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Musical sequences are correlated dynamical processes that may differ
depending on musical styles. We aim to quantify the correlations through
power spectral analysis of pitch sequences in a large corpus of musical com-
positions as well as improvised performances. Using a multitaper method we
extend the power spectral estimates down to the smallest possible frequencies
optimizing the tradeoff between bias and variance. The power spectral den-
sities reveal a characteristic behavior; they typically follow inverse power laws
(1/f*-noise), yet only down to a cutoff frequency, where they end in a plateau.
Correspondingly the pitch autocorrelation function exhibits slow power law

decays only up to a cutoff time, beyond which the correlations vanish. We
determine cutoff times between 4 and 100 quarter note units for the com-
positions and improvisations of the corpus, serving as a measure for the
degree of persistence and predictability in music. The histogram of exponents
[ for the power law regimes has a pronounced peak near =1 for classical
compositions, but is much broader for jazz improvisations.

Music can be viewed as a correlated dynamical process with a suc-
cession of pitches, chords, rhythmic values, etc. The nature of the
correlations is related to the degree of expectation and surprise in the
musical progression, which was emphasized by music theorists since
Leonard Meyer'~. The emotional power of music and musical meaning
are thought to depend on the interplay between anticipation and
uncertainty. It is difficult to substantiate these concepts by quantita-
tive approaches. An obvious approach is to try to quantify this inter-
play on the basis of information theoretical concepts, e.g., by
estimating redundancies and entropies of compositions in order to
compare different composers, musical genres, etc. Entropies can be
estimated for distributions of single pitches (unigrams) and pairs of
successive notes (digrams)*=. For larger n-grams (sequences of notes),
however, the finite length of musical compositions imposes severe
limitations*; the combinatorial explosion of the number of possible
states precludes accurate estimates of their probabilities, as the length
of the time series is fixed. In particular the ultimate goal of determining
block entropies and redundancies for sufficiently large n-grams (e.g.,
representing entire musical phrases) in a composition remains an
unaccomplishable challenge.

Understanding music as a correlated dynamical process raises the
question what is the nature of these correlations and makes music a
subject for complex systems research. With the growing interest in
nonlinear dynamics, new techniques for time-series analysis were

developed® ™ and it is natural to apply them also to musical time series.
Considering the difficulties in determining block entropies and
redundancies, it is more promising and feasible to characterize musi-
cal sequences by their correlation decay. The autocorrelation function
can quantify how much an event at time ¢ = 7 is related to an event at
t =0 and thus in its decay can also reflect the degree of persistence or
the degree of innovation. It is convenient to determine its properties
through estimates of the power spectral density (PSD), which
according to the Wiener-Khinchin theorem is related to the auto-
correlation function by Fourier transform'. For musical compositions
and melodies the focus of time-series analysis is naturally on pitch
sequences (pitches are particularly well adapted for time-series ana-
lysis, as they possess an intrinsic ordering and can be represented in
dependence on time.). The power spectral analysis of such sequences
of pitches is unrelated of course to the series of harmonics or over-
tones of single tones, but reflects the stochastic properties of the
progression of successive pitches on much longer time scales, desir-
ably up to the length of musical movements.

In early work, Voss and Clarke analyzed PSDs of full audio signals
of recordings and reported 1/f-noise (“pink noise”) in loudness fluc-
tuations and frequency fluctuations, i.e. f’-decays of the PSD". Boon
and Decroly studied pitch sequences and in contrast reported 1/f
noise, also known as “red noise” i.e., f >-decays of the PSD". Nettheim,
on the other hand, found power-law decays of the melody-PSD which
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follow 1/f%-shapes with B € [1, 2] and with a tendency towards 1/f *-
shapes'*. Unfortunately, due to the necessary averaging, the lowest
frequencies in his melodic spectra correspond to times of up to 4 bars
only, and thus reflect correlations only within musical phrases and not
in entire melodies. Other authors have used detrended fluctuation
analysis (DFA), which yields fluctuation functions F(s) that are also
related to autocorrelation functions and PSDs. Applying this to the
time series of pitch frequencies in Bach’s inventions, Jafari et al.”®
reported power law exponents for £(s), which typically correspond to
f72 decays of the PSDs (i.e., B near 1/2), whereas Gonzalez-Espinoza
et al.'®, who analyzed 304 music scores of different composers, found
that the fluctuation function F£(s) could not always be described by a
single power law, but followed various profiles, e.g., with two different
power law exponents in different regimes.

These different and partly contradicting observations lead to
quite different conclusions concerning the properties of the correla-
tion decay. For PSDs decaying like 1/f# with O < 8 < 1 the autocorrela-
tion function asymptotically decays in a power law ¢ withy=1-4.1fa
1/f-decay (i.e. with S close to 1) is observed down to the smallest fre-
quencies, it implies a very slow power-law decay of correlations and
scale-free behavior on arbitrarily long timescales. This represents a
very far reaching conclusion, which has generated most of the interest
in the problem. If, however, the PSD diverges like f ™ for f > 0, the
autocorrelation function asymptotically decays like ¢ 2 instead. An
observed 1/f -decay on the other hand may also be associated with a
fast exponential decay of correlations (when the spectrum follows a
Lorentzian).

