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Deep learning-based image analysis offers great potential in clinical practice. However, it faces 
mainly two challenges: scarcity of large-scale annotated clinical data for training and susceptibility to 
adversarial data in inference. As an example, an artificial intelligence (AI) system could check patient 
positioning, by segmenting and evaluating relative positions of anatomical structures in medical 
images. Nevertheless, data to train such AI system might be highly imbalanced with mostly well-
positioned images being available. Thus, we propose the use of synthetic X-ray images and annotation 
masks forward projected from 3D photon-counting CT volumes to create realistic non-optimally 
positioned X-ray images for training. An open-source model (TotalSegmentator) was used to annotate 
the clavicles in 3D CT volumes. We evaluated model robustness with respect to the internal (simulated) 
patient rotation α on real-data-trained models and real&synthetic-data-trained models. Our results 
showed that real&synthetic- data-trained models have Dice score percentage improvements of 3% to 
15% across different α groups compared to the real-data-trained model. Therefore, we demonstrated 
that synthetic data could be supplementary used to train and enrich heavily underrepresented 
conditions to increase model robustness.
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In clinical imaging examinations, proper patient positioning is crucial for accurately capturing anatomical 
structures. This can aid in medical image analysis1, longitudinal disease monitoring, radiotherapy planning2, 
thereby enhancing diagnostic confidence. To ensure correct patient positioning, an automatic positioning 
analysis system could be developed to support clinicians and technical assistants, so to optimize patient 
management by reducing the time or need for retakes. There are several quality criteria for patient positioning 
in chest X-rays (CXRs), such as the clavicle-spine distance and the visibility of certain thoracic anatomical 
landmarks3. A segmentation approach could identify the key anatomical structures in the images, allowing for 
the computation of quality metrics like distances and overlaps between anatomies.

Deep learning has emerged as a powerful tool for medical image analysis, ranging from segmentation, 
disease detection to report writing. It relies on large quantities of annotated images and could be the basis 
for the aforementioned segmentation task. However, obtaining large-scale annotated clinical CXRs, especially 
those with non-optimal positioning, is challenging. In addition, the robustness of current segmentation models 
in adversarial-positioned CXR is unknown. In realm of this chicken-and-egg dilemma, we first explore the 
robustness current segmentation models, and then supplementary train the models with adversarial CXR to 
improve robustness.

In order to reduce vulnerability to adversarial attacks when deploying deep learning models in real-world 
applications, robustness certification and adversarial training have been studied over the years to enhance 
model resilience. Robustness is the degree that a model’s performance changes in the presence of perturbations 
or uncertainties. Some studies certified robustness by using an abstract domain such as Zonotope to capture 
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the effect of affine transformations inside neural networks4,5. On the other hand, various methods have been 
suggested to generate adversarial perturbations with respect to the input and learned features6–9, including fast 
gradient sign method10, DeepFool11, saliency map attacks12, expectation over transformation13 and curriculum 
adversarial training14. Studies have been conducted that apply the adversarial pertubations in natural red-
blue-green images15 and skin lesion classification in medical imaging16,17. Besides classification, robustness 
benchmarking was also demonstrated by crafting adversarial examples using fast gradient sign method, 
DeepFool and saliency map attacks on whole brain segmentation18.

There is an emerging usage of realistic synthetic data for machine learning in medicine19–22, as curation of 
large-scale annotated clinical data is challenging due to scarcity or ethical issues, especially adversarial data. 
Synthetic image generation was studied in a range of imaging modalities including pathological images on 
skin lesions23,24, retinal images25, and in generation of synthetic CT images from MR images26–29. Particularly 
in X-ray imaging, synthetic X-rays (also known as digitally reconstructed radiographs, DRR)30 can be also 
generated from 3D CT volumes by analytic forward projection or GANs. Only a few studies have been carried 
out for using synthetic X-rays as training, for example to detect lung lesions31 or to quantify patient rotation32. A 
CNN trained with synthetic X-rays from CT volumes to quantify airspaces achieved an accuracy on the level of 
radiologists for a COVID lesion segmentation task33. Gao et al.34 used synthetic X-rays for lesion segmentation, 
landmark detection and surgical tool detection tasks, and their ground truth annotations were obtained by 
automatic segmentation or forward kinematics.

