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Mesothelioma survival prediction based
on a six-gene transcriptomic signature

Kiarash Behrouzfar,1,2,3,4 Steve E. Mutsaers,2,3 Wee Loong Chin,1,5,6 Kimberley Patrick,1,2,3 Isaac Trinstern Ng,2

Fiona J. Pixley,2 Grant Morahan,7 Richard A. Lake,1,3 and Scott A. Fisher1,2,3,8,*
SUMMARY

Mesothelioma is a lethal cancer. Despite promising outcomes associatedwith immunotherapy, durable re-
sponses remain restricted to a minority of patients, highlighting the need for improved strategies that
better predict outcome. Here, we described the development of a mesothelioma-specific gene signature
that accurately predicts survival. Comprehensive gene expression analysis of asbestos exposed MexTAg
Collaborative Cross mouse tumors revealed distinct tumor clusters characterized by epithelial mesen-
chymal transition/extracellular matrix, or immune infiltrate related gene expression profiles. Weighted
gene co-expression network analysis (WGCNA) identified 20 hub genes that drove differential gene
expression. Human homologues of these 20 hub genes were refined through univariate Cox regression
and least absolute shrinkage and selection operator (LASSO) regression analyses to identify a six-gene
mesothelioma-specific prognostic signature that accurately predicted patient survival across four inde-
pendent humanmesothelioma datasets. Furthermore, this six-gene signature demonstrated the potential
to predict treatment response, thus advancing the management of this challenging malignancy.

INTRODUCTION

Mesothelioma is an aggressive and universally fatal cancer with a median survival of 14–18 months after diagnosis.1,2 Disease management is

mostly palliative, and conventional therapeutic approaches such as surgery, radiotherapy, or chemotherapy provide only marginal improve-

ments in patient survival.3,4 More recently, the addition of the immune checkpoint inhibitors, ipilimumab and nivolumab, to chemotherapy

regimens has demonstrated durable anti-tumor immunity, leading to amodest increase in overall survival compared to chemotherapy alone2.

However, this response was restricted to 20–30% of mesothelioma patients, most of whom were diagnosed with sarcomatoid mesothelioma.

While these results are encouraging, the benefit of combination immunotherapy is restricted to a subset of patients; therefore, there is a clear

need to deepen our understanding of the underlyingmechanisms of resistance to existing therapies and develop novel approaches that pre-

dict treatment response in patients with mesothelioma.

Recent advances in high-throughput RNA sequencing technologies and associated analytical methods have enabled deep profiling of the

cancer transcriptome, which has facilitated the discovery of novel biomarkers linked to cancer prognosis and treatment response.5,6 However,

the robustness and validity of most transcriptomic analyses in human mesothelioma studies have been impeded by the scarcity of available

mesothelioma samples and the paucity of well-defined clinical information pertaining to asbestos exposure history and treatment regimens

administered following diagnosis.7–9 To overcome these limitations, we used a unique combination of two distinct mouse models. The

Collaborative Cross (CC) is a powerful genetic resource developed for the rapid identification of genes that mediate complex traits.10–15

The CC consists of a collection of hundreds of recombinant inbredmouse strains developed from eight founder strains selected to maximize

genetic diversity and archives over 90% of the common allelic diversity of the entire mouse species.16–18 By utilizing the CC, wemaximized the

genetic polymorphisms, overcoming the constraints imposed by conventional mouse models. In the well-characterized MexTAg model of

mesothelioma, expression of the oncogenic SV40 large T antigen (TAg) is restricted to mesothelial cells through the utilization of a cell-

type specific mesothelin promoter.19,20 Expression of SV40 TAg in these mice phenocopies p16 loss,21 consistently and reliably recapitulates

key features of humanmesothelioma, and tumors only develop after asbestos exposure.19–21 For this study we crossbred the CCmice with the

C57BL/6 MexTAg mouse model to generate the MexTAg-Collaborative Cross mouse model (CCMT) that enabled a high incidence of

asbestos-induced mesothelioma development within the context of maximum genetic diversity.22
1National Centre for Asbestos Related Diseases, University of Western Australia, Nedlands, WA, Australia
2School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
3Institute for Respiratory Health, University of Western Australia, Perth, WA, Australia
4Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
5Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
6Telethon Kids Institute, Nedlands, WA 6009, Australia
7Centre for Diabetes Research, Harry Perkins Institute of Medical Research, Perth, WA, Australia
8Lead contact
*Correspondence: scott.fisher@uwa.edu.au
https://doi.org/10.1016/j.isci.2024.111011

iScience 27, 111011, October 18, 2024 ª 2024 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

1

mailto:scott.fisher@uwa.edu.au
https://doi.org/10.1016/j.isci.2024.111011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2024.111011&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/


ll
OPEN ACCESS

iScience
Article
The CC mouse resource has been successfully utilized to identify genes associated with the development of polygenic diseases

including melanoma and prostate cancer.12,17,23–25 We recently employed the CC to investigate the role of host genetics in asbestos-

related disease (ARD) development, specifically within the context of mesothelioma.22,26 ARD development in asbestos-exposed

CCMT mice was monitored for up to 18 months, or until ARD reached a clearly defined welfare endpoint. Across the cohort of 2562

mice, encompassing 72 genetically-distinct CCMT strains, there was greater than a 3-fold variation in overall survival. This was attributed

to differences in disease latency (the time between asbestos exposure and the emergence of the first signs of disease, FSD) rather than

disease progression (time from FSD to cull), demonstrating that host genetics cannot slow disease progression once the tumor has been

established.22

In this study, we performed comprehensive transcriptomic and immunohistochemical analysis of 167 distinct mesothelioma tumors har-

vested from asbestos-exposed CCMT mice22 and identified a set of 20 optimal hub genes that were responsible for the differential gene

expression profiles between two distinct CCMT tumor clusters. Using the human orthologs of these hub genes, we interrogated a large hu-

manmesothelioma dataset to develop a six-genemesothelioma-specific prognostic signature that was validated in three additional indepen-

dent human mesothelioma datasets (graphical abstract).
RESULTS
Genetically distinct CCMT mice displayed limited variation in tumor gene expression profiles

Of the 72 total CCMT strains, we selected 35 strains that exhibited the greatest variation in overall median survival22 and performed bulk RNA-

Seq on 167 distinct asbestos-induced tumors from119mice (Figures 1A and 1B). Using unsupervised consensus clustering, we determined the

optimal number of clusters (Figure S1) to better differentiate the samples based on gene expression data. The accuracy of this prediction was

confirmed by the presence of two distinct clusters (dark blue) in the hierarchical clustering heatmap (Figure 1C, Cluster 1, n = 144; Cluster 2,

n = 23) and illustrated using principal component analysis (PCA) (Figure 1D).

PCA also indicated a moderate variation (27% total; 17% PC1 and 10% PC2) within the CCMT tumor gene expression dataset separating

the two clusters (Figure 1D). Interestingly, this variation was not associated with median survival or any other traits, including disease latency,

ascites volume, disease progression, sex or tumor size (Figures 1E and S2). Differential gene expression analysis revealed 237 differentially

expressed genes (adjusted p value <0.01, log2foldchange >1). However, there were no notable differences in differentially expressed genes

between tumors frommice with overall survival below, versus above the median survival (386 days) of the entire CCMT cohort (Figures 1F and

1G). A parallel analysis performed on a single tumor from each mouse (n = 119) corroborated this finding, revealing 204 differentially ex-

pressed genes (adjusted p < 0.01, log2foldchange >1; Figure S3D), confirming that the inclusion of multiple tumors from a single animal

did not have an undue influence on the outcomes of our analyses (Figure S3E). Cluster 2 tumors were primarily derived from two distinct

CCMT strains: CC044 and CC053 (Figure S4).
Gene set enrichment analysis identified a subset of tumors characterized by high immune cell infiltration

Gene set enrichment analysis (GSEA), using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Molecular Signatures Database

(MSigDB), demonstrated an enrichment of adaptive immune response related gene sets in tumors fromCluster 2 (Figure 2A). The ‘Spermato-

genesis’ gene set, containing genes related to DNA replication and cell duplication, was the only non-immune related gene set from the

MSigDB database that was significantly enriched in Cluster 2 tumors.

