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How synchronized human networks escape
local minima

Elad Shniderman1, Yahav Avraham2,3, Shir Shahal2,3, Hamootal Duadi2,3,
Nir Davidson 4 & Moti Fridman 2,3

Finding the globalminimum in complex networks while avoiding localminima
is challenging in many types of networks. In human networks and commu-
nities, adapting and finding new stable states amid changing conditions due to
conflicts, climate changes, or disasters, is crucial. We studied the dynamics of
complex networks of violin players and observed that such human networks
have different methods to avoid local minima than other non-human net-
works. Humans can change the coupling strength between them or change
their tempo. This leads to different dynamics than other networks and makes
human networks more robust and better resilient against perturbations. We
observed high-order vortex states, oscillation death, and amplitude death, due
to the unique dynamics of the network. This researchmay have implications in
politics, economics, pandemic control, decision-making, and predicting the
dynamics of networks with artificial intelligence.

Human interactions form complex networks of connections between
the members of the networks. Synchronizing human networks can
happen spontaneously1,2 or intentionally3,4. The synchronization of the
network is essential for coordinating ideas5,6, and the well-being of its
members7–9, and is seen in other organisms as well10–12. Understanding
the dynamics of human networks has implications for politics, eco-
nomics, social sciences, andpandemic control. The topologyof human
networks determines if the network will be able to synchronize13, who
is most probable to become a leader14, which decision the humans in
the network are more likely to make5,15, and how stable is the network
to small perturbations16–18.

The synchronization dynamics of networks can be analyzed in
terms of an effective potential landscape in which the system
evolves19,20. To reach the fully synchronized state, which is the global
minimum of this potential landscape, a human network must avoid
getting trapped in local minima, where not all humans are
synchronized19–24. The concept of escaping local minima is significant
in various systems including biological systems25, physical systems26,
and deep neural network learning27,28. It also has implications for
increased stability in other types of networks29, and optimization
problems in spin-glass dynamics30.

Human networks can reach synchronization by finding unique
solutions that are more stable to small perturbations compared to
other networks due to the human ability to focus on some inputs while
ignoring other inputs31. However, it is still unclear how human net-
works reach these stable solutions, what the network dynamics that
lead to it are, and in particular, how the human network escapes local
minima. In addition, previous studies focus on local frustration where
some nodes are in a state of frustration31,32, while in real-life networks,
many networks have global frustration due to their topology. This type
of frustration is not local at a specific position in the network but
emerges when the entire network tries to synchronize.

We study howhumannetworks find and reach the stable solution,
we study the network dynamics during the search for the stable
solution, and the different methods the network is using to escape
local minima. We focus on networks where each node has a single
input and the frustration is global and rises from its topology. Our
investigated networks are the unidirectional coupled rings that serve
as basic building blocks and motifs to any complex network, together
with the bidirectional rings31. We study the rhythmic behavior of
humans since it can reveal aspects of human network dynamics that
are usually hard to identify33. Human synchronization in general and
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specifically rhythmic behaviors are critical in fields like organizational
behavior, management, and policy-making34–37.

In this paper, we study the synchronization dynamics of human
networks with closed-ring topology and unidirectional time-delayed
coupling of violin players (Fig. 1a). Such a network has a complex
potential landscape with well-defined local and global minima18,38,39

that we can tune and control in real-time. We prepare the system in a
global minimum (fully synchronized) state and then adiabatically
(slowly) transform the potential landscape by tuning the coupling
delay time between the players such that this state becomes a local
minimum. We then study in detail how the system escapes this local
minimum into the new fully synchronized global minimum by mea-
suring each player’s amplitude, tempo, and phase and identifying
which player is following which.

We show that humans can escape local minima by self-tuning
local properties of the networks such as their tempo, amplitude, and
the coupling strength between players. The ability to tune these
parameters dramatically changes the network’s dynamics and has
implications for other networks where each node has decision-
making abilities40. We are studying here basic network motifs
that have global frustration, these motifs are the building blocks of
complex networks41,42, and the dynamics of complex networks are
dictated by the dynamics of the motifs43,44. We numerically demon-
strate the dynamics of the motifs in large random networks in Sup-
plemental Materials Section S4 and generalize our findings into
complex two-dimensional networks in Supplemental Materials
Section S3.4.