Among these claims, the most spectacular is the report of 1/f-
noise by Voss and Clarke™. If confirmed by PSD-analyses of real pitch
sequences down to smallest frequencies, it would imply that musical
compositions still keep a small but finite memory of earlier events after
arbitrarily long times. Voss and Clarke have reported 1/f-decays over 4
orders of magnitude down to very low frequencies corresponding to
hours of recording.

Their observation, however, does not translate into pitch auto-
correlations, since in their analysis of audio signals of entire recordings
they only could consider a vague measure of momentary sound fre-
quency, the number of successive zero crossings of the audio signal
per unit time. It is not clear what this observation implies for musical
pitch sequences.

The observations of such diverse power laws outlined above,
which were based on different techniques and different musical
material, cannot be reconciled and thus the important question
remains open, what are the long-time autocorrelation properties of
pitch sequences in musical compositions. A main obstacle and possi-
ble cause of differing observations is the need to reserve part of the
time series for averaging in order to achieve reliable PSD-estimates.
Therefore only a fraction of the entire time series can be used and its
length typically determines the bandwidth or smallest possible fre-
quency of the estimate. Is there a way, nevertheless, to answer this
fundamental question by careful statistical analyses going down to
small frequency scales and up to long timescales? Are the PSDs of
pitches characterized by power laws on sufficiently many scales? If yes,
on which frequency scales do they occur and what are their typical
exponents?

To answer these questions, in the present work we carry out
careful estimates of the PSD of pitch sequences in a large corpus of
musical compositions as well as in improvised performances. As
mentioned above, reliable estimates require sufficient averaging and
thus sufficiently long time series are needed. Using a multitaper PSD-
method we strive to extend the PSD-estimates down to the smallest
possible frequencies (given by the bandwidth) and to optimize the
tradeoff between bias and variance. In each considered example we
explicitely determine the bandwidth and the confidence intervals to
indicate the range of validity of our conclusions.

Based on such careful estimates we find that the PSD of musical
pitch sequences typically follows inverse power laws only down to a
cutoff frequency, where the PSD turns into a flat plateau. The cutoff
frequency thus marks a transition from 1/f# to a white noise behavior at
low frequencies. Correspondingly the pitch autocorrelation function
exhibits slow power law decays only up to a cutoff time, beyond which
the correlation vanishes. This transition from a strongly correlated to
an uncorrelated time series at large time differences may reflect the
interplay between predictability and uncertainty, between expectation
and surprise in music as discussed by music theorists. The cutoff time
can serve as a measure for the degree of persistence and predictability
in musical compositions. It can be used to characterize different
compositions and in some cases shows differences between compo-
sers - we find, e.g., that on average it seems to be larger in Mozart’s
compositions than in Bach’s. In general we obtain cutoff times in a
range between 4 quarter note units and 100 quarter note units; they
show an increasing trend in dependence on the lengths of the
compositions.

In the power law regime of the PSD we determine the histogram of
the power law exponents S across all pieces, which has a pronounced
peak near =1 for classical compositions. So one can speak of 1/f-noise
in musical pitch sequences (and of very slowly decaying correlations),
yet only in a limited frequency range bounded by the cutoff frequency.
In some cases, however, we find pure power laws without plateaus and
cutoff frequencies. This is the case only for relatively short musical
time series, where the PSD bandwidth is necessarily relatively large.
Therefore it is very likely that in these cases a true cutoff is hidden at a
smaller frequency within the bandwidth and would show up, if the
bandwidth could be lowered. The spectra also exhibit “rhythmic”
peaks at multiples and fractions of inverse quarter note units. They
reflect the rhythmic structure that is present in the different pieces.

In improvised jazz solos, pure power laws are very rare and pla-
teaus dominate at small frequencies. The rhythmic peaks are broader
and less pronounced indicating a larger timing variability in jazz solos.

Results

We performed PSD estimations of 553 pitch time-series in total, of
which 99 were extracted from classical music scores and 454 from
transcriptions of improvised jazz solos, using the multitaper method
and following the procedures described in detail in the methods sec-
tion. In the case of classical music, we made a distinction between
single movements and full compositional works (e.g. symphonies) as
they might involve different correlation structures. We chose NW =2 as
a basis (see subsection on variance and bias) for our estimations as it
ensures access to low frequencies (bandwidth W at least down to 3
orders of magnitude compared to the highest observable frequency)
with an acceptable level of variance reduction. Indeed, as the number
of tapers K is commonly given by K = 2NW - 1, the choice NW = 2
permits the use of 3 tapers, which means 3 times averaging”.