In addition, CIBERSORT deconvolution analysis indicated that Cluster 2 tumors had a higher proportion of infiltrating CD4+ and CD8+

T cells and B cells, but a lower proportion of macrophages, dendritic cells, mast cells and natural killer (NK) cells than most Cluster 1 tu-

mors (Figures 2B, S5A, and S5B). This finding was further validated through multiplex immunofluorescence, in which the density of key

immune cell markers and expression of the immune co-inhibitory receptor programmed cell death ligand 1 (PD-L1) were assessed

(Table S1). The results confirmed the significantly higher abundance of CD4+ T and CD19+ B cells in Cluster 2 tumors than in Cluster 1

tumors (Figures 2C and S6).

Additionally, GSEA using the BioCarta database revealed a significantly higher enrichment of cytokine related signaling pathways in

Cluster 2 (Figure S7A). Analysis of cytokine expression associated with anti-tumor immune response revealed that Cluster 2 tumors had

higher expression of adaptive immune related genes including Tnf, Ifng, Tgfb1, Il1b, Il18, Il21 and Il10 in comparison to Cluster 1 tumors

(Figure S7B).

These observations collectively suggested that Cluster 2 tumors exhibited an ‘immunologically active’ phenotype, whereas Cluster 1 tu-

mors were predominately characterized by high enrichment scores for gene sets associated with epithelial-to-mesenchymal transition (EMT),

transforming growth factor b (TGF-b) signaling and extracellular matrix (ECM) receptor interaction (Figure 2A). Subsequent immunofluores-

cence screening for well-known EMT and ECM markers, including E-cadherin, Vimentin, Collagen type 1 alpha 1 (COL1A1) and Podoplanin

(PDPN), demonstrated a significantly higher level of COL1A1 only in Cluster 1 tumors (Figure S8).

To validate the reliability of examining multiple tumors in the same mouse, we performed similar analyses using randomly selected

single tumors from each mouse. The analysis confirmed the presence of two distinct clusters characterized by non-adaptive immune

(EMT/ECM) (Cluster 1) and adaptive immune reactive (Cluster 2) phenotypes (Figures S9A–S9D). Additionally, gene expression profiling

of multiple tumors within the same mouse demonstrated similar gene expression profiles between tumors from the same animal

(Figure S10).
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Figure 1. Limited variation in gene expression observed between tumors derived from genetically distinct CC-MexTAg mice

(A) Experimental schema. Asbestos-exposed CCMT were monitored for up to 548 days (18 months) to assess asbestos related disease development (ARD).

Phenotypic traits such as disease latency (time from first exposure to first signs of disease, FSD), disease progression (time from FSD to cull), ascites volume

and overall survival were quantified. Bulk RNA-seq was performed on tumors harvested from individual asbestos-exposed CCMT mice.

(B) Violin plots displaying the ranked median overall survival (as frequency distribution of the data; median, min and max) of all 72 CCMT strains (2562 total mice).

Tumors were selected from individual mice (dots) belonging to strains with the most variation in median survival (35 of the 72 total CCMT strains: highest and

lowest �40% median survival). The dot color represents the number of tumors per mouse. The orange line corresponds to the median survival of the entire

72 strain CCMT cohort (386 days).

(C) Hierarchical consensus clustering heatmap generated using the ConsensusClusterPlus R package for K = 2, based on the minimum overlap between the two

clusters using the 5000 most highly variable genes from the CCMT tumor RNA-seq data.

(D) PCA plot of CCMT tumor RNA-seq data. Orange and blue dots represent tumors characterized as Cluster 1 and Cluster 2, respectively.

(E) PCAplot of 167 tumors based on their gene expression data. Red and yellow dots depict tumors frommice above and below the CCMT cohort median survival

(386 days), respectively.

(F) Volcano plot illustrating 237 differentially expressed genes (red dots) in the below CCMT cohort median group relative to the above median survival group.

Adjusted p value <0.01 and log2foldchange >1 was applied as a cut off (dashed lines).

(G) Heatmap depicting the expression of all differentially expressed genes identified in 167 tumors derived frommice with overall survival below versus above the

CCMT cohort median survival.
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Genes associated with response to immune checkpoint blockade and chemotherapy are highly expressed in cluster 2

tumors

We hypothesized that CCMT tumors with increased adaptive immune cell infiltration (Cluster 2) would have a more favorable response to

immune checkpoint immunotherapy. However, as CCMT mice were no longer available to empirically test this hypothesis, we utilized

gene sets associated with known positive responses to chemotherapy and/or immune checkpoint blockade (ICB). These gene sets were
iScience 27, 111011, October 18, 2024 3



Figure 2. CCMT tumors with an immune phenotype are characterized by increased infiltration of CD4+ T cells and CD19+ B cells

(A) Gene set enrichment analysis (GSEA) depicting the top four significant gene sets enriched in tumors from PCA Cluster 1 (left) and Cluster 2 (right) using

MSigDB and KEGG databases. The size and color of the circles represents the number of genes and the q score (false discovery rate) value per gene set,

respectively.

(B) Stacked bar plot of CIBERSORT analysis results based on transcriptomes of CCMT tumors, after removing samples with low deconvolution confidence

(p-value > = 0.05). The estimated proportion of immune cell subtypes is shown in different colors: B cells (pink), Macrophages (green), CD8+ T cells (red),

regulatory T cells (Treg, yellow), and CD4+ T cells (dark blue).

(C) Representative images of tumors from Cluster 1 (EMT/ECM) and Cluster 2 (immune) illustrating the expression of the immune cell markers, including CD4,

CD8, CD19 (B cells), IBA1 (Macrophage) and FoxP3 (Treg), and the immune checkpoint receptor, PD-L1. Scale bars = 50 mm.
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Figure 3. Tumors with the immune phenotype (Cluster 2) are enriched with gene sets linked to positive response to cancer therapy

(A) GSEA of tumors from the CCMT immune cluster (Cluster 2) was conducted in reference to publicly available mouse gene sets, while (B) shows the same

analysis in relation to human gene sets associated with response to ICB/chemotherapy. Circle size represents the number of genes per gene set, and circle

color indicates the q score (false discovery rate) value for each gene set signature.

(C) Heatmap of correlation between the first principal component (eigengene) of modules and phenotypic traits, as well as EMT/ECM and immune clusters. Each

cell contains the corresponding p value and correlation coefficient for trait-module relationships.

(D) Protein-protein interaction (PPI) network analysis of the top 10 hub genes from each of the Blue (Immune) and Turquoise (EMT/ECM) modules.

(E) Univariate Cox regression analysis of all 20 hub genes, ranked by their hazard ratios. The 95% confidence interval and p values are shown on the right end

column of the table. Itgb3 is highlighted by red square and was the only gene that did not significantly associate with disease outcome.
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derived from publicly availablemouse and human gene expression studies27–34 and were used to compare gene expression profiles between

Cluster 1 and Cluster 2 CCMT tumors.

GSEA revealed significant enrichment of gene sets associated with a positive response to ICB and chemotherapy within the Cluster 2 tu-

mors with increased immune cell infiltration compared to the Cluster 1/non-immune (EMT/ECM) phenotype tumors (Figures 3A and 3B). To

further investigate the differential expression of immune checkpoint genes between non-immune (EMT/ECM) and immune-infiltrated tumors,

we assessed the expression of 20 immune checkpoint genes, known for their roles in the regulation of T cell immune responses (Table S2). All

immune checkpoint genes, exceptHavcr2 (Tim-3) and Vsir (Vista), were expressed at significantly higher levels in immune cluster tumors than

in non-immune (EMT/ECM) cluster tumors (Figure S11). Taken together, these data suggest that tumors derived from CC044 and CC053

CCMT mouse strains (viz., Cluster 2/immune phenotype) are more likely to respond to ICB and/or chemotherapy.