Our system with coupled violin players is schematically shown in
Fig. 1a31. The violin players cannot see or hear the others apart from the
audio signal they receive through their headphones. The soundof each
player is connected to a control system that receives the audio signal
fromeachplayer anddistributes it to other players. The control system

provides a tunable, programmable, and accurate real-time control of
the network connectivity (who is connected to whom) the strength of
the coupling, and the delay of the coupling between the players. We
define the coupling strength as the volume each player is hearing its
neighbors compared to the volume of its violin. The players repeat the
music phrase shown in Fig. 1b, and are instructed to synchronize with
what they hear. In this study, we set the players’ network as a uni-
directional ring, so each player hears only a single neighbor with per-
iodic boundary conditions, illustrated in Fig. 1a for N = 6 players. We
performed measurements also with different numbers of players
includingN = 2, 3, 4, 5, 6, 7, 8, and 16. Wemeasure the note each player
is playing as a function of time, and accordingly, obtain the phase φ(t)
of the player, where φ = 0 denotes that the player is playing the
beginning of the musical phrase, and φ = 2π denotes that the player is
at the end of the musical phrase of duration T31. Detailed experiment
descriptions are presented in Supplemental Materials Section S2.

Each experiment starts with zero time-delay Δt = 0 between all
players with coupling strength sufficiently high31 to ensure that all
players are synchronized in-phase (i.e. playing the same note at the
same time, see Fig. 1b). Then, we increase Δt linearly with time as
Δt = t/30. When Δt exceeds nT/N, where n is an integer number, the
in-phase state becomes a local minimum and the global minimum
solution is a vortex state, where each player has identical delay
compared to its neighbor, satisfying the periodic boundary condi-
tions (see Fig. 1b). The players must then leave their in-phase state
and find the vortex state. The n parameter denotes the order of the
vortex which is stable39. For zero vortex order, n = 0, the system is at
an in-phase state of synchronization, illustrated at the top of Fig. 1b.
When n = 1, we are at the first vortex order, in which adding the delay
between the players is equal to 2π, illustrated at the bottomof Fig. 1b.
For higher vortex orders, adding the players’ delay equals to higher
multiples of 2π.

Fig. 1 | Coupled violin players on a unidirectional ring network, where each
player is hearing only the player on its right with a controllable delayed cou-
pling. a Schematic of N = 6 unidirectional coupled players. b The musical phrase
the players are periodically repeating illustrates the two possible states of syn-
chronization: the in-phase state where all the players are playing the same note at
the same time, and the vortex state, where due to the delay between the players,
each player is playing a different note. c The effective potential (defined in section

2.1) of the system as a function of the phase difference between the players for two
values of delay Δt. For Δt =0, the minimum potential is at zero phase difference,
indicating an in-phase state of synchronization. For Δt = T/N, the minimum poten-
tial is at 2π/N indicating a vortex state and the in-phase state becomes a local
minimum, protected by a potential barrier. d Effective potential map as a function
of the phase difference and delayed coupling between the players.

Article https://doi.org/10.1038/s41467-024-53540-7

Nature Communications |         (2024) 15:9298 2

www.nature.com/naturecommunications


The dynamics of the coupled violin players performing a periodic
rhythm can be analyzed by the Kuramoto model45–47 which describes
an over-damped motion of coupled phase oscillators in an effective
potential19,20,23,24. The derivation of the Kuramoto effective potential is
presented below in Section 2.1. An effective potential is a powerful tool
for predicting the dynamics of a coupled system and analyzing its
stability19,20,23,24. Figure 1c depicts two representative effective poten-
tials, for Δt =0 and Δt = T/N, respectively, as a function of the phase
difference between coupled players. For Δt = 0, the global minimum
potential is at zero phase difference between coupled players, corre-
sponding to the in-phase synchronization state. ForΔt=T/N, the global
minimum of the potential is at a phase difference of 2π/N, corre-
sponding to a vortex state of synchronization, while the in-phase state
becomes a local minimum.

Figure 1d presents the effective potential as a function of Δt. The
dashed line denotes the system trajectory in the phase space as the
delay increases from Δt = 0. The system starts from the in-phase state
and for the system to reach the emerging global minimum vortex
state, it must overcome a potential barrier. Here, we present and
analyze four types of dynamics in human networks for overcoming
this potential barrier and escaping the local minimum into the glo-
bal one.