Classical music scores

Even though single movements and full compositional works have
different length scales and organizational structures, we found that
their PSDs behave similarly. We identified two distinct kinds of struc-
tures: power-law decay and power-law with plateau (which, for con-
ciseness, we abbreviate as PL and PL+P, respectively). Figures 1 and 2
present representative examples of these two structures for single
movements and for full compositions with several movements. Addi-
tional examples can be found in the supplementary information. As
shown in the preceding section, it is formally not possible to decide
whether a plateau observed below the bandwidth is a true plateau or
merely an artifact of the bias. Therefore distinctions between power-
laws and power-laws with plateau can be made only down to the
resolution limit of the bandwidth. Nevertheless, in cases where we see
a plateau above the bandwidth limit, we can be confident that it is real
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Fig. 1| Multitaper PSD estimation of single movements. (A) Shostakovich’s
Prelude and Fugue in B op. 87 no. 11 (first violin) and (B) Allegretto from Haydn’s
String Quartet in D major, Hob.III:79 (first violin). Frequency and intensity are
shown in a log-log representation and are shown in units of 1/quarter notes. Note,
however, that we used a grid of 12 sub-units per quarter notes for the time series
segmentation, which yields a highest frequency of 6/quarter note. For con-
venience, the top horizontal axis shows the time periods in quarter note units
corresponding to the frequencies on the horizontal axis. As a grid of 12 sub-units

e
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per quarter note was used for the time-series segmentation, the time period is
obtained as Period(quarter notes) = 1/12f. The shaded grey area represents a 95%
confidence interval on the basis of the fitted PSD (grey line). The fitting procedure
is described in the methods section. The vertical dashed lines mark frequencies
corresponding to multiples and subdivisions of quarter notes. The shaded pink
area represents frequencies below the bandwidth W. Example (A) is representative
for a PSD with power-law (PL) down to the bandwidth W, and example (B) for a
power-law + plateau (PL+P).
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Fig. 2 | Multitaper PSD estimation of full compositions. (A) Violin Sonata No.1in
G minor, BWV 1001 (J.S. Bach) and (B) Violin Sonata in D major, HWV 371 (G.F.
Handel). The shaded grey area represents a 95% confidence interval on the basis of
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the fitted PSD (grey line). For other conventions, see Fig. 1. Example (A) is repre-
sentative for a PSD with power-law (PL) down to the bandwidth W, example (B) for
a power-law + plateau (PL+P).

and not an artifact (as we outline in the subsection on variance and
bias, the bias does not affect flat PSD regions.) and not a numerical
artifact. In PL cases without plateau, it is not possible to decide whether
a plateau exists, but it is possible that a plateau would show up, could
the bandwidth be lowered.

An important implication of the PSDs is on the behavior of the
autocorrelation functions, which are related to the PSDs according to

the Wiener-Khinchin theorem. If the PSD asymptotically decays in a
power law like 1/f® with O < B < 1, the autocorrelation function
asymptotically decays in a power law ¢ 7 with y = 1 — B. Such cases
represent very slow decays of the autocorrelation function (long-range
correlations). If on the other hand the PSD power law ends in a plateau,
this implies a relatively abrupt disappearance of autocorrelations
above a cutoff time. To yield a qualitative understanding of the effect
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Fig. 3 | Comparison of autocorrelation functions from simulated signals pre-
senting a PL and a PL+P with a cutoff frequency in their PSDs, resp. A, B show a
PSD estimation of pink “1/f” simulated noise (dimensionless) and the corre-
sponding autocorrelation function, (C, D) are the PSD and autocorrelation function
of a “power-law + plateau” process. The cutoff frequency f. and the cutoff time
7. = 1/f. denote the frequency and time at which the plateau starts and the

correlations end, respectively. The effect of the plateau in (C) is to shorten the
range of the correlations, as is shown in (D). The dashed and the full horizontal
lines provide a 99% and 95% confidence interval for the autocorrelation function,
respectively. Note that in (B), the power-law decay of the autocorrelation function
is only expected asymptotically for ¢ > + .

of plateaus on PSDs, Fig. 3 provides a comparison of the autocorrela-
tion function of two simulated signals exhibiting a power-law PSD and
a power-law + plateau PSD, respectively. The signal exhibiting a PL
(Fig. 3A, B) was generated with a colored noise algorithm’®, the PL+P
signal was obtained by manipulating the Fourier transform of colored
noise (flattening the end of the spectrum), and taking the inverse
Fourier transform after randomizing the phases. Figure 3 shows that
the long-range correlations induced by a PL structure (Fig. 3B) are
shorter ranged, if the PSD shows a plateau (Fig. 3D). In fact, the
appearance of a plateau at frequency f. implies the existence of a time-
scale 7. = 1/f. that provides an upper bound after which correlations
stop being significant (Fig. 3D). Flat PSDs are reminiscent of white-
noise and correspond to fluctuations of uncorrelated processes.