Hub genes identified from co-expressed genetic networks strongly correlate with variation in tumor phenotype

To differentiate the molecular networks and hub genes driving variations in the CCMT tumor phenotypes, we employedWeighted Gene Co-

expression Network Analysis (WGCNA). This method allowed us to construct network modules and pinpoint hub genes that correlated with

the contrasting gene expression profiles between non-immune (EMT/ECM) and immune tumor clusters (Figures S12A–S12C). Eleven co-ex-

pressedmodules were constructed and correlated with asbestos-exposed CCMT traits, including overall survival, disease latency or progres-

sion, ascites volume, sex, and tumor size (Figures 3C and S12D). Although no correlation was found between modules and CCMT traits

(r < 0.3), some modules displayed a significant correlation with the distinct immune and non-immune (EMT/ECM) clusters identified by

PCA (p < 0.05, r > 0.5).

The ‘Blue’ and ‘Turquoise’ modules showed the strongest correlation with PCA clusters as well as module membership correlation scores

(MMC r > 0.8, p value < 1200), indicating that the genes within each module were strongly co-expressed and likely participated in similar bio-

logical pathways (Figures S12E and S12F). Using the gene ontology biological process (GO-BP) database, we found that the ‘Blue’ module

was enriched in genes associatedwith immune responses, while the ‘Turquoise’ module was abundant in genes linked tomorphogenesis and

cell migration (Figures S12G and S12H). Moreover, intramodular connectivity analysis highlighted the 20 most highly connected hub genes

(10 each for Blue and Turquoise modules) that were subsequently utilized to construct a protein-protein interaction network (PPI) for each

module using the STRING database (Figure 3D).

The top 20 hits from our hub genes analysis identified key genes implicated in immune responses and included: Irf7, lrf9, lfit3, lfi35, lfih1,

Stat1, Stat2, Isg15, Usp15, and lfit1 for the Blue module and for the Turquoise module the ECM and EMT related genes: Col1a1, Col4a1,

Col6a2, Col6a1, Col4a2, Itgav, Fn1, Itgb1, Itga5, and Itgb3. Tominimize potential bias from includingmicewithmultiple tumors in our analysis,

we repeated the analysis on single tumors from each mouse (n = 119) and observed similar sets of hub genes, with the exception that Col1a2

replaced Itgb3 in the EMT/ECM (Turquoise) module (Figures S9C and S9D).

To further probe the prognostic potential of hub genes associated with immune and non-immune (EMT/ECM) tumor clusters from

asbestos-exposed CCMT mice, we leveraged tumor RNA sequencing data from BALB/c mice bearing subcutaneous AB1 mesothelioma

treated with combination a-PD-L1+a-CTLA4 ICB therapy. Univariate Cox regression analysis of all 20 hub genes demonstrated a significant

association between the expression of 19 of the 20 hub genes identified in CCMT tumors with ICB treated subcutaneous AB1mesotheliomas

bearing BALB/c mice35 (n = 24, Figure 3E).

Construction and validation of a mesothelioma-specific prognostic gene signature

Following the identification of similarities between the gene expression profile of Cluster 2 tumors and previously published gene sets

strongly associated with positive responses to immunotherapy and chemotherapy in both mouse and human cancers, we sought to assess

the prognostic potential of the identified CCMT hub genes to predict a positive outcome in human mesothelioma. The remaining 19 hub

genes identified in the ICB treated mouse model were employed to develop a prognostic gene signature using well-defined, publicly

available, human mesothelioma datasets. We used the largest human mesothelioma dataset (Bueno, n = 211)27 as the training set, whereas

four additional human mesothelioma datasets, NCI (n = 100),36 TCGA-MESO (n = 74),8 MATCH (n = 67)37 and Creaney (n = 42),38 served as

validation datasets. Univariate Cox regression analysis identified 10 hub genes that were significantly associated with improved

survival post-surgery in the Bueno training dataset (Figure 4A). Next, we conducted least absolute shrinkage and selection operator

(LASSO) Cox regression analysis; a variable selection method designed to identify the most refined sets of genes for long-term prediction.

This narrowed the candidates to six genes that formed the prognostic model to calculate each patient’s time of death (risk score,

Figure S13).
6 iScience 27, 111011, October 18, 2024
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Figure 4. Development and validation of a six-gene prognostic signature specific to mesothelioma derived from CCMT hub genes

(A) Univariate cox regression analysis of all 20 Hub genes from the Bueno human mesothelioma dataset (n = 211), ranked by their hazard ratio. 95% confidence

interval and p values are shown in the right-hand column of the table. Genes significantly associated with survival are highlighted by red squares.

(B) Heatmap illustrating the six-gene prognostic signature expression, survival data and risk score distribution across all 211 tumor samples in the Bueno training

dataset. The median risk score, indicated by a red Line, is used to stratify patients into high (orange) and low (blue) risk groups.

(C andD) KaplanMeier curves showing the overall survival of patients in high (orange) and low (blue) risk groups. ROC curves verified the prognostic performance

of the estimated risk score within the Bueno training dataset.

(E and F) Forrest plot of multivariate Cox regression analysis of the gene signature within Bueno and TCGA datasets. The multivariate analysis was adjusted for

sex, histological subtype and patient age. The 95% confidence interval and p values are shown on the right end column of the table.

(G) Stacked bar chart of AUC for the six-gene signature model and other published gene signaturemodels across five independent mesothelioma datasets. Area

under the curve (AUC) percentages of ROC analysis on gene signature model predictions and CCNB1 in five independent mesothelioma datasets (Bueno, NCI,

TCGA, MATCH and Creaney). Colors in each bar correspond to overall survival year in the cohort for the specified gene signature model. The 44-gene signature

and CCNB1 signature are from Nair et al., 2023.36 AUC values of every survival year are compared within each datasets using the iid-representation of the AUC

estimator from TimeROC package. *p < 0.05, **p < 0.01.
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Risk scores for each patient were calculated based on the expression of the six genes identified by LASSO analysis: interferon regulatory

factor 9 (IRF9), ubiquitin specific peptidase 18 (USP18), collagen type IV alpha 1 (COL4A1), integrin alpha 5 (ITGA5), fibronectin 1 (FN1) and

integrin subunit beta 1 (ITGB1). Risk scores were then used to stratify patients into high or low-risk groups, with the lower-risk group demon-

strating better overall survival (Figure 4B). IRF9 and USP18 are known to be involved in interferon (IFN) signaling and their expression, based

on the risk score formula (Figure S13), demonstrated a negative impact (i.e., a lower risk score and better survival). Conversely, COL4A1,

ITGA5, FN1 and ITGB1, are associated with ECM processes and positively influenced the risk score (i.e., higher risk and lower survival).

We assessed the predictive accuracy of the survival model in the Bueno training dataset27 using receiver operating characteristic (ROC)

curve analysis. This yielded area under the curve (AUC) probabilities of 0.68, 0.70 and 0.74 for 1-, 2- and 3-year survival after surgery, respec-

tively (Figure 4C). The prognostic potential of the six-gene signature was validated in the TCGA8 and Creaney38 datasets (Figures 4D, S14B,

and S14D), but the gene signature was not significantly associated with prognosis in the MATCH37 mesothelioma dataset (Figures S14A and

S14C). Conversely, multivariate Cox regression analysis identified the six-gene signature as an independent prognostic factor for mesothe-

lioma in the Bueno, TCGA and Creaney cohorts, after adjusting for sex, age, and histological subtypes (Figures 4E, 4F, and S14D).