In the first dynamics, some of the players ignore the signals they
receive, thereby reducing the effective coupling strength to their
neighbor. Then, they can freely spread their phase to reach the vortex
state (see section “Spreading the phase”). In the second, the players are
slowing down their tempo so the in-phase state remains the global
minimum for arbitrarily largedelays (see section “Slowing the tempo“).
In the third, the players further slow down until everyone plays the
same note indefinitely. This state, known as oscillation death48, is a
stable synchronized solution regardless of the delay between the
players. The players then spontaneously emerge from the oscillation
death directly into the globally stable vortex state (see section
“Oscillation death and amplitude death“). In the fourth, some of the
players stop playing (i.e. reduce their amplitude to near zero). In this
state, known as amplitude death, the network topology changes into
an open ring, where the local minima and its potential barrier dis-
appear. Thus, enabling the other players to find the vortex state (see
section “Oscillation death and amplitude death”).

We observed these four distinct strategies to escape local minima
at all network sizes from N = 2 up to N = 16 players. While representing
different emerging strategies to overcome barriers and reach stable
minima, they all rely on the unique ability of human players to adjust
their playing amplitude and tempo and change the effective coupling
strength between themby ignoring frustrating inputs.More results are
shown in the Supplemental Materials in Section S3.

Results
Spreading the phase
The first dynamic we observe is when the players are spreading their
phases to escape from the in-phase local minimum into a vortex-phase
state globalminimum.This dynamic is enabledby theplayers’ ability to
reduce the coupling between them until they find a stable state.

Figure 2a(top) presents the measured phase of N = 8 players
situated on a ring with unidirectional coupling as a function of time t
and delay Δt = t/30. Fig. 2(a)(bottom) presents the measured phase
difference between each player and its delayed neighbor. As seen,
during the first 3 seconds all phase difference converges to near zero,
indicating that all players are synchronized in phase, and remain so
until t = 8s. This first stage is marked as stage I. The average phase of
each player during this stage, presented as the blue circles in the inset
of Fig. 2a, confirms that all the players have nearly the same phase.
When the delay is further increased, one of the players starts to ignore
its neighbor, indicated by the linearly increasing blue curve in the
phase difference in Fig. 2a(bottom). Thus, the other players can freely
change their phase to follow the increasingdelaybetween them.This is
marked as stage II. The phase of the players spread until reaching a
total phase difference of 2π between the first and the last player, thus
forming a stable vortex solution in thefirst vortexorder39, shownas the
black circles in Fig. 2a. This vortex solution remains stable as the delay
is further increased, indicated by a constant phase difference between
all coupled neighbors (marked as stage III). The average phase of all
players in stage III is shown as red circles in the inset of Fig. 2a, and
verifies the expected linear phase of the vortex state.

Following19,20,23,24, we use the Kuramotomodel for N oscillators on
a ring with unidirectional time-delayed coupling45–47 and uniform
distributed random frequency ωn to introduce an effective potential
whose local and global minima dictate the players’ dynamics.

Fig. 2 | Coupled N = 8 players situated on a ring in a unidirectional coupling,
according to the inset scheme, starting from an in-phase state of synchroni-
zation and finding the vortex state. a (top) Measured phase of each player as a
function of time as we increase the coupling delay between the players. Each color
denotes the phase of a player according to the inset scheme. Black circles denote
the vortex order of the system as a function of time. (bottom) The difference
between the phase of each player and the phase of its delayed neighbor. (inset) The

phase of all players in a state of in-phase synchronization (stage I, blue circles) and
the phase of all players in a vortex state (stage III, red circles). b The effective
potential of the system as a function of time and coupling delay. In stage II the
effective coupling strength is reduced (see text) thus eliminating the potential
barrier between the in-phase and the vortex states to enable the system to reach the
global minimum vortex state. The trajectory of the system is denoted by the white
dashed curve.
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The phase of each oscillator φn(t) follows:

∂φnðtÞ
∂t

=ωn + κ sinðφn+ 1ðt � ΔtÞ � φnðtÞÞ, ð1Þ

with κ, and Δt denoting the strength and delay of the coupling. The
periodic boundary conditions, φi+N =φi dictate