We propose to generate synthetic X-ray images from 3D CT volumes also for the use case to generate large 
amount of normal and adversarial x-ray images and in-image ground truth annotations systematically at the 
same time. We used a state-of-the-art CT segmentation tool TotalSegmentator35 to obtain ground truth for 
left and right clavicles in 3D CT domain. Both 3D image and annotations were forward projected to 2D X-ray 
domain and are characterized by non-optimal patient positioning. We trained clavicle segmentation models 
using real data and additionally with synthetic data for robustness evaluation. A model is rated robust if the Dice 
scores are consistent to slight changes in adversarial features, and in this study, we evaluated the Dice scores 
across different projection angles. We further evaluated the performance of open available CXR segmentation 
model TorchXRayVision36 as baseline comparison.

Our contribution in this paper is threefold: We first demonstrated the generation of synthetic CXR and 
their corresponding segmentations from CT volumes. Subsequently, we explored two distinct applications 
of synthetic images: as a mean to test and interpret model performance on adversarial data, and to augment 
an existing training dataset with synthetic adversarial cases, thereby enhancing model performance and 
robustness. Moreover, we used the open source models TotalSegmentator and TorchXRayVision to enable a 
more reproducible research.

Methods
Overview
Figure 1 shows our concept and X-ray simulation. It shows the forward projection setup for generating synthetic 
X-ray images (Figure  1a). Figure  1b illustrates how rotated (adversarial) and non-rotated (normal) data are 
position by rotating patient volume along y-axis. Figure 1c shows the pipeline from synthetic X-ray images and 
annotations to adversarial robustness measurement.

Generation of synthetic X-ray images and ground truth masks from computed tomography 
scans
A total of 116 photon-counting CT (NAEOTOM Alpha, Siemens Healthineers AG, Forchheim, Germany) 
datasets from individual patients were used to generate synthetic X-ray images. Each CT volume has a voxel 
size of 0.5×0.5×0.7mm3, and ≈1000 slices. Each CT volume underwent forward projection by ray tracing based 
on a cone-beam geometry. Virtual X-ray beams traverse the CT volume, and interacts with internal anatomies 
as attenuation and scattering. By accumulating the attenuation values along these paths, a simulated X-ray 
image is generated, representing the intensity of X-ray transmission through the volume from various angles37. 
With parameters similar to clinical chest X-ray examinations38, the X-ray source-to-patient distance is 150 cm, 
patient-to-detector distance is 30 cm, and the simulated detector has a matrix of 1800× 1800 pixels. To simulate 
the adversarial patient positioning, projection parameters were set such that X-ray source is rotated along the 
y-axis with angle α in range of [−20◦, 20◦], with a step size of 2◦ and the central projection at 0◦ (Figure 1b). 
Furthermore, standard radiographic image post-processing was applied to images.

To generate the synthetic ground truth annotations, each photon-counting CT dataset was segmented by 
the open-source deep learning segmentation toolbox TotalSegmentator35 (version 2.0.5). TotalSegmentator 
could segment 104 anatomic structures in CT images and was trained on nnUNet39 using 1204 patient datasets. 
Python-API was used to call TotalSegmentator and ’roi-subset’ option was used to segment left and right 
clavicles separately. The resulting left and right volumes were combined such that each photon-counting CT has 
a corresponding 3D segmentation volume of clavicles (Fig. 1c). The annotations were then forward projected 
using the same setup and parameters as in their image domain, and binarized to obtain the segmentation mask.

Datasets and training
TorchXRayVision36 is a Python library that contains chest X-ray datasets and models including disease 
classification and segmentation. The segmentation model in TorchXRayVision was trained by the ChestX-
Det40, which is a subset of the NIH ChestX-14 dataset. ChestX-Det contains 3575 images with segmentation 
annotations for chest anatomies including clavicles and lung, which were annotated by three board certified 
radiologists. The chest segmentation model in TorchXRayVision used a pretrained PSPNet41 and was trained 

Scientific Reports |        (2024) 14:25813 2| https://doi.org/10.1038/s41598-024-73363-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


with 3575 images. Instead of only using only an internal model, we included TorchXRayVision model as a 
baseline and to enable reproducible research.

