamellipodia,
marked by phalloidin and pFAK,
respectively. (B, C) FLS were treated with (B)
siRNA BACH1, showing a stellate morphology,
with disorganized actin fibers and no
lamellipodia, whereas (C) cells treated with
siRNA control (CTL) had the typical RA FLS
elongated morphology with thick and
organized actin fibers, as well as polarized
formation of lamellipodia.
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Materials and Methods

Gene expression data and normalization

Our analysis leverages the cell type–specific bulk RNA-seq study of FLS
from patients with RA (n = 18) and OA controls (n = 13) from the Ac-
celerating Medicines Partnership (AMP) Phase I (20). We did not use the
scRNA-seq data from this study as they only provided FLS scRNA-seq
expression from three patients. All data underwent scaling normali-
zation (95) to remove potential biases of other experimental artifacts
across samples. The assumption is that any sample-specific bias (e.g., in
capture or amplification efficiency) affects all genes equally via scaling
of the expected mean count for that gene. The size factor for each
sample then represents the estimate of the relative bias in that sample,
so division of its counts by its size factor should remove that bias.

Correlation of gene expression across cell types

For a given gene g, after performing a t test of its expression be-
tween RA and the control group in FLS, we obtain its t statistics
denoted tdiff-expr(g, C). Then, we compute the correlation of this
score across a cell type pair (C1, C2) as follows:

CorrectionðC1; C2Þ = Pearson
��

tdiff−exprðg; C1Þg2G
�
;�

tdiff−exprðg; C2Þg2G
��

: (1)

GRNs in FLS

We inferred our GRNs with PANDA (96) by combining gene expression
profiles of FLS (20) with prior knowledge about TF binding motifs (bi-
nary) and TF-TF interactions (97, 98). These were inferred from the
StringDB (32) and CIS-BP database (31), and can be downloaded directly
from the GRAND database (99) (https://grand.networkmedicine.org/).
Briefly, PANDA uses message passing to integrate a prior network
(obtained by mapping TF motifs to the genome) with protein–protein
interaction and gene expression data by optimizing the weights of
edges in the networks with iterative steps. Applied to our data, PANDA
produced directed networks of TFs to their TGs, comprising 644 TFs and
18,992 genes, resulting in 12,230,848 edges. Here, each edge between a
TF and its TG is associated with a weight, which represents the like-
lihood of a regulatory interaction between the TF and its TG. The weight
values are normalized with a Z-score and range roughly from −3 and 3,
which corresponds to how many SD it is below (negative Z-score) or
above (positive Z-score) the mean of all other weights in the network.

Then, we used LIONESS (33) to estimate an individual GRN for
each sample in the population (18 RA and 12 OA networks). LIONESS
estimates sample-specific networks by sequentially leaving each
sample out, calculating a network (with PANDA) with and without
that sample, and using linear interpolation to estimate the network
for the left-out sample. All networks were inferred with python
library netZooPy (https://github.com/netZoo/netZooPy). Note that
we chose LIONESS because it is specifically designed to estimate
sample-specific GRNs, making it well suited for capturing the
heterogeneity inherent in diseases like RA. In comparison, other
tools such as CARNIVAL (100), DOROTHEA (101), ISMARA (102), LAMP

(103), and CoRegNet (104) provide regulatory network predictions
but operate primarily at the level of motifs, which may not offer the
same granularity for sample-specific analysis.

Analysis of TF RA regulatory activity in GRNs

For each individual sample in our RNA-seq data, we established an
FLS-directed network of TF nodes with regulatory edges linking them
to their TGs, with weight representing the likelihood of the regulatory
interaction between the two nodes. We leveraged this collection of
networks to test whether the weights of these regulatory edges
differed significantly between RA and control tissues, and to identify
the TFs driving these regulatory differences. The t test was used for the
computation of (i) the differential gene expression between the RA
and control group and (ii) the differential weight of the regulatory
edges between the RA and control group. The obtained scores are
denoted as tdiff-expr and tdiff-edge, respectively. We define RA DEGs as
the genes having a tdiff-expr > 1 in their RA differential expression. Note
that from the definition of the t score, these represent genes where
the difference between the two phenotype groups is higher than
the SD of their gene expression across all samples. Then, we quan-
tified the TF regulatory importance as the average absolute differ-
ential weight of the regulatory edges tdiff-edge of the RA targeted genes,
where only the TGs listed in the TF motifs were considered (Equation
(2)). We expected that TFs with the highest scores would be the most
likely to contribute to RA regulation. Defining as the set of all genes in
the network, we formalize the computation of the TF scores with