PN
n= 1 Δφn =0, where

Δφn(t) =φn+1(t) − φn(t). Assuming uniformity Δφn =Δφ, we obtain:

∂ΔφðtÞ
∂t

= � ∂V ðΔφÞ
∂Δφ

: ð2Þ

where the effective potential governing the dynamics of the system is:

V ðΔφÞ= �ΩΔφ� κ
N � 1

cosððN � 1ÞΔφ+ωΔtÞ � κ cosðΔφ� ωΔtÞ,
ð3Þ

whereΩ =∑(ωn+1−ωn)/N, andω =∑ωn/N. The samederivationholds for
non-uniform phase differences, as long as two adjacent phase
differences are similar. The detailed analytical derivation is presented
in Supplemental Materials Section S1.1.

The calculated effective potential for constant tempo is shown in
Fig. 1d as a function ofΔt andΔφ. ForΔt =0 it reveals a globalminimum
at Δφ =0, where all oscillators have the same frequency and phase,
namely, an in-phase state of synchronization. However,when the delay
increases beyond ωΔt > π/(2N), the Δφ = 0 becomes a local minimum
and the vortex state emerges as a new globalminimum at Δφ = − 2π/N.
Between the in-phase state and the vortex state, there is a potential
barrier. Therefore, increasing the delay adiabatically (slowly), so the
network remains in the in-phase state of synchronization, transfers the
system to a local minimum.

To account for the players’ dynamics observed in Fig. 2, we
assume that the coupling strength in stage II is reduced by the player’s
tendency to ignore frustrating inputs. Specifically, we assume
κðtÞ= κðt =0Þ cos2ðΔtNπ=TÞ. The resultingmodified effective potential
is shown in Fig. 2b. The dashed curve follows the system trajectory in
the phase space. The system starts in an in-phase state of synchroni-
zation and as the delay increases, the coupling drops leading to a lower
potential barrier. Thus, the system can evolve into the vortex state.
Finally, the coupling increases back to its original value κ(t = 0).

When the delay between the players is further increased, the first-
order vortex becomes unstable and the next-order vortex becomes
stable. We observed such multiple transitions to higher-order vortex
states with N = 16 coupled violin players on a unidirectional ring. The
measured phases of all the players together with the vortex order of
the network are shown in Fig. 3a. In the inset, we show the phase of the
players at four representative times, 1.5, 13.5, 24, and 34 seconds, with
vortex orders n = 0, 1, 2, and 3, respectively. As the players’ phases
spread over a wider range, the network reaches a higher vortex state,
denoted by a higher vortex order. We also calculate the effective
potential as a function of time, again assuming κðtÞ= cos2ðΔtNπ=TÞ,
showing how the system can evolve from the in-phase to each order of
vortex.

Slowing the tempo
The second dynamic we observe is the slowing down of the players’
tempo as an alternative strategy to maintain a stable in-phase syn-
chronization state in the presence of delayed coupling49. The mea-
sured phase results as a function of time for six coupled players are
shown in Fig. 4a. From these results, we evaluate the tempo of the
players by calculating the average derivative of the phase. As seen, the
initial (natural) tempo of 60 bpm slows down significantly for long
delay times reaching about 6 bpm for Δt > 1s. This slowing down lets

players maintain the in-phase state of synchronization by keeping the
coupling delay small relative to the tempo.

To quantitatively analyze the tempo slowing, we resort again to
the Kuramoto model45–47. Assuming Δt < T/N, we can expand
φn(t − Δt) ≈ φn(t) − Δt∂φn/∂t and sinðαÞ � α to obtain from Eq. (1) the
phase difference as a function of time for ΔφN−1:

∂ΔφðtÞ
∂t

=
Ω� NκΔφ

1� ðN � 1ÞκΔt , ð4Þ

whereΩ is the average tempo difference between the players. Thenwe
obtain,

∂φðtÞ
∂t

=
ω

1 + κΔt
, ð5Þ

whereφ =∑φn/N is the averagephaseof all oscillators. Thus, the tempo
of the coupled oscillators slows down as long as the players stayphase-
locked, ensuring that the condition Δt < T/N is satisfied and indicating
that our assumptions are valid. Using Eq. (5), to fit themeasured tempo
(blue curve in Fig. 4a) yields excellent agreement, where the fit para-
meters ω =0.29Hz and κ =0.63 are consistent with our system. The
detailed analytical derivation is presented in the Supplemental Mate-
rials Section S1.2.