In order not to surcharge the main body of the present article, we
present other PSD estimations for classical music scores in the sup-
plementary information (see Supplementary Figs. 12 and 13). We notice

Table 1| Classification count of observed behaviors

Piece type Shape

PL PL+P
Improvised solos 14 440
Single movements 15 42
Several movements 3 4

The table presents the number of pieces showing PL and PL+P shapes for the three different
types of pieces studied (single movements, several movements, and improvised solos). Single
and several movements both refer to classical compositions. In all three cases, the PL+P shape is
observed more frequently than PL, and is even more dominant in improvised jazz solos com-
pared to classical music.

that the PL structures show up much less frequently than PL+P struc-
tures, as can be seen in Table 1, where we show the count of pieces that
follow a PL and a PL+P structure. Moreover, these two shapes are not
equally distributed among composers. The time period at which a
plateau appears shows some variability (it typically lies between 4 and
100 quarter notes), and varies among composers and pieces. For
example the movements composed by Mozart which we analyzed,
revealed plateaus starting at time periods of approximately 40 quarter
notes, whereas many movements in J.S. Bach’s compositions showed
plateaus starting at time periods of 10 quarter notes. Pitch auto-
correlations thus tend to be more short ranged in J.S. Bach’s compo-
sitions, whereas they tend to be more persistent and long-ranged in
Mozart’s compositions (for more and quantitative details, see
the supplementary information and supplementary Fig. 8).

Overall, we observe that the longest pieces from our corpus
overwhelmingly show PL+P structures. The appearance of a plateau,
is strongly related to the total length of the piece, as only shorter
pieces tend to present PL shapes. This can be seen in Fig. 4, which
shows a histogram representing the number of PL and PL+P pieces as
a function of piece length. This histogram only considers single
movements, as full compositions almost exclusively exhibit PL+P
shapes. We note, in particular, that all movements longer than 1200
quarter notes show PL+P shapes. This indicates a possible maximal
extent of correlations in musical pieces and suggests that the pure
power-law decays (PL) observed in short pieces are merely a con-
sequence of their relatively large bandwidth W, which prevents pla-
teaus from showing up in the unbiased frequency range (above W).
According to this explanation, plateaus would then show up if the
bandwidth could be lowered.
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Fig. 4 | Distribution of PL and PL+P shapes as a function of piece length. The
pieces considered here are single movements. The x-axis shows length bins of equal
width. Each bar represents the number of pieces with lengths in between the
boundaries of the corresponding bin. Light grey refers to PL+P pieces, dark grey
represents PL. Overall, long pieces tend to present a PL+P shape and PL-shapes are
absent in movements longer than 1200 quarter notes. This clearly suggests that
plateaus do not show up in short pieces, merely because the bandwidth in these
pieces is too large to enable the detection of plateaus.
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Fig. 5 | Cutoff time in PL+P pieces as a function of piece length. The red points
show the cutoff times of classical pieces (both single movements and full compo-
sitions) presenting a PL+P shape in their PSD estimation as a function of their total
length. The black points present the same relationship, for all jazz solos of the
Weimar Jazz Database (for details, see next section). For jazz improvisations, we
observe a higher density of points around 128 and 256 quarter notes (32 and 64 bars
in 4/4 time signature), which are very common durations of solos. For classical
compositions, one can see an increasing trend between the lengths of PL+P pieces
and the cutoff periods. This trend is somewhat less pronounced for jazz solos.

While the individual composing style of different composers sig-
nificantly impacts the spectral properties of pitch time-series, one of
the most crucial parameters for the overall shape of the PSD seems to
be the total length of a piece. Indeed, there exists a correlation
between the cutoff period, where the slope of PL+P shapes ends in a
plateau, and the length of a piece. We found that plateaus in longer PL
+P pieces tend to appear at far lower frequencies than in shorter pie-
ces. In other words, longer PL+P pieces are also associated with larger
cutoff periods. This relationship can be seen in Fig. 5, which shows the
cutoff period vs piece length for classical pieces and jazz improvisa-
tions in log-log representation. The figure displays some scattering,
indicating that there are exceptions to the roughly linear trends. We
see, however, that the largest cutoff values are only reached for the
longest pieces. The trend is more pronounced for classical pieces. A
possible explanation for this increasing trend might be that composers

often pick up and vary preceding themes and motifs throughout the
whole composition, which tends to cause longer correlations in longer
compositions.

In single movements as well as in full compositions, we also
noticed the appearance of “rhythmic peaks” on top of the aforemen-
tioned structures, which are positioned at common note values (see
e.g. Fig. 3). Distinct peaks appear at periods 0.25, 0.5,1, 2, and 4, which
correspond to periods of sixteenth, eighth, quarter, half, and whole
notes in musical nomenclature, respectively. These peaks are therefore
indicators of the rhythmic structures present in the pieces.

So far we considered the existence and position of cutoff fre-
quencies, but one may ask what are the exponents of the power-law
regime in the PSD, as they influence the decay of correlations. The
distribution of exponents for the power-law part of the PL+P and PL
structures of classical compositions is shown in the histogram of
Fig. 6A. For each piece of our corpus, the exponent was determined by
fitting the PSD estimation (see Methods section) and isolating the
power-law part. The exponents follow a uni-modal distribution cen-
tered around 1.1 and spanning the interval [0.3, 1.8]. This result has
important consequences for the decay of the autocorrelation function.
As pointed out before, if a PSD power law extends down to arbitrarily
small frequencies, the autocorrelation then also follows a power law
and decays very slowly with an exponent y =1 - . The decay becomes
extremely slow, as B approaches 8 = 1. As we do not find this behavior
asymptotically in the PSD in almost all cases, the slow power law
decays are only transient in the autocorrelation function and limited
by the cutoff times (see also Fig. 3). In this limited sense, bounded by a
finite cutoff time, we can speak of long-range correlations in musical
pitch time series and correspondingly (with a distribution of S values
peaking near 8 = 1) of 1/f-noise in a finite frequency range.