fRADEGsg =
���tdiff−exprðgeneÞ

�� > 1;gene 2 G
�
;

fTF targetsg = fmotif ðTF; geneÞ = true;gene 2 Gg;

T = fRADEGsg\fTF targetsg;

TFscore =
1
jTj �gene 2 T

��tdiff−edgeðTF; geneÞ
��: (2)

TF-TF co-regulation network

We quantify the co-regulation between TFs by evaluating the
Pearson correlation between their common gene target’s differ-
ential edge weights. TFs with less than 10 common targets are
associated with co-regulation of 0. Defining G as the set of all genes
in the network, we write

Tij =
�
motif ðTFi; geneÞ = motif

�
TFj;gene

�
= true;gene 2 G

�
;

Co−regulation
�
TFi; TFj

�
= Correlation

��
tdiff−edge ðTFi; geneÞ;

tdiff−edge
�
TFj;gene

�
; gene 2 Tij

��
:

(3)

KDA

Two independent lists of RA-associated genes, denoted as the DEG
list and Literature list, were compiled with a DEG meta-analysis (44,
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45, 46, 47, 48) and by aggregating together several databases (16, 37,
38, 39, 40, 41, 42, 43), respectively (Table S14), as described in ref-
erence 49. Then, 14 networks from different human organs, tissues,
and cell types were downloaded (Table S7). Each of these networks
and a list of RA-associated genes were used to run a KDA with the
Mergeomics R library (36) (for additional details, refer to reference
49).

Isolation and culture of FLS

Primary FLS cell lines developed from RA patients were obtained as
previously described (86, 105). Briefly, synovial tissues were ob-
tained under IRB-approved protocols and all patients signed in-
formed consent forms. Tissues were freshly obtained, minced, and
incubated with a solution containing DNase (0.15 mg/ml), hyal-
uronidase type I-S (0.15 mg/ml), and collagenase type IA (1 mg/ml)
(Sigma-Aldrich) in DMEM (Invitrogen) for 1 h at 37°C. Cells were
washed and resuspended in complete media containing DMEM
supplemented with 10% FBS (Invitrogen), glutamine (300 ng/ml),
amphotericin B (250 μg/ml) (Sigma-Aldrich), and gentamicin
(20 μg/ml) (Invitrogen). After overnight culture, non-adherent cells
were removed and adherent cells cultured. All experiments were
performed with FLS after passage 4 (>95% FLS purity).

siRNA knockdown

RA FLS (four to five cell lines from different patients) were trans-
fected with siRNA BACH1 or a non-coding control using the
Dharmacon SMARTpool siRNA according to the manufacturer’s
instructions (Dharmacon, GE Lifesciences) as previously described
(86). Cells were then incubated at 37°C for 24–48 h before initiating
the functional assays as described below, or using the cells for RNA
sequencing. Knockdown was confirmed with qRT-PCR.

FLS assays

Invasion assay
The in vitro invasiveness of FLS was assayed in a Transwell system
using Matrigel-coated inserts (BD Biosciences), as previously de-
scribed (14, 81, 105). Briefly, siRNA-transfected FLS were harvested
by trypsin–EDTA digestion and resuspended in 500 μl of serum-free
DMEM. 2 × 104 cells were placed in the upper compartment of each
Matrigel-coated insert. The lower compartment was filled with
media containing 10% FBS, and the plates were incubated at 37°C.
After 24 h, the upper surface of the insert was wiped with a cotton
swab to remove non-invading cells and the Matrigel layer. The
opposite side of the insert was stained with crystal violet (Sigma-
Aldrich), and the number of cells that invaded through Matrigel was
analyzed with ImageJ software. Experiments were done in duplicate.