For our own segmentation model, the real X-ray dataset consists of 3434 CXR images, with clavicle masks 
annotated manually by experts. 350 real CXR images were randomly separated for testing. A total of 3434 images 
were used for training (train: 3134, valid: 387). From the 116 photon-counting CT examinations, we generated 
21 synthetic X-ray images for each dataset, yielding a total of 2436 synthetic X-ray images and the corresponding 
clavicle annotations. Subject-specific splitting were performed to randomly select 96 datasets (2016 images) 
for training and 20 datasets (420 images) for testing. With an addition of 288 well-positioned synthetic X-ray 
images, U-Net(Real + Syncen) has a total of 3731 training images. U-Net(Real + Synall) uses 2016 synthetic 
well- and adversarial- positioned X-ray images, resulting in a total of 5450 training images. Table 1 provides 
detailed information about the dataset and the models. Same image preprocessing steps were applied to real and 
synthetic X-ray images before training, which include resize and normalization. Both real and synthetic X-ray 
and respective clavicle masks were resized to an image dimension of 256× 256 by bilinear interpolation and zero 
padding. Subsequently, the pixel values in real and synthetic images were normalized into the range of [0, 1]. 
U-Net42 was used to train our models, Dice loss and Adam optimizer with a learning rate of 0.01 were used and 
early stopping was applied when the model did not improve in the last 30 epochs.

Training Testing

Real Synthetic Total Real Synthetic

TorchXRayVision 3575 0 3575

350 420
U-Net(Real) 3434 0 3434

U-Net(Real+Syn_
cen) 3434 288 3731

U-Net(Real+Syn_all) 3434 2016 5450

Table 1.  Dataset distribution for public and self-trained models.

 

Fig. 1.  (a) Patient positioning possibilities in clinical X-Ray examination, A and B represent adversarial 
positioning and C represents correct positioning; (b) Simulation setup for generating rotated and non-rotated 
synthetic X-rays with an angle α in the range of [−20◦, 20◦]; (c) Our proposed workflow: In the CT domain, 
we generated ground truth segmentation masks using TotalSegmentator. Paired CT image and segmentation 
volumes were forward projected to X-ray domain as normal and adversarial data for training and testing, and 
to quantify robustness in segmentation models TorchXRayVision, U-Net(Real), U-Net(Real + Syncen) and 
U-Net(Real + Synall).
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Robustness evaluation
An ablation study was used to select the optimal network hyperparameters. By varying the batch sizes, depth 
of U-Net and loss functions, the Dice scores were evaluated. For the loss function in the network, 1− Dice 
similarity coefficient43 resulted as Dice loss44 calculation:

	
DiceLoss(y, ŷ) = 1− 2yŷ + ε

y + ŷ + ε
,� (1)

where y indicates the ground truth, ŷ indicates the predicted segmentation, and ε is used to avoid division by 0 
so to ensure loss function stability. Multiplication of y and ŷ indicate the intersected region of ground truth and 
predicted segmentation. Whereas the Dice with binary cross entropy (BCE) loss is defined as:

	 BCELoss(y, ŷ) =− ylog(ŷ) + (1− y)log(1− ŷ), � (2)

	 DiceBCE =BCELoss +DiceLoss, � (3)

both Dice and DiceBCE loss functions were evaluated in the ablation study. The real and synthetic X-ray images 
were evaluated on TorchXRayVision, images were resized to 512× 512 and normalized to [-1024, 1024] as 
in their pipeline. The first two classes in the output predictions among 14 classes are left and right clavicles 
respectively, and combined to form the clavicle prediction. Both real and synthetic X-ray images were evaluated 
on our self-trained models U-Net(Real), U-Net(Real + Syncen) and U-Net(Real + Synall). For each model’s 
output, the prediction was defined as the true class when the predicted probability is >0.5.

Robustness was shown as Dice score in a boxplot for 20 randomly selected patients across 21 projections, 
resulting 420 images. For simpler representation, internal patient rotation α values are divided into five groups. 
Well-positioned X-ray images denoted as group “Center” (−2◦ to 2◦). Adversarial images are categorized into 
“Moderate Negative” (−20◦ to −12◦), “Low Negative” (−10◦ to −4◦), “Low Positive” (4◦ to 10◦), and “Moderate 
Positive” (12◦ to 20◦). Interquartile range (IQR) is represented by the upper and lower box edges which indicates 
75th percentile (or third quartile, Q3) and 25th percentile (or first quartile, Q1) respectively. The whiskers extend 
to the farthest data point lying within 1.5 × IQR from the box, with upper whiskers = Q3 + (1.5× IQR), while 
lower whiskers = Q1− (1.5× IQR). Statistical analysis on the mean Dice score and standard deviation for 
four models were evaluated on synthetic test images, and real test images as a baseline. To further demonstrate 
the Dice changes for patients at different angles, we performed a box plot comparing U-Net(Real) with 
U-Net(Real + Syncen) or U-Net(Real + Synall) on angles −20◦, −10◦, 0◦, 10◦ and 20◦.