Jazz improvisations

As classical music compositions typically show more structure and
musical form than jazz improvisations, we may expect somewhat dif-
ferent autocorrelation behaviors and consequently different behaviors
of the PSDs. We therefore study jazz improvisations as a separate
category. Similarly as for the classical music scores, we find PL and PL
+P structures (see Fig. 7). For the jazz improvisations, however, pure PL
structures are extremely rare (see Table 1) and show up only in short
solos, where the large bandwidth W technically precludes the obser-
vation of plateaus. The cutoff periods for the crossover from power-
law to plateau also show more variability than in classical pieces
(Fig. 5). There is a higher density of points around 128 and 256 quarter
notes (32 and 64 bars in 4/4 time signature), which represent typical
durations of jazz solos.

Since the cutoff period marks a transition from long-range power-
law autocorrelations to a white spectrum (lacking autocorrelations) it
indicates an upper bound for the time beyond which the (long-range)
correlations get lost. The fact that this correlation time is typically
smaller for jazz improvisations than for classical compositions reflects
a lower degree of musical structure in improvised jazz solos. But note
that most of the jazz solos are also much shorter than the lengths of
most of the classical music pieces. Perhaps the most notable difference
compared to classical compositions is the way, in which rhythmic
peaks appear. Since the analyzed solos were live improvisations, the
onsets and durations of various notes being played deviate from the
“true” value they would have on a corresponding sheet notation. These
fluctuations can be intentional” and/or result from human error®.
Depending on their strength and nature they can broaden the rhyth-
mic peaks. Overall, when rhythmic peaks are visible in PSDs of jazz
solos, they tend to be less pronounced than in classical compositions.
This can be seen, e.g., in Fig. 8A. Looking at both ends of the spectrum
we identify a PL+P structure. However, in the intermediate frequency
domain, broadened peaks corresponding to multiples of quarter notes
form a large bump. Quarter notes are delayed or anticipated by jazz
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line). Jazz solos show a similar PSD structure as classical music, yet with shorter cutoff
periods 7.. Example (A) seems to indicate a pure PL shape, but the solo is relatively
short such that the large bandwidth W precludes the observation of a plateau.

musicians (e.g., to create surprise and make their solos more inter-
esting) which explains the broadening of peaks at these frequencies.
While we occasionally find PL+P shapes in PSDs of improvised solos
that show very broad peaks (like in Fig. 8A), the majority of the PL+P
structures that we observe closely resemble the ones seen in the case
of classical music scores. The rhythmic peaks are less pronounced,
however, as exemplified in Fig. 8B.

The distribution of exponents for the power-law part in PL+P and
PL structures of improvised jazz solos is shown in the histogram of
Fig. 6B. In contrast to what is seen in the case of classical music scores,
the distribution shows a broader peak area in interval [-2.0, -0.75] and
the mean value of the exponents is larger than in classical music scores.

Discussion
In the present work, we assessed the correlation structure of musical
pitch time series through estimates of their power spectral densities.

We took special care to identify and mitigate sources of bias and var-
iance in the PSD estimation in order to avoid spurious trends. Using a
multitaper method we were able to reach the highest possible fre-
quency resolution. In a large corpus of classical music scores and jazz
improvisations we generally found the presence of slowly decaying
correlations, yet of finite range, as revealed by inverse power-laws in
the PSD-estimations that are turning into plateaus at low frequencies.
Due to their ubiquity we interpret the appearance of these plateaus as a
characteristic of musical time series.

Comparing our results to previous literature?'®, we find agree-
ment in so far as there is a power law regime, where the power laws
do not show a single (universal) exponent. We found a continuum of
possible values and in detail have determined the histogram of the
power law exponents B. For a large corpus of classical music scores
we found a relatively narrow distribution centered near § = 1; for
improvised music the distribution was broader. Optimizing the
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Fig. 8 | Improvised solos. Multitaper PSD estimation of (A) Benny Carter’s solo on
“I Got It Bad” and (B) Buck Clayton’s solo on “Dickie’s Dream”. The shaded grey area
represents a 95% confidence interval on the basis of the fitted PSD (grey line).

Dashed vertical lines mark periods from 0.5 to 8 quarter notes. A shows that the
rhythmic variability in some solos can considerably broaden the rhythmic peaks at
4 to 8 quarter notes. The flattening of the PSD at high frequencies is a quantization
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artifact: the solo contains rhythmic values shorter than the unit duration (1/12
quarter note) which results in a nearly random signal at the highest frequencies.
B shows an example of a typical PL+P structure where rhythmic peaks are present.
The peaks are visible but are not very pronounced compared to the peaks observed
for classical music scores.

tradeoff between bias and variance allowed us to extend the PSD-
estimates to the smallest possible frequencies and thus to show that
the power laws of refs. 12-16 do not extend to arbitrarily small fre-
quencies, but are crossing over to the plateaus (for musical pieces
that are long enough). In a careful DFA analysis of a large corpus of
musical compositions, Gonzalez-Espinoza et al.'* moreover reported
deviations from single power laws in the DFA fluctuation function in
the form of more complicated profiles. Comparing the frequency
range, where the deviations occur, it is very likely that these profiles
are associated with the presence of periodic components in the
musical time series, which can easily be resolved as rhythmic peaks in
the PSD and appear as broad shoulders in the DFA (see e.g. supple-
mentary information, Fig. 5). The PSD has the advantage of resolving
the rhythmic peaks in this frequency range and can also detect the
transitions to plateaus at small frequencies more conveniently
than DFA.