Next, We perform numerical simulations of the Kuramoto model
(Eq. (1)) for six coupled players with a coupling strength of κ =0.6. The
calculated phase of all the players as a function of time/delay together
with the average tempo are shown in Fig. 4b. As evident, the exact
numerical simulations agree with the measured experimental results
as well as with the analytical approximation of Eq. (5) (blue curve
in Fig. 4b).

Finally, We calculate the effective potential as a function of time
with the tempo obtained from Eq. (5). As evident, the in-phase state of
synchronization remains the global minimum even though the cou-
pling delay increases. Therefore, the system follows the dashed line
and remains in the in-phase synchronization state for all coupling
delays.

Oscillation death and amplitude death
In this section, we present two additional mechanisms that have been
observed in other networks on coupled nonlinear oscillators: oscilla-
tion death48 and amplitude death50, and show how both enable the
human network to escape from a local minimum (in-phase synchro-
nization) into a global one (vortex state).

When the tempo slows too much, the players can get stuck in a
state of oscillation death48 where all the players are playing the same
note indefinitely, thereby maintaining a degenerate form of synchro-
nization. Representative results of such oscillation death for four
coupled violin players are shown in Fig. 5a.The fourplayers are slowing
down their tempo, and after 40 s they all play the same note for
20 seconds. Then, the players spontaneously revive the oscillation
when one of the players stopped following its neighbor. Reviving
oscillations after oscillation death typically requires external pertur-
bation to the system50, but here we demonstrate that human networks
can revive the oscillations spontaneously. In addition, they revive the
oscillations into the stable vortex state as indicatedby the vortex order
which jumps to n = 1 when the oscillations revive.

Violin players can adjust not just the phase and tempo but also
their playing amplitude. In highly frustrating situations one ormore of
the players can reduce their amplitude significantly, known as ampli-
tude death50. Representative measurements of such amplitude death
are shown in Fig. 5b. Here, the coupling delay of four violin players is
increased until one of the players, denoted as Player 1, cannot syn-
chronize with Player 4 leading to frustration. Therefore, this player
stops playing, as evidenced by its nearly vanishing amplitude, shown in
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the lower graph in Fig. 5b. During this time, the player did produce
somenoise, but nonoteswere detected.Whenoneof theplayers stops
playing, the closed ring switches into an open ring topology where all
the other players are free to shift their phases according to the cou-
pling delay. In an open ring, the players are not limited by the periodic
boundary conditions, so the network is stable for any value of delay.
After a few seconds, they find the first-order vortex state, and Player 1
resumes playing.

Discussion
To conclude, we investigated the synchronization dynamics of cou-
pled violin players with ring configuration and unidirectional time-
delayed coupling. This configuration is governed by a potential land-
scape that includes well-defined local and global minima that are
controlled by the coupling delay time. By starting with a zero coupling
delay, we prepared the system in a stable in-phase synchronization
state and then adiabatically increased the coupling delay such that the
in-phase state became a local minimum. We observed four different
routes for the system to escape this localminimum into the global one.
We focus on network motifs with global frustration where the

frustration rises from the topology of the network, instead of a local
frustration where a node has contradicting inputs.

In the first route, the players change their coupling strength and
shift from the local minimum of the in-phase state into the stable
vortex state. In the second route, the player slows down their tempo so
the in-phase state remains the global minimum. In the third route, all
the players play the same note indefinitely which is a stable state
regardless of the coupling delay. In the fourth route, one of the players
stops playing, effectively changing the system topology into an open
ring, thus allowing the players tofind the vortex state, and then resume
playing.

Our results indicate that human networks are more robust than
other networks since they have unique methods for escaping local
minima. The results shed new light on the dynamics of human net-
works and how a group of humans can reach synchronization while
escaping local minima. Our investigation offers insights that extend
beyond the immediate domain of network dynamics. While our study
focuses on the specific context of human interactions modeled
through coupled violin players, the principles and mechanisms
uncovered have broader implications across multiple disciplines.

Fig. 4 | Coupled N = 6 players situated on a ring in a unidirectional coupling
showing tempo slowing down. a Experimental measurements of the phase and
average tempo as we increase the delayed coupling between them. Each color
denotes the phase of a player according to the inset scheme. b Numerical

calculations of the system. c The effective potential of the system as a function of
time when the tempo of the players is following Eq. (5) indicating that the in-phase
state stays the global minima for arbitrary large delays.