Furthermore, the distance metrics Hausdorff Distance (HD) and the 95th percentile of Hausdorff Distance 
(HD95) are also evaluated. The ground truth Y and predicted segmentation Ŷ  could be represented by respective 
point sets Y = {y1, y2, ..., yn} and Ŷ = {ŷ1, ŷ2, ..., ŷm}. It is a measure of the distance between two subsets of a 
metric space. With ∥ y − ŷ ∥2 is the Euclidean distance between y and ŷ, the Hausdorff Distance D(Y, Ŷ ) of Y 
to Ŷ  is defined as:

	

d(Y, Ŷ ) = max
y∈Y

min
ŷ∈Ŷ

∥ y − ŷ ∥2

HD(Y, Ŷ ) = max(d(Y, Ŷ ), d(Ŷ , Y ))
� (4)

Instead of the maximum of the nearest point between Y and Ŷ , HD95 is defined as 95th percentile of the 
distances. This can reduce the sensitivity to outliers and provide a more robust comparison.

Results
Performance of real data-trained models
Figure 2 shows the robustness analysis of models trained with real X-ray images as a boxplot, robustness for 
TorchXRayVision is black and U-Net(Real) is red in color. Internal patient rotation α values are divided into 
five groups. Well-positioned X-ray images are grouped as center. The boxplot shows a clear, symmetrically 
distributed trend across the five groups of α values, delineated by a curve-shaped progression in terms of 
central tendency measures and quartile ranges. Highest median values are observed in central α values for both 
TorchXRayVision and U-Net(Real) model, as depicted by the line within the box. Mild negative and positive 
α demonstrate successively lower median, while moderate negative and positive α exhibit the lowest median 
values. A similar pattern is also observed in Table 2 which shows the Dice score, HD and HD95 in mean and 
standard deviation. Interquartile range (IQR) is represented by the upper and lower box edges which indicates 
75th and 25th percentile respectively. IQR are large in moderate negative and positive α values, while narrowing 
towards the central α values. This pattern suggests a decrease in variability towards X-rays positioned closer to 
the center. This pattern is further supported by the whiskers, which extend to the farthest data point lying within 
1.5 × IQR from the box. The upper and lower whiskers for both models exhibit a consistent decrease from the 
central towards the outer α values. Notably, the moderate negative and positive α values exhibit large distance in 
their lower whiskers. This highlighted the increase in model performance variability at higher α values. Overall, 
the observed curve-shaped pattern in median and quartile range, coupled with the increasing distances of the 
whiskers, underscores the decrease in robustness of models in adversarial data.

Figure  3 shows synthetic X-ray of three test subjects with segmentation contours of ground truth (red 
color) and predictions from TorchXRayVision (green color) and U-Net(Real) (blue color). In α = 0◦, both 
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TorchXrayVision and U-Net(Real) segmentation contour are most similar to the ground truth masks. In most 
cases of α = −20◦ and 20◦, the clavicle contours for both models are either longer or shorter than the ground 
truth.

Improvement when trained with real and synthetic adversarial data
To assess the influence of the synthetic data, we further trained the U-Net model with real and synthetic 
X-ray images, as U-Net(Real + Syncen) and U-Net(Real + Synall). Figure  4 shows the robustness analysis 
of models trained with real X-ray images as a boxplot, robustness for U-Net(Real + Syncen) is blue and 
U-Net(Real + Synall) is green in color. There is a consistent increase in the median in both U-Net(Real + Syncen

) and U-Net(Real + Synall) models compared to U-Net(Real). The IQR and the distance between the upper and 
lower whiskers exhibit a consistent decrease across all five groups of α values when synthetic data is incorporated 
into training for both U-Net(Real + Syncen) and U-Net(Real + Synall). And the IQR and whiskers range in 
U-Net(Real + Synall) even reduced more than U-Net(Real + Syncen). This indicates a positive impact of 
adversarial synthetic data incorporation on model performance.