Having summarized further results already at the end of our
introduction, we here want to discuss the implications of the power-
law + plateau (PL+P) structures. These structures represent strong and
slowly decaying correlations that last up to a characteristic cutoff time,
beyond which they quickly become insignificantly small. While slowly
decaying correlations reflecting persistence seem to be a necessity
without which music would appear too random, their finite-time hor-
izon constitutes an additional element. We think that this element,
which introduces a stronger degree of innovation and surprise than
the pure power-law behavior, is substantial in order to maintain the
interest and attention of listeners. We find cutoff times reaching from
the typical lengths of phrases to the typical lengths of sections in
musical form (A, B, C, ...) and thus they might reflect the innovation
brought forth by new musical phrases or by musical form. At least and
at last, new movements in symphonies and sonatas, which often
introduce entirely new musical ideas and musical material, should
break the persistence of slowly decaying correlations. While these
cutoff times are piece-dependent and composer-dependent, a clear
trend emerged from our results. Longer pieces were systematically
associated with the appearance of plateaus, and when pure power-laws
occurred occasionally without plateaus, this was predominantly in
shorter pieces. This is a strong indication that even in shorter pieces

one may count with plateaus, that are merely masked due to the
broader range in which the estimation is biased and would show up, if
the PSD-bandwidth could be lowered.

In rare cases, the identification of a plateau turned out to be
ambiguous. In these PL+P cases, the slope of the plateau (in the log-log-
representation) showed a slight variability around O (see e.g. Andante
of String Quartet No.18 in A major, K. 464” in supplementary Fig. 12).
These variations might be the result of a large variance, or mark the
beginning of a transition to a plateau in pieces that are too short to
allow the PSD-estimation to reach lower frequencies. The behavior of
the autocorrelation functions in such cases, however, is not sub-
stantially influenced by these small slopes and thus they have no
influence on the conclusions of our work.

The finite range of slowly decaying correlations rules out the
possibility of statistical self-similarity and never-ending correlations,
that was evoked by the lack of bounds in the observation of 1/f-noise by
Voss and Clarke™. The findings shown in the present article for pitch
time series are based on the analysis of many pieces by various com-
posers from different styles and eras and emphasize the fact that
musical time series decorrelate after a certain time. The fact that we
did not identify any self-similar compositions does not imply that they
are impossible but shows that statistical self-similarity is not a usual
feature of musical compositions. While long-range correlated
sequences of pitches can easily be generated algorithmically, creating
them is usually not a goal for human composers. It would be worth-
while to search for self-similar compositions and to study how they
might differ from normal musical pieces.

Power-law behavior also shows up in the PSDs of small random
timing fluctuations in musical performances” . In contrast to the
results reported in the present article, however, crossovers to plateaus
and cutoff frequencies have not been reported in these cases. This
important difference is probably due to the purely psychophysical
nature of microtiming fluctuations. Similarly one finds power law
behavior in sensorimotor experiments on tapping strength
fluctuations®. Small random microtiming fluctuations are involuntary,
they are ubiquitous in performances, and they do not play a musical
role, as was shown e.g. for the swing feel in jazz*°. This is not true for
systematic microtiming deviations, however. They do have a function
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in musical performances and they were shown to play a key role for the
swing feel in jazz®.

Methods

Data corpuses and data format

For ease of access and readability, we based our study on musical pieces
stored in MIDI (“.mid”) format. It is commonly used in music production,
performance and analysis. In this format, notes are reduced to their bare
minimum in a representation that stores the pitch, the onset and the end
of a note as well as the loudness and relative position of the note w.r.t
the preceding note. MIDI files are therefore easy to interpret and can be
processed rapidly by a computer.

The entirety of the data that we used in the present study stems
from free collaborative online databases. For written compositions of
classical music, we primarily used MIDI files from kunstderfuge.com?,
and completed our corpus with midiworld.com? and imslp.org?® when
needed. The MIDI files of improvised music were extracted from the
database of the Weimar Jazz Database of the Jazzomat research
project”. For our corpus of improvised pieces, we used every entry of
this database, apart from pieces that were too short (less than 500 data
points) and files that did not follow the standard MIDI format. Since we
need one-dimensional time-series for our analysis, we prioritized files
corresponding to monophonic instruments. When this was not pos-
sible, we restricted ourselves to the top voice (e.g., if two notes are
played simultaneously, we consider only the top one). Thus, our study
did not include pieces written for instruments like piano or harpsi-
chord. For pieces where several instruments simultaneously play dif-
ferent melodic lines in a polyphonic manner we selected the one that
stands out most (e.g. the first violin).