To assess whether the six-gene prognostic signature was specific for mesothelioma, we investigated additional non-mesothelioma TCGA

cancer datasets. The six-gene signature failed to significantly stratify patients into high- or low-risk in several cancers including cutaneous

melanoma (SKCM), thymoma (THYM), prostate adenocarcinoma (PRAD) and ovarian cancer (OV), the latter having a similar mutational profile

to mesothelioma.27 Conversely, the six-gene signature significantly stratified bladder cancer (BLCA) and lung adenocarcinoma (LUAD)

patients, although with lower predicative performance compared to mesothelioma-specific datasets (Figure S15). Finally, the predictive per-

formance of the six-gene signature model was benchmarked against other published mesothelioma gene signatures7,33,36,39–41 using Time-

dependent AUC comparison analysis (timeROC) and demonstrated similar predictive performance in five independent mesothelioma data-

sets8,27,36–38 further validating the capability of the six-gene signature to accurately predict mesothelioma patient survival (Figure 4G and

Table S3).

Six-gene mesothelioma-specific gene signature accurately predicted survival and response to ICB therapy in the NCI

mesothelioma cohort

To further validate the prognostic potential of the six-gene mesothelioma-specific signature, we used the recently published NCI mesothe-

lioma dataset.36 This dataset is unique in that it contains treatment outcome data and includes an equal number of patients with pleural and

peritoneal mesothelioma. While the six-gene signature was not significantly correlated with patient prognosis for the entire NCI dataset (n =

100), it accurately predicted prognosis for most NCI mesothelioma patients (n = 94), excluding a small group (n = 6) with survival over 10 years

(Figures 5A and 5B). The predictive accuracy of the six-gene signature in the NCI dataset was further corroborated by the high AUC proba-

bilities (0.84, 0.70, and 0.70) from ROC curves for 1-, 2- and 3-year overall survival post-diagnosis respectively (Figure 5C).

Interestingly, the prognostic potential of the signature was absent when patients were stratified based on the anatomical location of dis-

ease (viz., pleural vs. peritoneal), either in all patients or in patients surviving <10 years (Figure S16). However, the signature accurately strat-

ified patients into low- and high-risk categories, based on the post-biopsy survival of the 38 patients who received treatment (Figure 5D).

Comparative analysis using the ’Venkatraman’ and ‘DeLong’method from pROC, of the predictive performance of all gene signatures to pre-

dict response to immune checkpoint blockade indicated that the SELECT, CCNB136 and Bai7 signatures had the highest AUC values,

although no significant difference was observed between any mesothelioma signatures AUC values after controlling the effect of disease

site (pleural or peritoneal), age, and gender (Figure 5E and Table S4). All gene signatures were equally poor at predicating response to

chemotherapy (Figure 5F) in the NCI dataset.

DISCUSSION

This study utilized a biobank of solid tumors from asbestos-exposed, genetically diverse CCMT mice.22 These samples provided an optimal

platform to model asbestos-related disease development, devoid of numerous confounding factors such as differences in carcinogen expo-

sure, lifestyle/diet impacts, and various cancer treatment modalities encountered in human studies.7–9 Interestingly, extensive transcriptomic
8 iScience 27, 111011, October 18, 2024
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Figure 5. Six-gene signature successfully predicts overall survival of patients in NCI mesothelioma dataset with less than 10 years survival

(A) Kaplan Meier survival curves for all NCI mesothelioma patients (n = 100).

(B) Kaplan-Meier survival curves for patients with less than 10 years survival, stratified by the six-gene signature into low (orange) and high (blue) risk groups (32).

(C) ROC curves with AUC values for 1, 2, and 3-year survival of mesothelioma patients.

(D) Kaplan Meier survival curves for NCI patients with less than 10 years survival post-biopsy (n = 38) who received different treatment modalities, stratified into

low (blue) and high (orange) risk groups.

(E and F) Comparative analysis of the area under the curve (AUC) of ROC analysis of the six-gene and other mesothelioma gene signature models to predict

treatment response in the NCI dataset after controlling the effect of age, gender and disease site (pleural or peritoneal). (E) Immune checkpoint blockade

(ICB) therapy and (F) chemotherapy (CTX). Patients with complete response (n = 1 for ICB, n = 1 for CTX) or partial response (n = 2 for ICB and n = 23 for

CTX) are considered responders and patients with progressive disease (n = 7 for ICB and n = 6 for CTX) or stable disease (n = 6 for ICB and n = 0 for CTX)

are considered non-responders. 44-gene, CCNB1 and SELECT gene signatures from Nair et al., 2023.36 AUC of six-gene signature model was compared

with other gene signature models using ‘DeLong’ and ‘Venkatraman’ method from the pROC package. *p < 0.05 **p < 0.01.
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analysis of 167 tumors from 35 genetically distinct CCMT mouse strains that exhibited the maximum difference in overall survival revealed

minimal variation in the gene expression profile of asbestos-inducedmesotheliomas and no significant impact on the survival of the collective

CCMT cohort. This outcome is consistent with our recent study22 that demonstrated host genetics had little influence on ARD outcomes after

disease was established. This observation contrasts with a recent analysis of human RNA sequencing data combining the TCGA-MESO8 and

Bueno27 mesothelioma datasets (n = 284), which corroborated a continuummodel to explain the variation in patient survival based on tumor

gene expression profiles.42 However, it should be noted that patients received treatment (CTX or surgery), whereas CCMT mice were treat-

ment naive.

Our analysis of CCMT tumor gene expression profiles revealed two distinct clusters. Cluster 1 was characterized by higher expression of

EMT/ECM-related genes and lower adaptive immune cell infiltration, whereas Cluster 2 displayed an adaptive immune-related phenotype,

exhibiting significantly higher infiltration of CD4+ T cells and CD19+ B cells. This aligned with GSEA results of humanmesothelioma datasets,

where immune pathway expression emerged as a major source of variation.37,42 Furthermore, the high enrichment of EMT/ECM gene sets in

Cluster 1 tumors, in conjunction with lower adaptive immune cell infiltration, is consistent with several studies that have demonstrated an in-

verse correlation between COL1A1 expression and ECM receptor interaction pathway proteins with higher immune infiltration and response

to immunotherapy.43–46 This is also supported by studies suggesting that ECM-related genes expression functions as a barrier to the anti-

tumor immune response in the tumor microenvironment.47–51 We also note the significantly higher level of tumor associated macrophages

(TAMs) in Cluster 1 tumors compared toCluster 2 tumorsmay play a role in limiting adaptive immune cell infiltration and the influence of TAMs

in dampening anti-tumor immunity requires further investigation.

The association between immune cell infiltration and low ECM density with anti-tumor immune response in Cluster 2 tumors compared to

Cluster 1 tumors led us to hypothesize that Cluster 2 tumors would be more likely to respond to cancer immunotherapy. This was supported

by the significant association between the enrichment of both mouse and human gene sets associated with positive responses to cancer ICB/

chemotherapy27–32,34,52 and the gene expression profile of Cluster 2 tumors. These results prompted further exploration to determine

whether the distinction between the gene expression profiles of the two CCMT tumor clusters could be used to develop a prognostic

gene signature.

To this end,WGCNA identified 20 hubgenes that were strongly correlatedwith each distinct CCMTcluster, and the human homologues of

these 20 hub genes were further refined to an optimal six-gene signaturemodel that accurately predicted survival in four independent human

mesothelioma datasets.8,27,36,38 Importantly, the six-gene signature demonstrated the potential to predict positive therapeutic responses

with similar AUC values relative to other mesothelioma gene signatures in the NCI mesothelioma dataset, which is currently the only dataset

containing data frommesothelioma patients who had received chemo-immunotherapy. These data reaffirm that mesothelioma patients can

be stratified into an immunotherapeutic responsive/non-responsive cohort, and that therapeutic response can be defined based on a parsi-

monious gene signature.

However, there are differences between our data and other studies. Direct comparison of the six-gene (or any other gene) signature with

other methods to predict potential therapeutic response (such as the SELECT53 method employed by Nair et al.36) demonstrated that while

no significant difference was observed between mesothelioma gene signatures, both SELECT and the CCNB1 gene signatures had higher

AUC values for predicting response to ICB. Interestingly, all gene signatures performed poorly at predicting response to chemotherapy only.