Adhesion to the Matrigel assay
The FLS adhesion assay was done as previously reported (85).
Briefly, transfected cells were trypsinized and counted. 6,000 cells
per well were plated in triplicate in a 96-well plate previously
coated with 5 μg/ml of Matrigel (BD), in complete media. After 2 h,
non-adherent cells were washed out with PBS 1X, and adherent

cells were stained with crystal violet. Cells were manually counted
and read with a spectrophotometer at 590 nm.

Migration in the wound healing assay
Transfected FLS were briefly trypsinized and counted. 6,000 cells
per well were plated in triplicates in a 96-well plate. Cells were
allowed to grow until confluence (usually 24 h). Then, a wound
(scratch) was created using a 10-μl pipette tip. Pictures were taken
at this initial time (time 0) and 24 h later. FLS migration was de-
termined using ImageJ software by subtracting the density (the
number of cells that cross into the wound/scratch area) after 24 h
from the density of time 0 (reference point).

Proliferation
Transfected FLS were trypsinized and counted. 3,000 cells per well
were plated in triplicates in a 96-well plate in complete media with
10% FBS. After the indicated times, cells were incubated with
Promega CellTiter 96 AQueous One Solution Cell Proliferation Assay
(MTS) (Madison, WI) according to the manufacturer’s instructions.
Proliferation was assessed by colorimetric reading at 490 nm.

Immunofluorescence microscopy

Immunofluorescence was performed as previously reported (85).
Briefly, siRNA-transfected cells were plated on a glass coverslip
with media containing 10% FBS. Cells were fixed with 4% formal-
dehyde for 15 min at RT and permeabilized with PBS/Triton X-100
0.1% for 5 min. Non-specific binding was blocked with 5% nonfat
milk. Cells were then stained with Alexa Fluor 488 (green) phalloidin
(Invitrogen) to stain the actin filament and anti-phospho-FAK (pFAK;
Abcam), followed by a secondary Alexa Fluor 594 (red) antibody to
identify pFAK and lamellipodia. Images were acquired with a Leica
DMi8 microscope at 600× magnification and analyzed with Leica
Application Suite X (LAS X) software (Leica).

FLS actin filaments were scored following the system described
in reference 77. Briefly, actin filaments were categorized into three
groups: (i) no filaments visible in the central area of the cell, (ii)
some fine filaments present in the central area of the cell, and (iii)
more than 90% of cell area filled with thick filaments.

Matrix metalloproteinase (MMP) quantification in zymograms

Gelatin (MMP2) and casein (MMP3) zymography was performed
according to previously described methods (14). Briefly, RA FLS
transfected with either siRNA BACH1 or control were cultured on
Matrigel and supernatants concentrated with Micron centrifugal
filters (MilliporeSigma) and the protein content quantified. The
same amount of protein per sample was used in each experiment.
Protein was mixed with Tris–glycine–sodium dodecyl sulfate (SDS)
sample buffer (Invitrogen), loaded into a zymogram precast gel
(Invitrogen), and run for 90 min at 125 V. After electrophoresis, gels
were treated with renaturing buffer (Invitrogen), followed by in-
cubation in developing buffer (Invitrogen) at 37°C overnight. Gels
were stained with SimplyBlue SafeStain (Invitrogen) for 1 h at RT
and washed. Areas of protease activity appeared as clear bands
against a dark-blue background.
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RNA extraction and RNA sequencing

Total RNA was extracted and isolated from synovial tissues,
quantified by NanoDrop, and 400 ng per sample was sent to
Novogene (Beijing, China) for sequencing and analyses.

Data Availability

All the gene lists obtained in this study, along with the data and the
code to reproduce all figures presented in this article, are made
available publicly on GitHub at https://github.com/AI-SysBio/RA-
drug-discovery.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202402808.
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