Fig. 3 | Coupled N = 16 players situated on a ring in a unidirectional coupling,
according to the inset scheme, showing spreading of the phase and reaching
high order vortex states. a The measured phase of N = 16 coupled violin players
together with the vortex order of the network as we increase the delay of the

coupling between them, showing higher-order vortex states. (Inset) the phase of
the 16 players at t = 1.5, 13.5, 24, and 34 s, with vortex order n = 0, 1, 2, and 3,
respectively. b The effective potential of the system as a function of time and
coupling delay shows how the system evolves.

Article https://doi.org/10.1038/s41467-024-53540-7

Nature Communications |         (2024) 15:9298 5

www.nature.com/naturecommunications


In the realm of decision-making theory, our findings highlight the
adaptability and resilience of human networks in navigating complex
environments. By elucidating the strategies employed by individuals
to escape local minima and reach global synchronization states, our
research provides valuable insights into the dynamics of group
decision-makingprocesses. Understanding thesedynamics is crucial in
fields such as organizational behavior, management, and policy-mak-
ing, where the coordination of ideas and actions among individuals is
central to achieving collective goals34–37. Moreover, our study has
implications for political and economic systems, where the dynamics
of human networks play a pivotal role in shaping outcomes. By
uncovering how network topology and individual behaviors influence
synchronization dynamics, our research offers potential insights into
the emergence of leadership, the formation of alliances, and the
spread of information within political and economic networks. These
insights may inform strategies for enhancing collaboration, fostering
innovation, and promoting stability within these systems.

Furthermore, our study has implications for artificial intelligence
and machine learning, particularly in the development of algorithms
and models that mimic or interact with human networks. By eluci-
dating the dynamics of human interactions and the strategies
employed to navigate complex network landscapes, our researchmay
inspire new approaches for designing adaptive and resilient artificial
systems capable of learning from and interacting with human net-
works more effectively.

The Synchronization of periodic motion, generally described by
the celebrated Kuramoto model, has a direct mathematical mapping
onto the coordinated directional alignment of aperiodic systems51.
These mappings imply that our research on the synchronization of
periodic behavior can be applied to a variety of coordinated aperiodic
behaviors in humans, animals, and physical systems25,52.

An exciting extension of our research is to incorporate real-time
analysis of the network and detect the different connections. This will
enable us to experiment and study dynamical networks, where the
parameters of the networks change according to the state of syn-
chronization between the nodes. With this system, we will study how
leaders are formed in a human network and if it is possible to control
who will become a leader and who will become a follower.

Methods
Our system is based on coupling 16 violin players connected via a
computer system.We record the output fromeach violinwith a pickup

microphone (Barcus-Berry True Expression Violin Piezo Pickup). These
pickupmicrophones are connected with a 10m cables to a sound card
(Focusrite Scarlett 18i20) and to an optical extention (Focusrite Scar-
lett OctoPre Dynamic). The sound cards are connected to a computer
(MacBook Pro M3) that controls on the input and decides which
channel is connected to which. The output is directed from the com-
puter through the sound card and 10 m cables to professional sound
isolation earphones (Shure Se 215).

In order to analyze the result, we use a note detection program
that analyzes the output from each violin and writes it in a *.wav file.
From this file, we obtain the phase of each player as a function of
time. We include the delay between each player and the con-
nectivity of the network to findwhich player is following which. This
allows us to analyze when the system is leaving the in-phase state of
synchronization and reaching the vortex state of synchronization.
We numerically calculate the derivative of the phase as a function of
time to obtain the tempo of each player. Finally, we analyze the
amplitude of each player to identify when each player stopped
playing. All the code used to obtain and analyze the results is
available online. All players agreed to the use of the data in
this study.

Data availability
All the rawmeasured data generated in this study have been deposited
in the figshare database under accession code CC BY 4.0: https://
figshare.com/projects/local_minima_in_human_networks/167306.

Code availability
All the code developed for gathering the data and for analyzing the
data in this study has been deposited in the figshare database under
accession code CC BY 4.0: https://figshare.com/projects/local_
minima_in_human_networks/167306.
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