Additionally, it is important to acknowledge that the relatively small number of treated patients (n = 38 total, 3 of 16 responders to ICB) in the

NCI dataset limits the robustness of the predictive capacity of any mesothelioma-specific gene signature. Therefore, the evaluation of me-

sothelioma-specific prognostic gene signatures in larger (future) mesothelioma patient cohorts with well-defined clinical parameters is

essential.

The goal of developing a mesothelioma-specific prognostic gene signature is not new. Although many studies have published mesothe-

lioma-related gene signatures, the considerable variations in cohort composition, statistical methodologies, and analysis workflows may

explain why there is little, if any commonality between published mesothelioma gene signatures.7,33,36,39–41 Indeed, the six-gene signature

described here also demonstrated limited commonality with other published mesothelioma signatures, including the recent NCI cohort-

based 48-gene signature.36 In contrast to the Nair study, CCNB1 was not identified in any of our analyses as having an influence on survival.

Indeed, when we assessed CCNB1 expression in CCMT tumors we observed higher CCNB1 expression in Cluster 2 tumors that were char-

acterised by the presence of a significant immune infiltrate, compared to non-immune (EMT/ECM) Cluster 1 tumors. However, given that we
10 iScience 27, 111011, October 18, 2024
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did not identify CCNB1 as one of the 237 DEGs identified from the CCMT cohort, nor was CCNB1 expression associated with survival

outcome, we could not confirm the predictive role of CCNB1 in this study.

Overall, while the development of mesothelioma-specific prognostic gene signatures is encouraging, all proposed prognostic gene sig-

natures developed from mesothelioma studies to date (including the six-gene signature described here) and their corresponding biological

pathways require further assessment to clarify possible causal relationships with tumor development. Such advancements would be aided by

incorporating known caveats of prognostic gene signature development into the design of futuremesothelioma clinical trials. Ideally, the trial

design would be adequately powered, and link well-defined clinical information associated with patient survival and treatment response with

patient transcriptomic data. This would advance the development of prognostic gene signature(s) that accurately predict both patient survival

and therapeutic response and significantly advance the clinical care and management of mesothelioma patients. Furthermore, given the es-

tablished significance of non-coding transcriptomes in cancer progression, prognosis, and response to therapy,54–56 expanding transcrip-

tomic analyses to encompass all transcriptomic forms (i.e., long non-coding RNA/circular RNA) in future mesothelioma clinical trials may

have the potential to improve the precision and reliability of disease-associated gene signatures to predict clinical outcomes.

This study utilized a unique cross-species approach that not only demonstrated the translational potential of a mesothelioma-specific

gene signature, but also validated the predictive value of well-defined, pre-clinical models that accurately represent the disease endotype

for prognostic and therapeutic purposes in human studies. This is particularly useful in the context of rare cancers, where the restricted num-

ber of patient samples may limit the power of conventional genetic studies. Indeed, the commonality of the significant genes and pathways

identified across species underscores the relevance of our findings to the pathophysiology of human mesothelioma. This cross-species vali-

dation bolsters confidence in our prognostic gene signature, highlighting the potential utility of pre-clinical derived data in clinical decision-

making for patients with mesothelioma.

In conclusion, while our six-gene signature accurately predicted survival inmultiple humanmesothelioma cohorts, the limited availability of

large multi-omics datasets and comprehensive clinical information restricts its application in predicting response to cancer therapies. This

highlights the importance of designing future clinical trials using a standardized set of clinical data to assess the predictive potential of tran-

scriptomic data. Such an approach could significantly improve the stratification of patients and enhance clinical care by identifying mesothe-

lioma patients who are more likely to respond to specific cancer therapies.
Limitations of the study

Out study used RNA-seq of whole tumor tissue derived from asbestos exposedCCMTmice and usedCIBRESORT to impute cell type compo-

sition. To differentiate tumor cells from stromal cells we would perform single-cell RNA-seq or analyze flow cytometry sorted tumor cells.

MexTAg-Collaborative Cross mice were breed specifically for this project and do not exist as a commercial colony. To repeat these exper-

iments each specific CC-MexTAg cross would have to be rebred. Both parental mouse types (i.e., male Collaborative Cross mice and female

MexTAg mice) are available.
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Antibodies

CD4 (D7D2Z) Rabbit mAb Cell signaling Cat# 25229S; RRID:AB_2798898

CD8a (D4W2Z) Rabbit mAb Cell signaling Cat# 98941; RRID:AB_2756376

FoxP3 (D6O8R) Rabbit mAb Cell signaling Cat# 12653; RRID:AB_2797979

PD-L1 (EPR20529) Rabbit mAb Abcam Cat# ab213480; RRID:AB_2773715

CD19 (D4V4B) Rabbit mAb Cell signaling Cat# 90176; RRID:AB_2800152

IBA1 (Polyclonal) Rabbit FUJIFILM Wako Pure Chemical Corporation Cat# 019-19741; RRID:AB_839504

COL1A1 (E8F4L) Rabbit mAb Cell signaling Cat# 72026T; RRID:AB_2904565

Vimentin (D21H3) Rabbit mAb Cell signaling Cat# 5741T; RRID:AB_10695459

PDPN (Polyclonal) Rabbit Abcam Cat# ab109059; RRID:AB_2848181

E-cadherin (24E10) Rabbit mAb Cell signaling Cat# 3195S; RRID:AB_2291471

Rabbit IgG, monoclonal (EPR25A) Abcam Cat# ab172730;

RRID:AB_2687931

DAPI solution (1mg) BD Bioscience, USA Cat# 564907;

RRID:AB_2869624

Biological samples

CCMT strain Mouse ID (Tumour ID)

266-BOM_GB (Gene Mine.BOM_GB x C57BL/

6J.MexTAg 266 HOM

Fisher, S.A et al., 2024.22 L1 (Tu2)

266-BOON_HF (Gene Mine.BOON_HF x

C57BL/6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 D1 (Tu 1, Tu 2)

H2 (Tu1, Tu2, Tu3)

I2 (Tu1)

I4 (Tu2)

266-CC001/Unc (CC001/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 D1 (Tu1, Tu2)

H2 (Tu1, Tu2)

H3 (Tu1)

266-CC017/Unc (CC017/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H2 (Tu2)

I4 (Tu1)

266-CC021/Unc (CC021/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C1 (Tu1)

C2 (Tu2)

C4 (Tu1)

D3 (Tu1)

266-CC035/Unc (CC035/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H1 (Tu1, Tu2, Tu3)

H2 (Tu1)

266CC036/Unc (CC036/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C1 (Tu1)

C3 (Tu1)

F1(Tu1, Tu2)

266-CC040/TauUnc (CC040/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 D3 (Tu1)

E1(Tu2)

E4 (Tu1)

H1 (Tu1)
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266-CC044/Unc (CC044/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 D3 (Tu1, Tu2)

F2 (Tu1)

F4 (Tu1, Tu2, Tu3)

H2 (Tu1)

I2 (Tu1)

J3 (Tu1, Tu2, Tu3)

K1 (Tu1, Tu2, Tu3)

266-CC046/Unc (CC046/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H2 (Tu1)

J5 (Tu2)

L3 (Tu1)

L3 (Tu2)

266-CC053/Unc (CC053/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A1 (Tu1, Tu2)

A4 (Tu1)

B1 (Tu1)

F1 (Tu1, Tu2, Tu4)

G3 (Tu1, Tu2)

H1 (Tu1)

266-CC058/Unc (CC058/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 B2 (Tu2)

H4 (TU1)

I4 (Tu1, Tu2)

266-CC059/TauUnc (CC059/TauUnc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A2 (Tu1)

B1 (Tu1, Tu2)

B5 (Tu1)

E2 (Tu1, Tu2, Tu3)

F2 (Tu1, Tu2)