Moderate - Low - No Low + Moderate +

TorchXRayVision

Dice 48.67 ± 21.86 58.06 ± 21.53 62.26 ± 20.32 60.21 ± 22.25 53.27 ± 26.12

HD 2077.14 ± 115.53 2219.49 ± 32.33 2287.61 ± 32.06 2285.14 ± 41.69 2176.00 ± 82.62

HD95 1539.31 ± 100.88 1796.58 ± 90.51 1913.68 ± 49.05 1870.52 ± 84.12 1630.44 ± 45.73

U-Net(Real)

Dice 79.12 ± 8.90 82.94 ± 10.46 83.79 ± 13.24 86.37 ± 6.61 76.71 ± 17.69

HD 6.91 ± 0.30 6.38 ± 0.11 6.31 ± 0.12 6.14 ± 0.17 6.69 ± 0.35

HD95 5.07 ± 0.23 4.38 ± 0.10 4.15 ± 0.19 4.01 ± 0.03 4.84 ± 0.39

U-Net(Real + Syncen)

Dice 87.14 ± 4.58
(10.14%)

88.84 ± 4.52
(7.11%)

89.61 ± 2.78
(6.95%)

89.14 ± 3.30
(3.21%)

86.02 ± 7.57
(12.14%)

HD 5.57 ± 0.27 5.43 ± 0.10 5.56 ± 0.08 5.64 ± 0.10 5.76 ± 0.13

HD95 4.08 ± 0.24 3.77 ± 0.03 3.63 ± 0.10 3.78 ± 0.06 4.07 ± 0.39

U-Net(Real + Synall)

Dice 88.50 ± 3.45
(11.86%)

89.03 ± 3.47
(7.34%)

89.21 ± 3.49
(6.47%)

89.32 ± 2.19
(3.42%)

88.95 ± 3.39
(15.96%)

HD 5.36 ± 0.10 5.37 ± 0.09 5.36 ± 0.07 5.50 ± 0.06 5.40 ±0.04

HD95 3.71 ± 0.10 3.67 ± 0.04 3.63 ± 0.05 3.64 ± 0.06 3.62 ± 0.07

Table 2.  Robustness of four models. Dice score, Hausdorff Distance (HD) and 95th percentile of HD (HD95) 
are measured between the ground truth and predicted segmentation by four models on synthetic data. Values 
are shown in groups of normal and adversarial data using the internal rotation feature α. Values are shown as 
mean ± standard deviation. Values in bracket show the percentage increase of the real and synthetic data-
trained models compared to real data-trained model U-Net(Real). Bold values indicate the best results for each 
internal rotation category.

 

Fig. 2.  Robustness as Dice score for real data-trained segmentation models in boxplot on well- and 
adversarial- positioned data. TorchXRayVision is black and U-Net(Real) is red in color. Internal patient 
rotation α values are divided into five groups. Well-positioned X-ray images are grouped as center. While 
adversarial data indicated by Moderate Negative (-), Low Negative (-), Low Positive (+), and Moderate Positive 
(+). The ranges includes α values with a step size of 2◦. Ie. center represent α values of −2◦, 0◦, and 2◦.
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Fig. 4.  Robustness as Dice scores for real and synthetic data-trained segmentation models in boxplot on well- 
and adversarial- positioned data. Values in mean and standard deviation are shown in Table 2. U-Net(Real) 
is red, U-Net(Real + Syncen) is blue and U-Net(Real + Synall is green in color. Description for the boxplot is 
similar as Fig. 2.

 

Fig. 3.  Clavicle segmentation results of real-data-trained segmentation models. Three subjects with 
adversarial-positioned (α = −2◦ and 20◦) and well-positioned (α = 0◦) images are shown.The ground truth 
(GT) segmentation contours from TotalSegmentator are red, TorchXRayVision are green, and U-Net(Real) 
are blue in color. The Dice score analysis with respect to GT for each patient and angle are shown below each 
image, left is TorchXRayVision and right is U-Net(Real).
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Furthermore, when considering the trend across various α values, the median, IQR and whiskers ranges of 
U-Net(Real + Synall) are equally consistent across all α groups. While the symmetric curve trend still exists 
in both U-Net(Real + Syncen) and U-Net(Real). The two models trained with only well-positioned data have 
lower median in moderate negative and positive than center α value. Also, the IQR has a larger decrease in 
moderate α than in mild α values, with most pronounced decrease in mild positive. While in center α values, the 
IQR of U-Net(Real + Syncen) and U-Net(Real + Synall) are similar. The above results collectively underscore 
the efficacy of synthetic adversarial data-incorporated training, which enhanced the resilience and robustness 
of deep learning segmentation models. In addition, similar pattern are observed quantitatively in Table  2. 
Percentage increase in Dice score are larger in moderate than center or low α values.