The complete list of pieces constituting the corpus of classical
music scores and jazz improvisations we studied is given in the sup-
plementary information.

Power-spectral density

There are two prominent methods that can be used to characterize
fluctuations in stochastic time series, power spectral density (PSD)
analysis and detrended fluctuation analysis (DFA). While DFA has the
advantage of being able to deal with multivariate time series, it is not
well adapted to signals containing periodic components, which are
reflected as broad shoulders in the DFA fluctuation function. This is
discussed in more detail in the supplementary information. We found
this side effect disadvantageous for our purpose, as many of our time
series exhibit periodic components. In the PSD, on the other hand,
periodic components show up as more or less pronounced peaks,
which can easily be identified. We therefore decided to use PSD-
analysis rather than DFA.

The power spectral density (PSD) of a signal x(¢), is defined as

Po(f)=1%()I, @

where X(f) is the Fourier transform of x(¢). It is closely related to the
correlations present in the signal and can therefore be used to quantify
them. In fact, under the assumption that the process studied is wide-
sense stationary, the Wiener-Khinchin theorem states that the auto-
correlation function R,,(t), is equal to

Ry ()= /.oo Pxx(f)eiftdt 2)

PSDs following an inverse power-law satisfy the relation Py(f) « 7
where the exponent f3 plays a special role. They are particularly relevant
in long-range correlated processes. Indeed, if the PSD follows a pure
inverse power-law, so does the auto-correlation function®. For a finite
signal captured as a time-series, the PSD can only be estimated,
however. A wide variety of methods have been developed to this

end”*., We chose to conduct our analysis with non-parametric methods
as the statistical process underlying music composition cannot be
quantified. Such methods are usually based on windowing;: the data are
separated into several segments, in which the discrete Fourier trans-
form is computed. The estimate is the average of the squared-modulus
of each transformed segment. In other words, if we consider a discrete

segment of length L, the estimate P, (f) of the PSD is

L-1 2

M
LIS Xyeemie €

n=1t=0

'bxx(f)z

As a result of windowing, the accessible frequency range of the results
is limited, since segments are shorter than the original signal. To cope
with this limitation, methods like Nutall-Carter or multitaper methods
have been developed. In the present paper, we chose to use the
multitaper method and will describe it below.

Time series extraction

To study the power spectral density of musical pitch, we extracted
pitch time-series from the MIDI files of our corpus. Given a MIDI file
of a piece, the first step was to extract two sequences of integers
corresponding to the pitch and durations of notes, respectively.
This was done using the MIDLjl and MusicManipulations.jl Julia
packages®, because they allow extraction of the durations in
absolute MIDI time. The sequences of pitches follow the MIDI pitch
convention and therefore range from 0 to 127. Time is measured in
ticks, the standard time unit of MIDI format. To preserve the
information associated to the temporal duration of the notes in the
time-series, each note in the sequence was quantized and seg-
mented according to a grid of unit duration of 1/12th of a quarter
note (for more details see an example in Supplementary Fig. 1). This
choice allows us to treat the two most prevalent time signatures
(number of quarter notes per bar), 3/4 and 4/4, in a common fra-
mework for jazz and classical music. A value of O was used to indi-
cate the absence of notes (see supplementary information for a
detailed explanation).

This procedure keeps the onset and offset timings of notes and
does not influence the asymptotic power-law behaviors for f > 0
(or t > ). It was already used in refs. 34 and 16; a difference of our
approach is that we fixed the time unit of the grid to a piece-
independent note value. This makes the process simpler to automatize
and ensures that all our results are given in the same units. As a result
of fixing the unit duration to 1/12th of a quarter note, the time period T
corresponding to a given frequency f is obtained via

T=1/12f. 4)

To ease readability, the figures shown in this article include an addi-
tional horizontal axis showing the time periods corresponding to the
bottom frequency axis.

Multitaper method. To estimate PSDs, we used the multitaper
method”. As mentioned above, it is based on windowing and aver-
aging. It has several advantages, compared to most non-parametric
approaches: it does not limit the accessible frequency range of the
results as much as other methods, it strongly reduces the amount of
broadband spectral leakage and it allows for precise control of the
local bias®. This is due to the type of windows (called tapers) used in
multitaper estimation. They belong to the family of Slepian sequences
and have desirable mathematical properties: the tapers of a given
sequence are orthogonal. Thus, multiplying a time-series with tapers
ensures statistical independence between the products, which reduces
the variance upon averaging. Moreover, Slepian sequences are
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solutions of the so-called spectral concentration problem®, they
effectively minimize the above mentioned broadband bias. The most
relevant parameter of the multitaper method is the time-bandwidth
product NW, where N is the length of the time-series. The parameter W
is the bandwidth, which characterizes the spread of the tapers in fre-
quency space”. The value of NW dictates the number of usable tapers
K (K < 2NW) and governs the bias-variance trade-off. This trade-off will
be detailed in the next subsection. With the multitaper method, the
estimate P, is obtained as

> _|1 Sl —i(Zn/N)ftZ
Pulf)= E;; Ti(OX(t)e : ®)

where Ti(t) is the k* taper of the sequence. Since the length Nis here the
total length of the time-series, it makes the total frequency range of the
results accessible. The data need to be centered around the mean before
applying Eq 5 in order to eliminate potential spurious low-frequency
components. For the estimations, we used the R package spec.mtm.