266-CC060/Unc (CC060/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 B1 (Tu1)

G2 (Tu1)

H2 (Tu2)

266-CC074/Unc (CC074/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 B3 (Tu1, Tu2, Tu3, Tu6, Tu8, Tu9)

G1 (Tu1)

266-CC081/Unc (OR3269/Unc x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A1 (Tu1)

C4 (Tu1)

C5 (Tu1)

266-CIS_AD (Gene Mine.CIS_AD x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 E2(Tu1, Tu2)

G3 (Tu1, Tu2)

G4 (Tu1)

266-FUF_HE (Gene Mine.FUF_HE x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H2 (Tu1, Tu2)

266-GIT_GC (Gene Mine.GIT_GC x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 G2 (Tu1)

H3 (Tu1)

K1 (Tu1, Tu2)

K2 (Tu1)

266-KAV_AF (Gene Mine.KAV_AF x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A3 (Tu1, Tu2)

D4 (Tu1)

G2 (Tu2)

266-LAT_HD (Gene Mine.LAT_HD x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A2 (Tu1)

D2 (Tu1)

D3 (Tu1, Tu2, Tu3, Tu4)

E2 (Tu1)

F5 (Tu1, Tu2)

(Continued on next page)
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266-LAX_FC (Gene Mine.LAX_FC x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C2 (Tu1)

E2 (Tu1)

F2 (Tu1)

G3 (Tu1)

H1 (Tu1)

K2 (Tu1)

266-LOX_GF (Gene Mine.LOX_GF x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A3 (Tu1)

B4 (Tu1, Tu3)

C1 (Tu1)

D1 (Tu1, Tu2)

E4 (Tu1)

F2 (Tu1)

F4 (Tu1)

266-MEE_AG (Gene Mine.MEE_AG x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A3 (Tu1, Tu2)

B1 (Tu1, Tu2)

E2 (Tu1, Tu2)

I2 (Tu1)

266-PEF2_EC (Gene Mine.PEF2_EC x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A2 (Tu1)

G2 (Tu1, Tu2)

266-PIPING_BD (Gene Mine.PIPING_BD x

C57BL/6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 I3 (Tu1)

J1 (Tu1)

N1 (Tu1)

266-PUB_CD (Gene Mine.PUB_CD x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 I1 (Tu1)

266-ROGAN_CF (Gene Mine.ROGAN_CF x

C57BL/6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C3 (Tu1, Tu2)

E3 (Tu1)

E5 (Tu1)

J2 (Tu1, Tu2)

266-TAS_FE (Gene Mine.TAS_FE x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 D3 (Tu1)

E3 (Tu1)

H2 (Tu1)

H5 (Tu1)

I1 (Tu1)

J2 (Tu1)

266-TOFU_FB (Gene Mine.TOFU_FB x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C3 (Tu1)

K2 (Tu1)

266-VIT_ED (Gene Mine.VIT_ED x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 A2 (Tu1)

K2 (Tu1)

266-VUX2_HF (Gene Mine.VUX2_HF x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 B1 (Tu1)

D1 (Tu1)

E2 (Tu1)

G1 (Tu1)

266-WAB2_DH (Gene Mine.WAB2_DH x

C57BL/6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H2 (Tu1)

266-WOB2_BA (Gene Mine.WOB2_BA x

C57BL/6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 H3 (Tu1)

N3 (Tu1)

266-YID_FH (Gene Mine.YID_FH x C57BL/

6J.MexTAg 266 HOM)

Fisher, S.A et al., 2024.22 C1 (Tu1)

D1 (Tu1, Tu2)

E1 (Tu2)

G3 (Tu1)

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

RNAProtect Qiagen GmbH Cat# 76104

RNeasy Mini Kit Qiagen GmbH Cat# 74104

TSA FLUORESCEIN REAGENT PACK 100-300 Akoya Biosciences Inc, MA, USA Cat# SAT701001EA

AF 594 TYRAMIDE 150 SLIDES ThermoFisher, USA SKU #B40957

TSA CYANINE 3 SYSTEM 50-150 SLIDES Akoya Biosciences Inc, MA, USA Cat# SAT704A001EA

TSA CYANINE 5 SYSTEM 50-150 SLIDES Akoya Biosciences Inc, MA, USA Cat# SAT705A001EA

Background SNIPER Biocare Medical Cat# BS966

Peroxidazed 1 Biocare Medical Cat# BIC-PX968H

Goat anti-Rabbit IgG (H+L) Secondary

Antibody, HRP

ThermoFisher, USA Cat# 31460

D1000 screentapes & reagents Agilent, USA (Integrated Sciences, Aust) Cat# 5067-5582; 5067-5583

Qubit HS DNA kit ThermoFisher, USA Cat # Q32851

NovaSeq 6000 SP Reagent Kit Illumina, USA Cat# 20028402

SureSelect strand specific mRNA library

prep kit

Agilent Technologies Australia, VIC, Australia Cat# G9691B

Deposited data

CCMT RNAseq This study (Gene Expression Omnibus) GEO: GSE232512

RNAseq analysis code Mendeley data https://doi.org/10.17632/84kjtptmd8.1

MSigDB hallmark gene set collection Liberzon, A et al., 2015.62 https://doi.org/10.1016/j.cels.2015.12.004

KEGG Kanehisa et al., 2022.64 https://doi.org/10.1093/nar/gkac963

Biocarta Biocarta https://maayanlab.cloud/Harmonizome/

resource/Biocarta

ImmunoPhenoscore (IPS) Charoentong et al., 2017.27 https://doi.org/10.1016/j.celrep.2016.12.019

ImmuneCells.sig Xiong et al. 2020.29 https://doi.org/10.1038/s41467-020-18546-x

Stem.Sig Zhang et al., 2022.30 https://doi.org/10.1186/s13073-022-01050-w

Inflammatory signature Thompson et al., 2020.33 https://doi.org/10.1016/j.lungcan.2019.

10.012

T cell infiltration score Senbabaoglu et al. 2016.28 https://doi.org/10.1186/s13059-016-1092-z

Bueno mesothelioma dataset (Bueno, R et al.,

2016)27
European Genome-Phenome Archive EGA: EGAS00001001563

TCGA RNAseq datasets (TCGA-MESO,

-LUAD, -SKMC, -BLCA, -THYM, -PRCA

and -OV)

Genomic Data Commons (GDC) TCGA datalinks search portal

NCI mesothelioma dataset (Nair, N.U et al.,

2023)36
Database of Genotypes and Phenotypes dbGaP: phs002207

Creaney mesothelioma dataset (Creaney, J

et al., 2022)38
European Genome-Phenome Archive EGA: EGAS00001005196

MATCH mesothelioma dataset (Mannarino, L

et al., 2022)37
Zenodo https://doi.org/10.5281/zenodo.6532036

Bai mesothelioma signature Bai et al., 2020.7 https://doi.org/10.3389/fgene.2020.00899

Zhou mesothelioma signature Zhou et al., 2019.41 https://doi.org/10.3389/fonc.2019.00078

Zhang mesothelioma signature Zhang et al., 2022.40 https://doi.org/10.21037/atm-22-527

Shi mesothelioma signature Shi, J et al., 2023.38 https://doi.org/10.1007/s00432-023-05128-9

Xiao mesothelioma signature Xiao, Y et al., 2022.39 https://doi.org/10.3389/fendo.2022.1056152

C57Bl/6J mouse genome (GRCm38/mm10) NCBI GenBank GCF_000001635.27

Human Genome assembly GRCh38 NCBI GenBank GCF_000001405.40

(Continued on next page)
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Software and algorithms

Kallisto Bray et al., 2016.58 https://doi.org/10.1038/nbt0816-888d

Tximport Soneson et al., 2015.59 https://doi.org/10.12688/f1000research.