Figure 5 shows synthetic X-ray of three test subjects with segmentation contours of ground truth in red, 
predictions from U-Net(Real) is blue, U-Net(Real + Syncen) is cyan, and U-Net(Real + Synall) is yellow in 
color. In α = 0◦, the segmentation contours from all three models have a high similarity to the ground truth, 
with U-Net(Real) and U-Net(Real + Syncen) slightly under or over predict on Subject 1, and 3. In α = −20◦ and 
20◦, the contour U-Net(Real) fall short in at least one clavicle in each subject. Moreover, U-Net(Real + Synall

) has generally a higher similarity to ground truth than U-Net(Real + Syncen). This is supported by the Dice 
score analysis shown below each image. U-Net(Real + Synall) generally shows the highest or second-highest 
Dice score.

Network and ablation study
The training of the three models was performed on a NVIDIA A40 48GB GPU. Each epoch takes ≈300 
seconds, early stopping was applied when model did not improve within the last 30 epochs. An ablation study 
was performed on the U-Net(Real) where different components or loss terms are tested during training to 

Fig. 5.  Clavicle segmentation results of real and synthetic data-trained segmentation models. Three subject 
images where the patient is adversarial-positioned (α = −20◦ and 20◦) and well-positioned (α = 0◦). The 
segmentation contours color for ground truth (GT) are red, U-Net(Real) are blue and U-Net(Real + Syncen

) are cyan, and U-Net(Real + Synall) are yellow. The Dice score analysis with respect to GT for each patient 
and angle are shown below each image, left is U-Net(Real), middle is U-Net(Real + Syncen), and right is 
U-Net(Real + Synall). Bold indicates the highest value among the triplets, and underline indicates the second-
highest value.
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evaluate the efficacy of each component. By varying the batch sizes, depth of U-Net and loss functions, the Dice 
score were evaluated. Table 3 shows the Dice score in mean and standard deviation of the ablation study, bold 
values indicates the highest Dice. The hyperparameters with highest Dice score is when using Dice loss, batch 
size of 32 and 5 layer in U-Net. Hence, these hyperparameters were also used in U-Net(Real + Syncen) and 
U-Net(Real + Synall) training. As a baseline comparison, we also test the other three models TorchXRayVision, 
U-Net(Real + Syncen) and U-Net(Real + Synall) on 350 real X-ray images. Respective Dice scores for four 
models are shown in Table 4.

Discussion
To separate the effect of domain learning when measuring adversarial robustness, we define the model 
U-Net(Real + Syncen) for which only well-positioned synthetic X-ray were added to training. This model 
did not seen any adversarial data. The increase in median, and reduction of IQR and whiskers range in 
U-Net(Real + Syncen) than U-Net(Real) across all α values demonstrated the transfer learning between real and 
synthetic X-ray. However, U-Net(Real + Syncen) still exhibit a curve shape trend, ie. higher Dice in the center 
while lower Dice on the large α values. In addition, the curve shape trend still exists when using the open-source 
TorchXRayVision as a baseline comparison. Yet, the primary focus of this analysis is not on the overall and 
absolute performance of different network, but rather on observing the trend of the Dice score across various 
adversarial data, ie. angles. We can see there is an agreement of the Dice score trend across different angles which 
agrees to our model trained with internal data.

Compared to U-Net(Real + Syncen), U-Net(Real + Synall) has a reduced whisker range in all groups and 
reduction in IQR in moderate negative, mild and moderate positive angles. With only 96 images added per 
adversarial features, angle α, to the training, the spread of Dice score reduced and the model performances 
improved. Furthermore, U-Net(Real + Synall) has similar median Dice, IQR and whisker range for all α angles. 
Robustness refers to the ability of a model to maintain its performance and generalization capabilities when 
faced with perturbations. Hence, similar variability shows the resilience and reduced misclassification in clavicle 
segmentations. On the other hand in the center α group, both U-Net(Real + Syncen) and U-Net(Real + Synall