Fitting procedure. In order to identify potential trends in the PSDs
more accurately (e.g. power-law decay), we apply a fitting to each
estimate. Several piecewise linear fits of the PSD in log-log repre-
sentation are optimized via a weighted least-square procedure. The
weighting is necessary, since otherwise the log-log representation
would give a bigger importance to high frequencies in the fit due to a
higher density of points. A least-square based error function is used to
select the best fit. Finally, we control for rarely occurring misfits and
adapt the boundaries of fitting parameters, if necessary. The fitting
parameter optimization was done using Python’s Imfit package.

Variance and bias. In order to avoid misinterpretations in PSD esti-
mations, we have to consider the potential sources of artifacts. It is
therefore worthwhile to consider the bias and variance of PSD esti-
mations in detail. The bias and variance of an estimation P,(f) are
defined as

B()=Puulf) — E[Prec(f)] ©)
I - 2
)= E [Pl — P | @)
) —— Estimated PSD
10 = "True’ spectrum
/ / f<bandwidth W
10°
=107
g_
1072
1073
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Fig. 9 | Flattening bias. The power spectral density of a simulated 1/f-noise time-
series was estimated by the multitaper method with NW=2. In log-log representa-
tion the exact PSD follows a linear decay. The local bias, however, flattens the peak

respectively, where [E[.] denotes the expectation value. They measure
the systematic and variance of P,..(f) w.r.t. the true value of P (f). The
multitaper method provides asymptotically unbiased and consistent
estimations, which means that bias and variance can become arbi-
trarily small for time-series long enough'~%, However, the time-series
we are dealing with are finite (10° - 10* data points), and thus taking
these possible sources of error into account is essential for a correct
interpretation of results. Let us consider the bias in more detail. In the
case of multitaper, the time-bandwidth product NW determines the
number of tapers K that should be used (typically, K = 2NW - 1).
This effectively controls the magnitude of bias and variance.
The higher NW, the more tapers are available, which implies more
averaging and results in stronger variance reduction. On the other
hand, a large value of NW can also mean a large bandwidth, which
implies stronger bias. For the multitaper method, the bias is given by

n K
ST = )PP (f)dy ®8)

1
B(f)=Py(f) - K
J-mi=1

In frequency space, the sum of Slepian tapers is composed of a mostly
flat region in the interval [ - W; + W] delimited by the bandwidth and a
residual tail for frequencies outside this interval. The expression of Eq
(8) can therefore be separated into a local bias ByAf)

1 W K )
Bulh)=Path) - | YT~ PP ©)
J-W i

representing the influence of the Slepian tapers on the power-spectrum
inside the restricted region [ - W; W], and a broadband bias Bg(f)

- k=K
B=Puf) g [ S ITuF = PPty 10)
JD =1

where D=[-m,m)\(—W,W) represents the frequency region influ-
enced by the above mentioned residual tail. The contribution of the
broadband term, Bg(f), was shown to be bounded and much smaller
than its counterpart By/(f)"°. We will therefore only concern our-
selves with the local bias term. As is apparent from Eq (9), it is the
result of a convolution which mixes the values of P,(f) at frequency
scales smaller than the bandwidth W. This has two effects: it reduces
the resolution, i.e. the ability to distinguish neighbouring peaks, and
it flattens out peaks and troughs. We illustrate the effects of the local
bias in Fig. 9, where we plot the estimated PSD of simulated pink
noise. The bias becomes apparent as the peak at zero frequency is
flattened in the frequency range of the bandwidth, thus creating a
plateau as an artifact. Note that real plateaus are not affected by
the bias.

Besides the bias, we also need an estimate for the variance of the
PSD estimation. The variance is governed by the number of tapers used
over which the averaging is performed. Under certain loose
conditions*** fluctuations around the true value of the PSD can be
shown to follow:

2KP(f) _ 2

PXX (f) - XZK (11)

where )?%K is the chi-square probability density distribution with 2K
degrees of freedom, and K is the number of tapers used. This
straightforwardly provides a confidence interval for our estimations.
For example, given an estimate P,.(f), a 95% confidence interval for the
true spectrum Py (f) is:

at the low end of the spectrum below the bandwidth frequency W. The grey shaded ZKPXX(f) <P_(f)< ZKPXX(f) (12)
area represents a 95% confidence interval for the estimation based on the X%K(O-OZS) xx X%K(O'975)

assumption of a linear relationship.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used in this study was obtained from free collaborative online
databases that are openly accessible (see subsection Data corpuses
and data format). The complete list of pieces constituting the corpus
of classical music scores and jazz improvisations we studied is given in
the supplementary information. To ease the reproducibility of our
results, we also provide the data used in the present article in a figshare
repository*’.
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