7563.2

DESeq2 Love et al., 2014.60 https://doi.org/10.1186/s13059-014-0550-8

ConsensusClusterPlus Wilkerson, A et al., 2010.61 https://doi.org/10.1093/bioinformatics/

btq170

GSEA (v4.2.3) Broad Institute, Subramanian et al., 200766 and

Subramanian et al., 2005.67
https://doi.org/10.1093/bioinformatics/

btm369

https://doi.org/10.1073/pnas.0506580102

Weighted gene co-expression network

analysis (WGCNA)

Langfelder et al., 2008.69 https://doi.org/10.1186/1471-2105-9-559

CIBERSORTx Newman et al., 2019.68 https://doi.org/10.1038/s41587-019-0114-2

Survival Therneau et al. 2015.76 Therneau et al. 2015.76

glmnet Freidman et. Al 2010.78 https://doi.org/10.18637/jss.v033.i01

survminer CRAN https://cran.r-project.org/web/packages/

survminer/index.html

timeROC Blanche P et al. 2013.79 https://doi.org/10.1002/sim.5958

STAR (v2.7.3a) Dobin et al. 2013.74 https://doi.org/10.1093/bioinformatics/

bts635

featureCounts Liao et al. 2014.75 https://doi.org/10.1093/bioinformatics/btt656

Cytohubba plugin Chin et al., 2014.72 https://doi.org/10.1186/1752-0509-8-S4-S11

QuantCenter software (v2.5.0.143918). 3DHistech ltd. https://www.3dhistech.com/research/

quantcenter/

CytoScape (v3.8) Shannon et al., 2003.73 https://doi.org/10.1101/gr.1239303

Rstudio (R version 4.1.3) R studio https://posit.co/products/open-source/

rstudio/

Other

Qubit� 4 fluorometer ThermoFisher, USA Cat # Q33238

Tapestation 4200 Agilent, USA (Integrated Sciences, Aust) Part no# G2991BA

iSeq100 sequencer Illumina, USA https://sapac.illumina.com/systems/

sequencing-platforms/iseq.html

NovaSeq 6000 sequencer Illumina, USA https://sapac.illumina.com/systems/

sequencing-platforms/novaseq/specifications.

html

3DHISTECH Pannoramic Flash 250 III Slide

Scanner

3DHISTECH ltd https://www.3dhistech.com/research/

pannoramic-digital-slide-scanners/

pannoramic-250-flash-iii/
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

This study did not involve the direct use of animals. However, it did use tumour samples harvested from asbestos exposed CC-MexTAg prog-

eny from our previous study.22 All animal experiments were approved by the University of Western Australia Animal Ethics Committee (RA/3/

300/106; RA/3/300/107; RA/3/300/131; RA/3/300/133; RA/3/100/1408; RA/3/100/1730), and were performed in accordance with the National

Health and Medical Research Council Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.57 The CC12,15 and

MexTAg19–21 mouse strains and the generation of CCMT progeny22 have been previously described. Briefly, CC mice were generously pro-

vided by Geniad Pty Ltd from its colonies at the Animal Resource Centre (Perth, Western Australia). Additional CC strains (CCXXX format)

were obtained from the University of North Carolina CC colony. MexTAg mice were developed in house and colonies maintained at the Uni-

versity of Western Australia Biomedical Resource Facility (Perth, Western Australia). All mice were house at the UWA Animal Care Services
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M-Block animal facility (Nedlands, Western Australia) and maintained under pathogen-free conditions at 21�C– to 22�C with a 12/12 h light

cycle, in single sex cages containing amaximumof 5mice per cage (amix of Thoren or Tecniplast individually ventilated cages) on aspen chips

bedding (TAPVEI). Mice were fed Rat andMouse cubes (Specialty Feeds, PerthWestern Australia) and had ad libitum access to filtered water.

Malemice fromdifferent CC strains weremated with femaleMexTAgmice, and the CCMTprogeny (male and female) were administered two

intraperitoneal injections of 3 mg Wittenoom crocidolite (blue) asbestos one month apart. Asbestos-exposed CCMT mice were monitored

continuously for up to 548 days (18 months/78 weeks) or until signs of asbestos-related disease (ARD, predominantly ascites formation or loss

of condition) developed and progressed to a pre-defined animal welfare endpoint, at which time the mice were sacrificed, and tumor and

tissues collected for genomic analysis (Figure 1A).

METHOD DETAILS

Sample collection and RNA isolation

Tumors from asbestos exposed CCMT mice were harvested immediately after sacrifice, collected in RNAprotect� as per manufacturer’s in-

structions (76104, Qiagen GmbH, Venlo, Netherlands) and stored at -80�C. Large tumors (> 50 mm2) were halved, with half preserved in 4%

formaldehyde for at least 24h in preparation for immunohistochemical analysis. Tumors and tissues were homogenised using a handheld

rotor-stator homogeniser (Tissue rupture II, Cat No./ID: 9002756,Qiagen). Total RNAwas extracted using the RNeasyMini Kit (74104, Qiagen)

as per manufacturer’s instructions.

RNAseq library preparation and sequencing

Stranded PolyA RNAseq libraries were prepared and sequenced by Genomics WA (Perth, Western Australia). A Sureselect strand specific

mRNA library prep kit (G9691B, Agilent Technologies Australia, VIC, Australia) was used for cDNA library preparation. The quality and con-

centrations of the final cDNA libraries were verified using either D1000 screentapes on a Tapestation 4200 orQubit HSDNAkit (ThermoFisher

Scientific, MA, USA) and a Qubit� 4 fluorometer. For quality control, initial sequencing was performed using an iSeq100 (Illumina, CA, United

States). Thereafter, 300 pM of the cDNA libraries was loaded into SP flow cells for deep sequencing using a NovaSeq 6000 (Illumina) at 2 x 50

cycles, yielding 20 million raw paired-end reads per sample.

RNA sequencing data analysis

Quality control assessment of FASQ sequence reads was performed using FastQC (v0.11.9), and their measures were summarized byMultiQC

software (v1.14) prior to RNAseq data analysis. Raw FASQ sequence files were aligned to themurineGRCm38/mm10 reference genome using

Kallisto,58 with the number of bootstraps set to 100. The Tximport package59 was used to convert transcript abundance to gene-level esti-

mates. DESeq260 was used to normalize gene expression data and to identify differentially expressed genes in tumors derived from mice

based on overall survival (below CCMT cohort median group relative to the above median survival group). The variance-stabilising transfor-

mation (Vst) function of DESeq2 was used to transform the gene count data for subsequent principal component analysis (PCA). We used

ConsensusClusterPlus61 to perform consensus clustering on 10,000 highly variable genes using 5,000 iterations on 80% of the samples.

This facilitated determination of the optimal K value, which denotes the number of clusters assigned to RNAseq data based on fewer color

changes and flatter cumulative distribution function (CDF) plots (Figure S1).

GSEA was performed usingMSigDB,62,63 KEGG64 databases, and BioCarta pathway database with 1000 permutations executed using the

Broad Institute software (GSEA v4.2.3).65–67 Gene sets with nominal p values < 0.05 and FDR < 0.25 were considered significant. To estimate

the abundance of immune cell types from the gene expression data, we employed the CIBERSORTx deconvolution algorithm68 on transcript

per million (TPM) transformed RNAseq data.34

Multiplex immunofluorescence

Multiplex immunofluorescence staining of sequential formalin fixed paraffin embedded (FFPE) tumor sections (5 mm) utilized Tyramide-signal

amplification (TSA) reagents. Tissue sections were deparaffinized and rehydrated using graded alcohol and xylene, and antigen retrieval was

performed in Tris-EDTA buffer (pH 9.0) using a pressure cooker (Cuisinart, CPC600C). For each successive round, tumor sections were incu-

bated with different primary rabbit anti-mouse antibodies, followed by SuperBoost� goat anti-rabbit poly HRP (ThermoFisher, Vic, Australia).