) have similar IQR and median, but slightly more reduced whiskers range. Both models contain the same well-
positioned synthetic X-ray images, while U-Net(Real + Synall) contains additional adversarial-positioned 
synthetic images. With addition of adversarial training data, the peripheral Dice score is reduced, thus indicating 
the learning of adversarial features. As a rule of thumb, the increase in training data might contribute to the 
combined effect of the performance improvement. Yet the performance improvement in the center category is not 
substantial, for instance in Figure 4, the blue box and green box in the center category even with an increase of total 
training data from 3731 to 5450. The increase of performance only appears in adversarial angles. This suggests that 
the increase in adversarial data can provide a larger feature distribution in the data, thus allowing the network to 
learn the adversarial features. Moreover, this is also the insight of our study with more data, which is to showcase 
the generation of synthetic data. These findings collectively support the theory that adversarial patient positioning 
would contribute to segmentation model robustness. Furthermore, the addition of synthetic adversarial training 
data enhanced the consistency and performance of the deep learning-based bone segmentation model. Future 
works will include collection and testing on real CXRs which is shown to have the projection angle variation.

TorchXRayVision U-Net(Real) U-Net(Real + Syncen) U-Net(Real + Synall)

Mean 42.03 92.58 91.96 92.30

SD 32.62 7.14 9.47 8.29

Table 4.  Evaluation of four models on real X-ray images. Dice score were shown as mean and standard 
deviation (SD). Bold indicates highest Dice score.

 

Exp 1 2 3 4 5 6 7 8 9

Depth 3 4

Loss Dice DiceBCE Dice

Batch 8 16 32 8 16 32 8 16 32

Mean 89.79 89.88 90.00 89.42 89.28 88.60 91.63 91.37 91.33

SD 10.84 11.08 9.24 10.26 11.45 9.78 8.68 8.44 8.82

Exp 10 11 12 13 14 15 16 17 18

Depth 4 5

Loss DiceBCE Dice DiceBCE

Batch 8 16 32 8 16 32 8 16 32

Mean 91.17 91.45 91.23 92.04 92.14 92.58 92.26 91.53 90.96

SD 8.12 8.48 9.00 7.07 7.05 7.14 7.55 7.58 7.38

Table 3.  Ablation study on U-Net(Real). 18 combinations resulted when varying depth of U-Net, loss function 
and batch size. Dice score were shown as mean and standard deviation (SD). Bold indicates highest Dice score.
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In radiomics, it is common to use image perturbations to determine features’ robustness and stability, with the 
goal of enhancing the reliability of radiomic analysis by using the robust features45–48. The perturbations includes 
rotation which also want to simulate the patient position variation during imaging. However, these studies 
mostly focus on CT images with rotation along z-axis. Our study focus on rotation along y-axis, as this patient 
rotation might happen during examination, and unlike z-axis rotation, it cannot be adjusted retrospectively. 
Also studies in deep learning models robustness have only been focusing on modifying the pixel intensity or 
translation, random cropping10,16–18, and have not bring forward to a clinical use case such as patient rotation. 
Therefore we propose the novel use of synthetic X-rays from CT for generating the adversarial patient positioned 
images for testing and training. Forward projected images could moreover reflect the actual attenuation effects 
of photon in X-ray beam on the anatomical changes when patient is rotated. Even though other generative view 
synthesis approaches might be applied, forward projection is a systematical reconstruction and a comparison of 
them is not our main focus. Extending beyond prior research32–34, our study further investigate in which aspect 
could the mixture of real and synthetic data-trained models outperform real data only trained models.

Conclusion
This study has demonstrated the potential and effectiveness of applying adversarial synthetic X-rays generated 
from 3D photon-counting CT and TotalSegmentator annotations to quantify and increase robustness of bone 
segmentation models in X-ray. In real data-trained models, we found the models are less robust. As Dice scores 
increase in absolute value and spread with increasing internal patient rotation. Adding adversarial synthetic 
X-rays to training data reduces the variations and thus enhances model robustness. The focus of this study 
was on CXR and clavicle segmentation, but the underlying principle has great potential for applications in 
other domains including segmentation for hip replacement. Conclusively, we presented a systematic way of 
generating synthetic X-rays which can be used as an option to improve the robustness of deep learning models 
supplementary to standard approaches.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to compa-
ny data privacy, but might be available on reasonable request to the corresponding author.
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