The antibody specifications, final concentrations and a comprehensive outline of the staining protocol are provided in the key resources table

and Table S1. Immunostaining was performed using fluorophore-tagged TSA Reagent kits including TSA-Cyanine 5, TSA-Cyanine 3, TSA-

Fluoresceine (Akoya Biosciences Inc, MA, USA) and TSA-AF594 (ThermoFisher). Sequential rounds of antigen retrieval were performed to

strip the bound antibodies prior to subsequent staining. Sections were counterstained with DAPI (564907, BD Bioscience, USA) andmounted

with ProLong�Diamond Antifade mountingmedium (ThermoFisher). Rabbit IgG Isotype control antibody (ab172730) was used as the nega-

tive control. The 3DHISTECH Pannoramic Flash 250 III Slide Scanner (3D Histech, Budapest, Hungary) was used to scan whole tumor sections

at 25x magnification and images were analyzed using QuantCenter software (3D Histech, v2.5.0.143918).

Treatment response gene set selection

Gene sets associated with response to therapy in mouse mesothelioma were obtained from publicly available studies. These gene sets con-

sisted of genes that were significantly upregulated in subcutaneous tumors from mice that responded to ICB therapy targeting cytotoxic
20 iScience 27, 111011, October 18, 2024
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T-lymphocyte–associated antigen 4 (CTLA-4) plus PD-L1 and cyclophosphamide plus 5-flurouracil chemotherapy.29,34 Additionally, published

pan-cancer human gene sets, consisting of more than 15 genes, and showing positive correlations with response to cancer therapies, were

selected to create human treatment response gene sets. These gene sets included ImmunoPhenoscore (Ips signature),31 Inflammatory signa-

ture,30 T cell infiltration score,27 ImmuneCells.Sig,32 and Stem.Sig28 and were then used to perform GSEA on the gene expression profiles

identified in this study.
Weighted gene co-expression network analysis (WGCNA)

WGCNAwas performed on gene expression data using the ‘WGCNA’ R package69,70 to identify networks of co-expressed genes associated

with both immune and non-immune (EMT/ECM) tumor phenotypes. Prior to the analysis, gene expression data were pre-processed by elim-

inating genes with low expression (< 10 counts) and those lacking formal MouseGenome Informatics (MGI) symbols. This resulted in a total of

11,016 genes for downstreamanalysis. RNA sequencing data were transformed into an adjacencymatrix using the pickSoftThreshold function

with the soft threshold set to b=7 (R2=0.9), ensuring a scale-free network required for the WGCNA. To identify highly connected groups of

genes, a Topological OverlapMatrix (TOM) was derived from the adjacencymatrix. Finally, we employed the Dynamic Treecut algorithmwith

aminimummodule size of 30 genes to construct highly interconnected clusters of co-expressedgenes (modules). ACutHeight of 0.3was used

to merge similar modules (Figures S12A–S12D). The resulting modules from WGCNA, along with a correlation heatmap depicting the rela-

tionship between each module, mouse phenotypic traits, and tumor phenotypes, are illustrated in Figure 3C.
Hub gene identification

To identify significantmoduleswithin theWGCNAdata and their associated hub genes, we performed a correlation analysis between all iden-

tifiedWGCNAmodules and CCMT phenotypic traits, along with immune and non-immune (EMT/ECM) tumor phenotypes. Modules demon-

strating a significant correlation (p < 0.05, r > 0.8) and strong module membership (MM) (r > 0.8) were selected for further investigation using

Gene ontology (GO) enrichment analysis via the clusterProfiler package.71 Genes within these significantmoduleswere then used to construct

protein-protein interaction (PPI) networks and identify hub genes.We input amaximumof 2,000 genes from the twomost significantmodules,

representing either the non-immune (EMT/ECM) (Turquoise) or immune (Blue) tumor phenotype, into the STRING online database (http://

string-db.org/). We aimed to construct PPI networks with an interaction score of 0.4. To identify the hub genes for each network, we employed

the CytoHubba72 plugin in the Cytoscape software (version 3.8)73 to detect the top 10 genes with the highestmaximal clique centrality scores.
Mesothelioma transcriptomic datasets

Several human mesothelioma datasets were used to develop and validate the prognostic gene signature derived from CCMT hub genes. All

RNA-seq data from the gene signature discovery and validation cohorts were aligned against the same version of the human reference

genome (GRCh38). All the aligned RNAseq data files, or raw gene count tables, from all cohorts were subjected to the same processing

and normalization workflow as outlined in the RNA sequencing data analysis section. The training cohort, used to develop the six-gene prog-

nostic signature, comprised RNA-seq data from the Bueno cohort.27 This was imported from the European genome-phenome archive (EGA,

accession code: EGAS00001001563) in the raw FASTQ file format and aligned with Kallisto (v0.46.1).

For the validation cohorts, TCGA mesothelioma RNA-seq datasets were retrieved in the STAR aligned raw gene count format from the

Genomic Data Commons (GDC) portal using ‘TCGAbiolinks’. We sourced FASTQ sequence data files of the NCI cohort from the database

of genotypes and phenotypes (dbGaP, accession number: phs002207) and those from the Creaney datasets38 from the EGA (https://ega-

archive.org/studies/EGAS00001005196). All sequence data were aligned using STAR (version 2.7.3a)74 and transformed into a raw gene count

table using ‘featureCounts’.75 The raw gene count table and corresponding clinical data from theMATCH37 dataset were retrieved from Zen-

odo (https://zenodo.org/record/6532036).
Gene signature construction and validation using human cancer datasets

We developed a multi-gene prognostic model by screening hub genes using univariate Cox regression analysis on datasets from ICB treated

mice (n=24).34 This analysis was performed using the R ‘Survival’ package76,77 and involved screening the 20 CCMT hub genes associated with

tumor phenotypes. Subsequently, we used the human orthologs of the remaining 19 CCMT hub genes to perform univariate Cox regression

analysis on the Bueno humanmesothelioma cohort (training dataset)27 to identify significant genes associated with survival post-surgery. For

further analysis, we used the ‘glmnet’ package78 to perform LASSO Cox regression analysis on the 10 most significant genes, incorporating

100 times cross-validation. This analysis selected the optimal set of variables (genes) and generated a refined Cox model to predict patient

risk and prognosis. Subsequently, a risk score for each patient was calculated using
P

(Coef3EXPmRNA), where EXPmRNA refers to Vst trans-

formed gene expression, and ‘Coef’ corresponds to coefficients estimated by the LASSO Cox regression analysis. Risk scores were used to

divide patients into high and low-risk groups, and the prognostic significance of the model was evaluated through the Kaplan Meier78 curve

and ROC plots using ‘survminer’ and ‘timeROC’79 packages. Finally, we evaluated the prognostic potential of the six-gene signature in four

independent humanmesothelioma cohorts: TCGA-MESO,8 NCI,36 MATCH37 and Creaney.38 We also evaluated gene signature specificity by

retrieving transcriptomic data fromother non-mesothelioma cancer datasets from the TCGAGDCportal.Weprocessed and analyzed all data

using the same workflow outlined in the RNA sequencing data analysis.
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All statistical analyses were performed using R studio (R version 4.1.3) and the application noted in reference to the respective results sections

or in the figure legends where appropriate. Definitions of respective measures (i.e. median survival, hazard ratio and confidence limits), sam-

ples sizes or probabilities (p values) are defined in figure legends. Unless otherwise stated, Benjamini-Hochberg (B-H) correction was em-

ployed in differential expression analysis to adjust p values for multiple testing, considering p < 0.01 as significant. Survival analysis was con-

ducted using the Kaplan-Meier method, with P values calculated using the log-rank test (Mantel-Cox). We performed Student’s t-test to

compare the expression of EMT/ECMmarkers and the density of immune cellsmeasuredby immunofluorescence image analysis, considering

P < 0.05 as significant. Time-dependent AUC comparison analysis (timeROC) was used to compare differences in mesothelioma gene signa-

tures for survival prediction. The ‘Venkatraman/Delong’ methods from the pROC R package80 were used for AUC comparison of the six-gene

signature model with other gene signature models.
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